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The majority of patients diagnosed with melanoma present with thin lesions and gener-
ally these patients have a good prognosis. However, 5% of patients with early melanoma
(<1 mm thick) will have recurrence and die within 10 years, despite no evidence of local or
metastatic spread at the time of diagnosis. Thus, there is a need for additional prognostic
markers to help identify those patients that may be at risk of recurrent disease. Many stud-
ies and several meta-analyses have compared gene and protein expression in melanocytes,
naevi, primary, and metastatic melanoma in an attempt to find informative prognostic mark-
ers for these patients. However, although a large number of putative biomarkers have
been described, few of these molecules are informative when used in isolation. The best
approach is likely to involve a combination of molecules. We believe one approach could be
to analyze the expression of a group of interacting proteins that regulate different aspects
of the metastatic pathway. This is because a primary lesion expressing proteins involved
in multiple stages of metastasis may be more likely to lead to secondary disease than
one that does not. This review focuses on five putative biomarkers – melanoma cell adhe-
sion molecule (MCAM), galectin-3 (gal-3), matrix metalloproteinase 2 (MMP-2), chondroitin
sulfate proteoglycan 4 (CSPG4), and paired box 3 (PAX3). The goal is to provide context
around what is known about the contribution of these biomarkers to melanoma biology
and metastasis. Although each of these molecules have been independently identified as
likely biomarkers, it is clear from our analyses that each are closely linked with each other,
with intertwined roles in melanoma biology.

Keywords: melanoma, CD146, CSPG4, galectin-3, MMP2, Pax3, biomarker

INTRODUCTION
The incidence of cutaneous melanoma has risen faster than any
other malignancy in Causasian populations in the last 30 years,
making it a global health problem (1). Although some of this
increase may be due to improved surveillance, early detection
and changes in diagnostic criteria, most is considered to be
linked to increased sun exposure. Fortunately, the majority of
patients present with thin, localized melanoma which in most
cases is curable by surgical resection (2, 3). However, because
melanoma metastasizes very early in the disease process, approxi-
mately 3% of patients who present with lesions <0.75 mm thick,
15% with lesions between 0.75 and 1.00 mm, and 30% with lesions
>2.00 mm develop metastatic disease and die within 10 years (4,
5). The prognosis is significantly worse for those patients who
present with regional and distant metastases at diagnosis, with
10 year survival rates of 64 and 16% respectively (6).

These poor survival rates are a reflection of the two main
challenges in the management of metastatic melanoma – (1) the
inadequacy of current prognostic markers and (2) the lack of
effective treatment options. Currently, prognosis is based on a
small set of clinical and histological features, e.g., tumor thickness,
level of invasion, and ulceration (7), which have limited predic-
tive power for individual patients and no direct implications for

personalizing treatment (8). Therefore, there is an urgent need
for a prognostic tool that can triage patients into high and low
risk of metastatic melanoma, particularly for patients with thin
melanoma, who show significant heterogeneity in survival (9).
This would enable high-risk patients to receive necessary follow-
up and adjuvant treatment while minimizing the interventions
received by low risk patients. Moreover, melanoma is refractory
to standard treatments such as chemo- and radiotherapy (10,
11), and new therapies are either effective for a relatively short
time, e.g., BRAF inhibitors (12), or have serious side effects, e.g.,
ipilimumab, an immune-modulating antibody that targets CTLA-
4 on activated T lymphocytes and suppressor T regulatory cells
(13, 14).

Clearly, there is a significant need for both new biomarkers and
new therapeutic options in melanoma. Intuitively, a biomarker
with high predictive value may also be a potential therapeutic tar-
get. However, the discovery of new biomarkers and development
of new treatments is challenging, as one molecule on its own is
unlikely to have sufficient predictive value to be an effective bio-
marker. Similarly, therapies targeting a single molecule will also
lack efficacy. The complexity of the metastatic process suggests
an accurate prognostic tool-kit will include additional biomark-
ers to the current histological features used, while an effective
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treatment will require simultaneous targeting of multiple steps
in the metastatic pathway (15).

Recent systematic reviews by Gould Rothberg et al. (16),
Schramm and Mann (8), and Tremante et al. (17) used REMARK
criteria (REporting recommendations for tumor MARKer prog-
nostic studies) (18) to select high quality studies investigat-
ing melanoma biomarkers. From these reviews and others we
have identified five melanoma biomarkers consistently associated
with melanoma progression – melanoma cell adhesion molecule
(MCAM), galectin-3 (Gal-3), matrix metalloproteinase-2 (MMP-
2), chondroitin sulfate proteoglycan 4 (CSPG4), and paired box 3
(PAX3). They comprise a transcription factor (PAX3), cell surface
glycoproteins (MCAM and CSPG4), a secreted protein (Gal-3),
and a matrix-degrading enzyme (MMP-2). These molecules were
chosen because of their apparent involvement in different aspects
of the disease process. Yet intriguingly, these five melanoma bio-
markers are all linked by a network of overlapping functions in
melanoma progression.

PAIRED BOX 3
PAX3/Pax3 (PAX3 and Pax3 represent the human and mouse fac-
tors respectively) is a member of the Pax family of transcription
factors that are highly conserved throughout phylogeny. All play a
crucial role in embryogenesis but all are also implicated in tumori-
genesis – [for reviews see (19–21)]. Pax3 protein contains two DNA
binding domains, a paired domain and a homeodomain which can
be used alone or in combination to bind downstream target genes
(22–25). In addition Pax3 contains a C-terminal transcription acti-
vation domain and an octapeptide (24, 26, 27). The ability of Pax3
to employ one or both DNA binding domains accounts for its abil-
ity to regulate numerous downstream targets. A single Pax3 gene
encodes multiple transcripts produced by alternate splicing (28–
31). The resultant protein isoforms provide functional diversity for
Pax3, as they differ in structure and in the activity of their paired,
homeodomain and alternate transactivation domains (31–33).
Pax3 functions by activating or repressing expression of its down-
stream target genes, thereby affecting the target gene-mediated
regulatory pathways. Moreover, certain protein modifications, e.g.,
acetylation, can switch Pax3 from an activator to a repressor on
the same target gene promoter (34). In addition, different PAX3
isoforms seem to have a different (and even opposing) effect on
the same cellular process (35).

PAX3 expression and function has been extensively studied
in embryogenesis and its role here is well described [reviewed
in Ref. (36)]. Its expression during early embryogenesis is criti-
cal for development of cells of neural crest origin, the cells that
give rise to skin melanocytes. PAX3 is considered a key player in
melanocyte development, from lineage specification and main-
tenance of melanoblast stemness, to regulation of cell prolifera-
tion and migration to their final location where they terminally
differentiate into melanocytes (28, 37, 38). Pax3 is crucial for
melanoblast specification and differentiation, being at the pinnacle
of the hierarchy of melanocyte-specific gene regulators. In addi-
tion, Pax3, along with other factors, activates the key melanocytic
regulator MITF (microphthalmia transcription factor) which ini-
tiates the activation of the cascade of melanogenic genes (39, 40).
It is interesting to note that even though activation of Mitf by Pax3

during embryogenesis is well described, this regulatory axis does
not seem to be operational in melanoma cells (41), where MITF
and PAX3 regulate diverging pathways.

The involvement of PAX proteins in cancer is well known
(20). Many studies show PAX3 expression in melanoma, but
also in tumors arising from other neural crest-derived tissues,
such as medulloblastoma, benign peripheral glial tumor neurofi-
broma (precursor of malignant nerve sheath tumor), Erwin’s sar-
coma, supratentorial primitive neuroectodermal tumor, and pedi-
atric alveolar rhabdomyosarcoma (ARMS) (42–51). In melanoma,
PAX3 expression is evident at all stages of disease progression,
including the primary lesion, circulating melanoma cells, and
metastatic lesions (29, 42–46, 52–55). PAX3 is also expressed in
benign naevi and in normal melanocytes (53, 56), although its
precise role here is not clear. This suggests PAX3 is best described
as a lineage marker rather than a marker of disease progression.

However, the recently proposed theory that melanoma progres-
sion is driven by those melanoma cells showing a highly motile,
less differentiated (stem-like) phenotype (57–60), and the crucial
roles PAX3 plays in melanocyte development, implies that it is
more than just a lineage marker. It might actively drive melanoma
progression. It has been suggested that the ability of a melanoma
cell to respond to micro-environmental changes by switching
between a highly proliferative (low metastatic potential, leading
to tumor growth), and highly invasive phenotype (motile and
stem cell-like, resulting in tumor dissemination) contributes to
the aggressive nature of melanoma (60, 61). PAX3 is a nodal point
in melanocyte differentiation, as it simultaneously functions to
initiate the melanogenic cascade while preventing terminal differ-
entiation, thus keeping the cell in a lineage restricted stem cell-like
state (19). The evidence that PAX3 protein modifications, such
as phosphorylation and acetylation, can alter cell functions, from
stem-like to differentiated (34, 62–64), strengthens this hypothesis.

PAX3 has been shown to prevent apoptosis in melanoma
cells (56, 65) via a range of mechanisms. Several known anti-
apoptotic factors, such as tumor suppressors p53, PTEN, and Bcl-
Xl, are mediators of Pax3-induced cell survival, in both embryo-
genesis and tumorigenesis. Pax3 has a dual effect on p53; it
represses transcription of p53-dependant genes, BAX and HDM2-
P2, and promotes p53 protein degradation (66). Knock down of
PAX3 induced increased cell detachment, growth reduction, and
increased apoptosis in melanoma cell lines (65). Inactivation of
the tumor suppressor gene PTEN is often found in PAX3-positive
tumors (67). PAX3 binds directly bind to the PTEN promoter
(68), down regulating its expression and decreasing apoptosis
(69). PTEN regulates progression through the G1 cell cycle check-
point, by negatively regulating PI3K/AKT signaling. Transcription
of BCL-XL, a member of the BCL-2 family of anti-apoptotic genes,
is also directly regulated by PAX3 (68, 70). Treatment with PAX3
or BCL-XL antisense oligonucleotides, individually or in combi-
nation, decreased cell viability to a similar extent, suggesting that
PAX3 and BCL-XL lie in the same anti-apoptotic pathway (70).
Additionally, MITF regulates another member of the same gene
family, BCL-2 (71), providing an alternative indirect mechanism
to regulate melanoma cell survival.

During embryogenesis Pax3 plays a crucial role in control-
ling the correct migration of cells, by directly regulating the
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transcription of TGFα and TGFβ (72, 73), growth factors that
are involved in remodeling the extracellular matrix (ECM) and
cell cytoskeleton as required for cell migration (73–75). A similar
role is suspected in melanoma cells, where PAX3 has been found
to directly target the TGFβ promoter in metastatic melanoma cell
lines (68). Involvement of PAX3 in melanoma migration is further
supported by evidence showing that other genes associated with
cell migration, including MCAM, CSPG4, and CXCR4, are targeted
by PAX3, as shown by ChIP assay in A2058 melanoma cells (68).
Up-regulation of MCAM expression following Pax3-transfection
in melanoma cells confirmed that MCAM is a downstream target
of Pax3 (76, 77), and the number of cells co-expressing MCAM and
PAX3 is increased in highly metastatic melanoma (53). CXCR4 is
also associated with metastatic spread of melanoma (78). CXCR4,
and its ligand CXCL12, regulates chemotactic migration and
“homing” of tumor cells to a secondary organ/site, and facilitates
tumor cell extravasation (79, 80).

Medic et al. (68) suggested the traditional developmental roles
of PAX3 in regulating differentiation, proliferation, cell survival,
and migration, are retained in melanoma cells. They showed that
PAX3 promoted a less differentiated, stem-like (via HES1, SOX9,
NES, DCT), motile (via MCAM, CSPG4, and CXCR4) phenotype,
characteristic of melanomas with high metastatic potential (81).
PAX3-mediated regulation of melanoma cell survival and prolif-
eration is through BCL2L1 and PTEN, and TPD52 (tumor protein
D52) respectively (82). By controlling crucial cell processes (pro-
liferation, cell survival, and migration), as well as promoting a less
differentiated stem-like phenotype, PAX3“ticks all the boxes”as an
intrinsic factor driving melanoma development and progression.

From these studies it is evident that PAX3 is involved in
melanoma progression on multiple levels, and it is likely that
at different stages of disease progression, PAX3 plays different
roles. Most recently, PAX3 has been identified as the mediator
of anti-senescence and induced drug resistance in melanoma cells
(83–85). Consistent with its crucial roles in normal melanocytes
and melanoma cells, PAX3 appears to be expressed on similar
percentages of circulating tumor cells (CTCs) in patients with dif-
ferent stages of metastatic disease (AJCC stages 0–V). However,
this percentage decreased in patients following surgical removal
of metastatic lesions, suggesting PAX3 expression could be used to
monitor the tumor load in patients undergoing surgery and other
treatments (55).

MELANOMA CELL ADHESION MOLECULE
Melanoma cell adhesion molecule (CD146, Muc18, S-Endo-1)
is a cell surface glycoprotein belonging to the immunoglobulin
(Ig) superfamily. It has five extracellular Ig-like domains, a short
transmembrane region, and a cytoplasmic tail, which includes two
putative endocytic motifs (86, 87). MCAM was initially identified
as a marker of melanoma progression in 1989 (88), and recently
was recognized as a more accurate prognostic marker than all other
clinico-pathological characteristics (89). MCAM is expressed on
approximately 70% of primary melanoma and 90% of lymph
node metastases, and MCAM expression in a primary lesion is
predictive of lymph node metastases and metastases at other sites
(90). MCAM expression is also associated with significantly lower
5 year survival rates: approximately 95% of patients with MCAM

negative primary lesions survive 5 years post-diagnosis, compared
to 40% of patients with MCAM positive primary lesions. Strati-
fication of patients by MCAM expression in the primary tumor
may therefore enable more accurate identification of patients who
are likely to have a positive lymph node, and those patients that
have high-risk of recurrence despite a negative lymph node (90).

In addition to melanoma, MCAM expression has been linked
to progression of breast, prostate, and ovarian cancer (91–95).
Interestingly, MCAM also plays a role in trophoblast invasion dur-
ing pregnancy (96, 97) and is used as a marker of mesenchymal
stem cells (98, 99). In normal adult tissue, MCAM is primarily
expressed by the vascular endothelium and smooth muscle (100,
101). Most studies on MCAM have focused either on its contribu-
tion to melanoma metastasis or its role in endothelial cell function
and angiogenesis.

On melanoma cells, MCAM mediates cation independent cell–
cell adhesion (102), moderates cell-matrix interactions (103) and
is associated with increased cell migration and invasion, as seen in
in vitro scratch wound and invasion assays (104, 105). A blocking
antibody to MCAM decreased cell–cell adhesion and cell invasion
in vitro, and decreased primary tumor growth and lung metastases
in vivo (106). Other murine studies suggest MCAM influences the
later stages of metastasis, such as the establishment of a secondary
lesion (107). In endothelia, MCAM has been implicated in main-
tenance of endothelial cell–cell junctions (101, 108), endothelial
cell proliferation, migration, and angiogenesis (109).

Data from human studies also suggest that MCAM expression
may be linked to the development of metastatic melanoma lesions.
MCAM expression on CTCs in melanoma patients has been asso-
ciated with increased tumor burden and poorer outcome in Stage
IV disease (55, 110). In addition, MCAM expression on CTCs was
found to be a useful marker for monitoring response to therapy, as
patients with poor outcomes had an increased incidence of MCAM
positive CTCs compared to patients with more positive outcomes
(55, 110). Reid et al. (55) also suggest that MCAM expression
on CTCs may help identify patients that respond poorly to con-
ventional treatments and may benefit from alternative regimes.
Despite the overwhelming evidence that MCAM expression on a
melanoma lesion is associated with a poor prognosis, details of the
key molecular interactions in melanoma progression that involve
MCAM remain unclear. We, and a small number of other groups,
have been exploring how the structural features of MCAM con-
tribute to its role in melanoma progression as a way of redressing
this issue.

Melanoma cell adhesion molecule has eight potential N-
glycosylation sites (88) and is heavily glycosylated during post-
translational processing, with approximately 35% of its weight due
to carbohydrate modifications (111). Sialic acid, the HNK-1 anti-
gen (CD57), and β1–6 branched N -acetylglucosamine side-chains
(β1–6 branches) (111) are among the carbohydrates moieties car-
ried by MCAM, although the carbohydrate structures decorating
MCAM vary according to the cell-type which is expressing this
protein. MCAM exists as monomers and dimers on the surface
of both endothelial and melanoma cells (112); with dimerization
mediated through a disulfide bond occurring between cysteine
residues in the most membrane proximal Ig domain (113). There
are two isoforms of MCAM: MCAM-long contains a 63 amino acid
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intracellular domain including two putative endocytic domains
and five potential protein kinase recognition sites (100), while
MCAM-S contains a truncated cytoplasmic tail that lacks both
of the endocytosis motifs and one of the protein kinase sites
(87). Melanoma cells express primarily the long isoform whereas
endothelial cells express both (87, 103). A soluble form of MCAM
has also been detected in cell culture supernatants and serum from
normal healthy subjects (114).

The intracellular tail of MCAM-long binds to hShroom1 (87)
and ezrin-radixin-moesin (ERM) proteins (115), both of which
bind to the actin cytoskeleton. Luo et al. (115) found that the
ERM proteins link MCAM to the actin cytoskeleton and pro-
moted the formation of microvilli. In addition, the MCAM-ERM
protein complex recruited Rho guanine nucleotide dissociation
inhibitory factors 1 (RhoGDI1) and sequestered it from RhoA.
The release of RhoA from RhoGDI1 inhibition led to RhoA acti-
vation, downstream signaling and widespread microfilament reor-
ganization (115). Activation of the PI4P5K-PIP2 pathway during
this process formed a positive feedback loop, further promot-
ing the phosphorylation and activation of the ERM proteins and
the MCAM-ERM interaction (115). The regulation of cytoskele-
tal reorganization and migration by RhoA in melanoma cells in
response to the chemokine CXCL12 (SDF-1), has previously been
described (116, 117). Thus, Luo et al. (115) proposed the over-
expression of MCAM in melanoma cells drives RhoA activation,
cytoskeletal reorganization, and cell migration.

Witze et al. (118) describe a different model for the contribu-
tion of MCAM to cell polarity and migration of melanoma cells.
They described Wnt5-mediated recruitment of MCAM, actin, and
myosin IIB into intracellular bodies known as Wnt5a-mediated
receptor-actin-myosin polarity (W-RAMP) structures. In the pres-
ence of CXCL12, these structures distributed asymmetrically and
directed membrane retraction at the trailing edge of the cell. Mem-
brane retraction then promoted nuclear movement and influenced
the direction of cell migration (118). This process required mem-
brane internalization, endosomal trafficking, and the intracellular
translocation of MCAM, and in contrast to other Wnt-cytoskeletal
interactions and the model proposed by Luo et al. (115) it is
regulated by RhoB rather than RhoA.

Endothelia and melanoma express high levels of MCAM, and as
melanoma cell interactions with vascular endothelia are a key part
of the metastatic process, it is likely MCAM on both of these cells
contributes to melanoma metastasis. Although a homophilic inter-
action between MCAM cannot be demonstrated (102, 119), it is
possible that melanoma and endothelial cells both express MCAM
and its ligand, and these interact bi-directionally. It is known that
MCAM contributes to cell–cell adhesion in the vascular endothe-
lium (108) and that engagement of the extracellular domain of
MCAM initiates outside-in signaling resulting in calcium flux and
the phosphorylation of a panel of intracellular proteins, includ-
ing p125FAK and paxillin, which leads to focal adhesion formation
(120). Collectively, these data suggest the localization and function
of MCAM at endothelial cell junctions involves dynamic interac-
tions with, and reorganization of, the actin cytoskeleton (121).
There is also evidence that MCAM expression in melanoma cells
modulates the expression (103) and/or activity of integrin chains.
The most compelling evidence involved the β1 chain. MCAM

overexpression also appears to stimulate the expression of MMP-
2. The association of MCAM with MMP-2 expression was first
reported in the late 1990s (106, 122, 123). A recent study fur-
ther revealed that MCAM is involved in signaling cascades that
affect the expression of the transcriptional regulator, inhibitor of
DNA binding-1 (Id-1) and activating transcription factor (ATF)-
3 (124). This study showed that MCAM silencing increased the
expression of ATF-3 and decreased the expression of Id-1. Inter-
estingly, Id-1 expression was shown to positively regulate MMP-2
transcription. As AFT-3 binds to the Id-1 promoter and represses
its transcription, the suggestion was that MCAM indirectly led to
an increase in MMP-2 levels via decreasing AFT-3 and increasing
Id-1 levels (124). These examples illustrate that MCAM expression
may shift the balance between cell–cell and cell-matrix adhe-
sion, in addition to increasing migration and invasion via the
up-regulation of pro-invasive enzymes.

Jiang et al. (125) showed that MCAM interacts with vascular
endothelial growth factor receptor 2 (VEGFR-2) on endothelia and
acts as a co-receptor for the binding of vascular endothelial growth
factor A (VEGF-A). The interaction of the extracellular domain of
MCAM with VEGFR-2 occurred independently of VEGF-A, and
was a crucial step in VEGFR-2 activation. When associated with
VEGFR-2, the cytoplasmic tail of MCAM recruited ERM proteins
and the actin cytoskeleton, to assemble a “signalosome,” which
was required for signal transduction from VEGFR-2 to AKT and
P38 MAPKs. The result was increased endothelial cell migration
(125). MCAM can also function independently of VEGFR-2, and
VEGF-A (109, 113). The interaction of MCAM with VEGFR-2 on
melanoma cells remains to be confirmed, although it is known
melanoma express VEGF and VEGFR-2, and overexpression of
VEGF-A in a melanoma cell line with VEGFR-2 favored cell growth
and survival through MAPK and PI3K signaling pathways (126).

Laminin 411 (laminin 8) and galectin-1 (Gal-1) have also been
described as ligands for MCAM (127, 128). Flanagan et al. (128)
reported that MCAM expressed by a subset of CD4+T-cells (Th17
cells) binds laminin 411 from the vascular endothelia and this
interaction was blocked by an anti-MCAM antibody and soluble
recombinant MCAM (MCAM-Fc). Animal studies showed that an
anti-MCAM antibody administered in vivo reduced Th17 lympho-
cyte infiltration into the central nervous system. The interaction
of MCAM with laminin 411 is consistent with the interaction of
gicerin (the avian homolog of MCAM) with neurite outgrowth
factor, a member of the laminin family (129, 130), and basal cell
adhesion molecule (an immunoglobulin superfamily member)
with laminin 511 (131). The interaction of MCAM on melanoma
with laminin 411 has not been investigated, but it is known that
MCAM does not interact with laminin 111 (105), 511, or 332. The
interaction of MCAM with Gal-1 is carbohydrate mediated. Gal-1
is produced by vascular cells and binds to carbohydrates on cell
surfaces and ECM proteins (132). It has been implicated in angio-
genesis (133) and melanoma progression and Jouve et al. (127)
hypothesized that the interaction of MCAM with Gal-1 protects
cells from Gal-1 induced apoptosis.

In conclusion, MCAM expression in a primary melanoma
appears to increase the likelihood of metastatic spread and may
assist to stratify patients into low and high-risk of recurrence at
diagnosis (90). In addition, it is also useful as a marker on CTCs,
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as MCAM-expressing CTCs appear to correlate with tumor bur-
den and disease progression (55). In melanoma, MCAM appears
to facilitate cell migration by the rearrangement of the cellu-
lar cytoskeleton via activation of Rho proteins (115, 118), and
potentially via activation of the AKT and P38 MAPK pathway in
association with VEGRF (125). MCAM expression is also corre-
lated with up-regulation of MMP-2 (124), and a modulation of
integrin-mediated cell spreading and migration.

GALECTIN-3
Galectin-3 belongs to a family of lectins that bind β-galactosides.
It is found in the nucleus, cytoplasm, and on the cell surface of
many cell types, and is also secreted into the extracellular space. It
has a C-terminal carbohydrate recognition domain (CRD) and an
N-terminal tail that mediates the oligomerization of Gal-3 mol-
ecules, which is vital for its extracellular functions (134). Gal-3
also contains an amino acid motif, NWGR, which is involved in
its anti-apoptotic function. This motif is also found in Bcl-2 and
has been called an “anti-death” motif. Like Bcl-2 family mem-
bers Gal-3 exerts its anti-apoptotic activity at the peri-nuclear
mitochondrial membranes (135). Extracellular Gal-3 binds with
high affinity to N -acetyllactosamine containing glycans and binds
to both cell membrane and ECM proteins that carry these gly-
cosylation structures. Gal-3 binds a host of membrane proteins
including integrins (e.g., β1, αv, αM), cell adhesion molecules
(e.g., N-cadherin, NCAM, VCAM), lysosomal membrane associ-
ated glycoproteins (Lamps)-1 and -2, growth factor receptors (e.g.,
epidermal growth factor receptor, transforming growth factor β

receptor), and molecules associated with the immune response
including the T lymphocyte receptor (136, 137). Its ECM protein
ligands include laminins-111, -332, -511, fibronectin, collagen IV,
vitronectin, and elastin (137). The N-terminal domain of Gal-3
can be post-translationally modified via phosphorylation at Ser
6. Phosphorylation of this site influences the intracellular distrib-
ution of Gal-3 and therefore its ability to regulate transcription
of downstream genes, anti-apoptotic functions, and carbohy-
drate binding properties. Specifically, phosphorylation is required
for Gal-3’s anti-apoptotic function, and dephosphorylation for
realization of its full ability to bind carbohydrate ligands (138).

Galectin-3 is expressed in the nucleus, cytoplasm, and plasma
membrane of melanoma cells (139). The intra- and extracellular
distribution of Gal-3 and its variety of extracellular binding part-
ners, both on the cell surface and in the tumor microenvironment,
suggests Gal-3 could affect metastatic progression via a range of
mechanisms (139).

There is a growing literature indicating Gal-3 expression is
associated with tumor progression in melanoma. Consistently
the data indicate primary melanomas express significantly more
Gal-3 than naevi (140–142). Gal-3 expression has also been posi-
tively correlated with tumor thickness, Clarke and Breslow tumor
stage, lymphatic invasion, lymph node positivity, and distant
metastases (143), although Brown et al. (144) recently reported
that Gal-3 expression showed a bi-modal distribution, with
increased levels in thin primary melanoma compared to naevi,
and a progressive decrease in expression in thicker and metasta-
tic melanoma. The decrease in Gal-3 expression in metastatic
melanoma was particularly evident in the nucleus (144). This

bi-modal distribution of Gal-3 was also reported by Vereecken
et al. (142). Brown et al. (144) suggest that high Gal-3 in thin
melanoma may contribute to resistance to apoptosis (145), but as
a lesion progresses, intracellular Gal-3 may be released by the cell
into the extracellular environment. Once in the extracellular envi-
ronment, Gal-3 can interact with cell surface and ECM proteins.
Melanoma progression may be associated with a decrease in intra-
cellular stores of Gal-3, such that a decrease in Gal-3 expression
may be associated with metastatic spread and a worse prognosis
in melanoma (144). Curiously Gal-3 expression was reported to
vary depending on the extent to which the melanoma lesion was
exposed to the sun, chronically sun-exposed melanoma displayed
nuclear Gal-3, whereas melanomas on intermittently sun-exposed
sites had cytoplasmic staining for Gal-3. The authors of this study
concluded that UV light may be involved in Gal-3 activation and
that the translocation of Gal-3 to the nucleus is associated with
a more aggressive lesion (140). The prognostic significance for
melanoma of serum Gal-3 has also been investigated. This work
suggested Gal-3 could be of prognostic value, as American Joint
Committee on Cancer (AJCC) stage 3 and 4 melanoma patients
had higher serum Gal-3 levels than patients with AJCC stage 1
and 2 melanoma, and serum measurements could have a role in
follow-up and management of stage 3 and 4 melanoma patients
(146).

Nuclear Gal-3 contributes to melanoma metastasis by reg-
ulating multiple genes such as VE-cadherin, MMP-1, MMP-2,
interleukin 8 (IL-8), and autotaxin (135, 147–150). Wang et al.
(150) reported that Gal-3 directly interacts with the transcrip-
tion factor activating protein 1 (AP-1) to increase expression of
MMP-1, which breaks down the collagens, types I, II, and III,
thus enabling the migration of melanoma cells through intersti-
tial connective tissue. In addition, Gal-3 expression in melanoma
has also been associated with increased levels of VE-cadherin and
IL-8, both of which are implicated in angiogenesis though the
stimulation of vascular endothelial cell proliferation and migra-
tion. Gal-3 induced up-regulation of IL-8 has also been associated
with increased MMP-2 expression (151). Recently, silencing Gal-3
expression in melanoma was shown to reduce expression of the
transcription factor NFAT1 and so decrease the transcriptional
activation and expression of autotaxin (lysophospholipase D)
(149). Autotaxin was first identified from a human melanoma cell
line due to its chemotactic and motility activity for melanoma cells
(152). Autotaxin catalyzes the conversion of lysophosphatidyl-
choline (LPC) to lysophosphatidic acid (LPA), which acts as ligand
for a range of G-protein coupled receptors to induce downstream
signaling associated with migration, invasion, and angiogenesis in
a range of cancers (153, 154). In melanoma, decreased autotaxin
lowers melanoma growth and metastasis as well as affecting cell
motility.

Gal-3 is also believed to play a role in the organization of
cell membrane micro-domains. The cell membrane is a dynamic
structure, with proteins clustered in non-random, functional
domains held together by cohesive forces between proteins and
lipids (155, 156). Most cell-surface proteins are glycosylated and
oligomeric lectins such as Gal-3 bind to specific glycan struc-
tures on cell surface glycoproteins and help organize proteins
into functional groups on the cell membrane (157, 158). These
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galectin-protein lattices are thermodynamically stable due to mul-
tiple low-affinity interactions, but are modulated by changes in
protein glycosylation or galectin expression (159). Fluorescence
recovery after photobleaching (FRAP) experiments revealed Gal-3
lattices on endothelial cells are stable and resistant to lateral move-
ment once the Gal-3 oligomers have been formed (160). Further
work has indicated Gal-3 lattices contribute to cell proliferation,
migration, and apoptosis (155). By stabilizing glycoproteins in the
cell membrane, Gal-3 lattices reduce receptor endocytosis (161)
and influence the turnover of focal adhesions (162). Goetz et
al. (162) found that Gal-3 lattices promoted integrin clustering,
and with Caveolin-1 tyrosine phosphorylation, this stabilized focal
adhesion kinase (FAK), paxillin, and α5 integrin in focal adhesion
(FA) complexes. This decreased the exchange of FA components
with the cytosol and facilitated FA maturation and turnover. The
control of FA dynamics is critical for cell motility, as the assem-
bly, maturation, translocation, and disassembly of FAs mediate
cell attachment, contraction, protrusion of the leading edge, and
retraction of the trailing edge during cell migration (163). Sara-
vanan et al. concluded from their experiments with epithelia that
on these cells Gal-3 cross-linked and clustered α3β1 integrins at
the leading edge of migrating cells. Integrin clustering activated
FAK and Rac1, which promoted lamellipodia formation and cell
migration (164). We are currently performing experiments with
melanoma cells to determine whether this model also holds for
melanoma cell migration.

In addition to binding to cell and matrix components, Gal-3 is
also cleaved by MMP-2 and MMP-9 to produce a biologically active
fragment that that may be involved with cell invasion (147) and
angiogenesis. These enzymes cleave extracellular Gal-3 to separate
the C-terminal CRD from the N-terminal domain. Curiously, the
22-kDa cleaved fragment containing an intact CRD was found to
bind its glycan ligands more strongly than the intact protein, under
conditions when the concentration of the intact protein is such
that oligomerization is prevented (147). Moreover, the data sug-
gested that truncated Gal-3 effectively competes with full length
Gal-3 to inhibit its homophilic cross-linking and other types of
protein–protein interactions as treatment with the truncated form
showed reduced tumor growth and metastasis in a breast cancer
model (165).

Exogenous Gal-3 (secreted by melanoma cells) could also influ-
ence melanoma progression as a result of its role in angiogen-
esis. Gal-3 been shown to stimulate capillary tube formation of
endothelial cells in vitro and angiogenesis in vivo (166). Inter-
estingly the angiogenic activity of Gal-3 involves CSPG4 and the
integrin α3β1. The binding of soluble CSPG4 to endothelial cell
surfaces induced cell motility and the formation of a multicellu-
lar network on type I collagen gels. Antibody blocking studies
indicated that both Gal-3 and α3β1 were involved in CSPG4
endothelial cell motility and that these molecules formed a com-
plex on the endothelial cell surface (167). CSPG4 is expressed by
microvascular pericytes whereas, Gal-3 and α3β1 are expressed by
vascular endothelial cells, but as the regulation of the development
of new vessels involves cross-talk between pericytes and endothe-
lial cells it is likely that the signaling complex of α3β1, Gal-3, and
CSPG4 is involved in pericyte endothelial cell cross-talk during
early stage angiogenesis (167). Vascular endothelial expressed

Gal-3 was also shown to important for the adhesion of melanoma
cells to lung endothelia, which led to the suggestion that Gal-3
on lung endothelia could serve as the first anchor for circulating
melanoma cells undergoing extravasation (168). Oligomerization
of Gal-3 on endothelial cells to form lattices has been observed
experimentally, with most Gal-3 concentrated in the cell–cell
junctions. Fluorescent energy transfer (FRET) experiments with
neutrophil adhesion suggested that oligomerized Gal-3 mediated
neutrophil adhesion to endothelial layers primarily at the endothe-
lial cell–cell junctions (160). It is very likely that melanoma cells
similarly interact with endothelial cells via Gal-3 lattices. This con-
clusion is supported by Gal-3 knock-out studies that revealed
Gal-3−/− mice were resistant to lung melanoma metastases and
melanoma cells bound less well to lung tissue from Gal-3−/−

mice (169).
The involvement of the immune system in checking melanoma

progression has been an avenue for exploration for many years. It
now seems that Gal-3 expression contributes to the effectiveness of
leukocyte interactions with melanoma. A melanoma biopsy study
reported a correlation between Gal-3 expression and the level of
apoptotic tumor-associated lymphocytes (170).

The studies reviewed here indicate that Gal-3 is involved in
many aspects of melanoma progression. Nuclear Gal-3 has been
implicated in melanoma cell proliferation (probably in the ear-
lier stages), while secreted Gal-3 in the tumor microenvironment
has been linked to migration and invasion of melanoma cells and
angiogenesis. Thus, the location of Gal-3 as well as the overall levels
of Gal-3 expression could be useful as a biomarker or prognostic
indicator at different stages of melanoma progression.

CHONDROITIN SULFATE PROTEOGLYCAN 4
Chondroitin sulfate proteoglycan 4 (CSPG4) was first identi-
fied over three decades ago as a surface antigen on human
melanoma cells (171). This molecule has been variously named
high molecular weight melanoma associated antigen (HMW-
MAA), melanoma chondroitin sulfate proteoglycan (MCSP), and
nerve/glial antigen 2 (NG2), the latter originally identified on rat
glia. CSPG4/NG2 positive cells make up about 5–10% of glia in
the developing and adult central nervous system and these cells
are believed to comprise a progenitor population, which matures
into oligodendrocytes and subpopulations of astrocytes. Imma-
ture Schwann cells of the peripheral nervous system also express
CSPG4/NG2 (172) as do pericytes in newly formed blood vessels
(173), and cells of mesenchymal lineages, such as immature chon-
drocytes, osteoblasts, and myoblasts. In addition, cells in the basal
layer of human epidermis and in the outer root sheath of hair
follicles that co-express CSPG4 and high levels of β1-integrin are
interfollicular epidermal stem cells and the numbers of these cells
decrease with age (174, 175). CSPG4 has thus been called a stem
cell marker.

CSPG4 is a single pass type I membrane glycoprotein. The intact
core protein of 250 kDa has a large extracellular domain which
consists of three structural domains: (1) a globular domain of two
laminin G-Type regions, (2) a central region of 15 CSPG4/NG2
repeats containing 7 Ser-Gly motifs, one of which is the consensus
motif SGXG for glycosaminoglycan attachment, and (3) a mem-
brane proximal globular domain (D3) that contains 6 of the 15
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potential sites for N-linked glycosylation. This domain also con-
tains a number of possible proteolytic cleavage sites; cleavage here
would give rise to soluble CSPG4 that can be detected in sera.
The first globular domain has a compact configuration contain-
ing 8 of the 10 extracellular cysteines and 3 potential N-linked
glycosylation sites. The 76 amino acid cytoplasmic domain con-
tains threonines that can be phosphorylated by PKCα and ERK 1,2
(residues 2256 and 2314, respectively); a proline rich region that
may contain a non-canonical Src Homology type 3 (SH3) domain
binding motif, and a C-terminal 4 residue PDZ binding motif
(176, 177) that binds to the PDZ domain of scaffold proteins like
syntenin and MUPP1 (178, 179). Despite its name, CSPG4 can be
expressed without a covalently attached chondroitin sulfate chain
making it a “part-time” proteoglycan. As the presence of the chon-
droitin sulfate chain affects the cell surface distribution of CSPG4
and various functions of the glycoprotein, it has been suggested
that regulation of chondroitin sulfate chain attachment may be a
way tumor cells control CSPG4 activities (176).

Like MCAM, CSPG4 is widely expressed on melanoma
cells, appearing on >85% of cutaneous melanoma lesions and
melanoma cell lines (180, 181). This antigen can distinguish
metastatic melanoma cells in sentinel lymph nodes by immuno-
histochemistry and qRT-PCR assays, and CSPG4 is more sensitive
and more specific than MART-1, a commonly used melanoma
marker (182). The level of CSPG4 expression is similar between
lentigo maligna, nodular, and superficial spreading melanoma
lesions but it is lower in primary acral lentiginous melanoma
lesions. Recent data indicate that approximately 54% of pri-
mary acral lentiginous melanoma lesions express the antigen and
staining levels are generally weak (183). CSPG4 is, however, a
sensitive marker for desmoplastic melanoma; 95% of desmo-
plastic primary lesions stained for CSPG4, and 86% of nodal
metastases were CSPG4 positive (184). When qRT-PCR was used
for diagnosis, CSPG4 mRNA was detected in metastatic desmo-
plastic lesions that did not express MART-1 (184). The use of
CSPG4 in diagnosis of desmoplastic melanoma could poten-
tially be very useful, as these lesions display unusual spindle
cell morphology and lack the common clinical and histologi-
cal characteristics of cutaneous melanoma, which complicates
diagnosis. CSPG4 immunoreactivity is also an important diag-
nostic indicator in the two forms of ocular melanoma (conjuctival
and uveal). CSPG4 expression levels clearly separate conjucti-
val melanoma from conjuctival nevi and in one study lower
CSPG4 expression appeared to be correlated with increased risk
of recurrence (185). Most uveal melanoma also stain for CSPG4,
with normal retinas and choroid displaying low immunore-
activity. CSPG4 may also be detected in the serum of some
melanoma patients, but is not a reliable predictor of melanoma
as only 29% of 117 melanoma patients had elevated serum
CSPG4 (186). Immunomagnetic selection of CTCs from periph-
eral blood using antibodies to CSPG4 has been performed by a
number of groups, using either one antibody or an antibody cock-
tail that recognizes different epitopes of CSPG4 (187–191). This
method appears effective in enriching for circulating melanoma
cells from peripheral blood samples. Collectively these studies
provide convincing evidence that CSPG4 is a useful biomarker
for melanoma.

Useful biomarkers generally have functions that aid either
the initial development of the primary lesion or progression to
metastases. The functions of CSPG4 could contribute to both
of these processes. A number of reports have indicated that
CSPG4 expression enhances the proliferation of melanoma cells
in vitro and in vivo. This is true for murine melanoma cells
(B16F1 and B16F10) transfected with NG2 and human melanoma
cells (M14 and WM1552C) transfected with CSPG4 (192, 193).
CSPG4 expressing WM1552C cells were also capable of anchorage-
independent growth in vitro and had activated extracellular signal-
regulated kinase (Erk)1,2, activities that required the cytoplasmic
domain of CSPG4. Inhibition of CSPG4 expression by siRNA in
melanoma cells expressing endogenous CSPG4 reduced Erk1,2
activation and anchorage dependent growth (193). Constitutive
activation of the Erk1,2 pathway is associated with more advanced
melanomas and the results of activation include entry into the
cell cycle and increased expression of key melanoma transcription
factors. CSPG4 can bind to and present growth factors, like FGF-
2 and PDGF-AA, that impact on the Erk1,2 pathway. Although
many advanced melanoma present with a mutation in BRAF, this
BRAF-V600E mutation, although contributing to Erk1,2 phos-
phorylation, is not sufficient for sustained activation. Instead, full
length CSPG4 and BRAF-V600E both appear to be required for
sustained Erk 1,2 activation (193) and a CSPG4-specific mAb
enhanced and increased the duration of the effects of a BRAF
inhibitor in melanoma cells (194).

Transfection of CSPG4 stimulated melanoma cell motility in
a scratch wound assay (193), an effect believed to be indicative
of metastatic potential. Interestingly, CSPG4 stimulates α4β1-
integrin-mediated adhesion and spreading, as well as FAK phos-
phorylation. Signaling through CSPG4 induces the recruitment
and phosphorylation of p130cas indicating that CSPG4 signal-
ing may intersect integrin-mediated signaling pathways even
though it can signal independently of integrins (195). Interest-
ingly, β1-integrin activation occurs as a result of CSPG4/NG2
phosphorylation and phosphorylation of different threonines trig-
ger different β1-integrin-mediated events; either proliferation
(Thr2314 phosphorylation) or motility (Thr2256 phosphoryla-
tion) (196).

Other evidence implicates CSPG4 in integrin-controlled cell
activities. Chondroitin sulfate binds to the SG-1 site on α4 integrin
subunits, and activation of this site is important for α4β1 binding
to its ligand, the CS1 site on fibronectin (197). On melanoma, it
is predominately chondroitin sulfate carried by CSPG4 that binds
and activates the SG-1 site.

The chondroitin sulfate chain addition to CSPG4 also allows
CSPG4 to interact directly with fibronectin through its heparin-
binding domain. Ligand induced clustering of α4β1 causes the
co-localization of CSPG4 and α4β1 (197). NG2/CSPG4 also asso-
ciates with α3β1 via an interaction with galectin-3. Galectin-3
binds to N-linked oligosaccharides within the D3 domain of the
CSPG4 core protein (198) and to oligosaccharides on β1 to form a
complex that can be immunoprecipitated from human melanoma
cell surfaces (167). It has been suggested that galectin-3 mediated
clustering of NG2/CSPG4 and α3β1 leads to enhanced α3β1 signal-
ing (167) and the promotion of melanoma invasion and migration
through laminin containing extracellular matrices, because α3β1
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selectively binds laminin and galectin-3 binds oligosaccharides on
laminin.

Another mechanism by which CSPG4 facilitates melanoma
metastasis is by its interaction with MMP-2. This complex com-
prises the inactive zymogen of the matrix metalloproteinase MMP-
2, pro-MMP-2, which binds to the chondroitin sulfate chains of
CSPG4. This interaction facilitates the generation of active MMP-2
(discussed later in this review) (199).

Collectively, the data suggest that CSPG4 acts as a scaffold at
the cell membrane to facilitate the formation of molecular com-
plexes that stabilize integrins and receptor tyrosine kinases, and
localize active MMP-2 to the melanoma cell surface. The result
of this is enhanced integrin signaling and ECM degradation, plus
more effective growth factor activation of the RAS-RAF-MEK-Erk
1,2 pathway to increase cell proliferation and motility.

MATRIX METALLOPROTEINASE-2
Matrix metalloproteinases are a family of zinc-dependent enzymes
that degrade different ECM proteins (200). There are at least 26
different MMPs, which are classified into five groups according to
their structure and substrate specificity – collagenases, gelatinases,
stromelysins, membrane type MMPs (MT-MMPs), and others
(200, 201). The constitutive gene expression of MMPs is low, but
when the ECM is remodeled, whether for normal physiological or
pathological processes, expression of these enzymes increases. The
MMPs play a crucial role in physiological and pathological remod-
eling of the ECM during angiogenesis, wound healing, embryoge-
nesis, and tumor metastasis (202). Degradation and remodeling
of the ECM during melanoma metastasis allows tumor cells to
invade surrounding ECM, spread via the lymphatic or vascular
circulation, and extravasate into distant organs (200). The role
of MMPs in tumor cell invasion is not limited to degradation
of matrix components – additional substrates for MMPs include
proteinases, proteinase inhibitors, other MMPs, growth factors,
chemokines, cytokines, and cell surface proteins (203, 204). Thus,
MMPs contribute to cell migration, proliferation, and apoptosis;
and regulate tumor growth, vascularization, and spread (205).

The gelatinases, MMP-2, and MMP-9, are often over-expressed
in malignant cancer. These enzymes degrade basement membrane
proteins, such as collagen types IV, V, VII, X, and fibronectin. In
melanoma, MMP-2 has frequently been associated with malignant
progression and poor prognosis (200, 201, 206). A recent study
using tissue microarray and immunohistochemistry of melanoma
biopsies of primary and metastatic lesions as well as nevi con-
cluded that MMP-2 expression is a prognostic indicator in primary
but not metastatic lesions (201). This suggests that strong MMP-2
expression in the primary lesion contributes to the invasiveness
of primary tumor cells, leading to metastases and poor survival
outcomes. These findings are in accord with an earlier immuno-
histochemistry study of primary melanoma biopsy tissue. This
study revealed that patients with a low number of MMP-2 positive
cells (5–20%) in the tumor sample survived as well as those with
an MMP-2 negative melanoma (10 year disease-specific survival
rate of 79%), whereas patients with a primary tumor with high
MMP-2 expression (>20% of tumor cells) had a 10-year disease-
specific survival rate of 51% (207). The survival rate of this patient
cohort declined further when proliferative activity of the tumor

cells (indicated by Ki67 protein expression levels) and activation
of apoptosis (revealed by p53 immunogenicity) were considered.
Patients with primary melanoma having all three of these adverse
factors had a 10-year survival rate of 28% (207). Interestingly,
although MMP-2 and MMP-9 act on similar substrates, and are
both expressed in melanoma, MMP-2 appears to be the better
prognostic indicator (16, 207, 208).

Matrix Metalloproteinase-2 is synthesized and secreted as a
72 kDa pro-enzyme. It is activated primarily at the cell sur-
face by proteolytic cleavage by membrane type 1 MMP (MT1-
MMP/MMP-14); a process that is regulated by the concentration
of tissue inhibitor of metalloproteinases-2 (TIMP-2). Activation of
MMP-2 requires the formation of a ternary complex consisting of
MT1-MMP, TIMP-2, and MMP-2. To form this complex, TIMP-2
first binds to MT1-MMP, and pro-MMP-2 then binds to TIMP-2.
This facilitates cleavage of pro-MMP-2 by a neighboring active
(TIMP-2 free) MT1-MMP, generating an intermediate 64 kDa
MMP-2 fragment (205). This fragment then undergoes autocatal-
ysis (209) or is further cleaved via the plasmin-plasminogen system
to produce a fully active molecule (208). At high concentrations
of TIMP-2, pro-MMP-2 activation is inhibited because TIMP-2
binds to both the pro-MMP-2 already complexed with MT1-MMP
and to neighboring MT1-MMP molecules, so that pro-MMP-2 is
unable to undergo cleavage and activation (205). However, the
balance between free MT1-MMP and the MT1-MMP-TIMP-2
complex only partially determines the degree of MMP-2 activa-
tion (210).The relative amount of active and inactive MMP-2 also
depends on the ratio of MT1-MMP and TIMP-2 expression and
the quantity of TIMP-2 retained by low-affinity interactions with
other plasma membrane molecules (211). Other members of the
MT-MMP family (MT2-MMP and MT3-MMP) can also activate
pro-MMP-2, but this does not involve TIMP-2. In addition, TIMP-
1, -3, and -4 can regulate MT1-MMP activation of MMP-2 (212,
213).

Membrane proteins such as the claudins, αvβ3 integrin, and
CSPG4 (discussed earlier) also participate in the activation of
MMP-2. The association of these membrane glycoproteins with
MMP-2 activation is of particular interest because αvβ3 integrin is
often highly expressed on melanoma, claudin-1 expression levels
increase with increasing thickness of the primary lesion (16) and
CSPG4 is potentially a useful biomarker for melanoma. The chon-
droitin sulfate chains of CSPG4 have been shown to bind both
pro-MMP-2 and MT3-MMP, an MT-MMP that is expressed on
vertical growth phase melanoma and is important for melanoma
invasion into collagen gels (199). CSPG4 appears to localize pro-
MMP-2 in the vicinity of MT3-MMP, thereby assisting the gen-
eration of active MMP-2 (199), and this is likely to be important
on melanoma cells where the surface density of MT3-MMP is rel-
atively low. The tri-molecular complex comprising MT3-MMP,
CSPG4, and pro-MMP-2 leads to activation of MMP-2 in the
absence of TIMP-2 because structural features of MT3-MMP allow
direct binding to the C-terminal domain of MMP-2 (199). Inter-
estingly, claudin-1 binds to both MT1-MMP and pro-MMP-2 in
regions that involve the catalytic domain of both enzymes, and
this allows MT1-MMP to activate pro-MMP-2 in the absence of
TIMP-2. In a similar mechanism to that described for CSPG4, it
appears that claudin-1 localizes MT1-MMPs and pro-MMP-2 on
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the cell surface to produce local elevated concentrations of these
enzymes, which enhances the activation of pro-MMP-2 (214). In
melanoma cells, overexpression of claudin-1 is associated with
increased activation of MMP-2; there is more MMP-2 associated
with the cell surface than in non-transfected cells, and knockdown
of claudin-1 in melanoma cells using siRNA decreases both the
amount of active MMP-2 secreted and cell motility (215).

The role of αvβ3 in MMP-2 activation seems to be most impor-
tant in the invasive growth phase of melanoma as expression of
this integrin begins when melanoma cells switch from a horizon-
tal to a vertical growth phase (216). A number of authors have
reported data supporting the conclusion that αvβ3 binds active
MMP-2 on the surface of melanoma cells (217, 218), others have
found MMP-2 to be localized at the leading edge of migrating
melanoma cells before αvβ3 (219), or that pro-MMP-2 did not
bind αvβ3 (199). In the latter study the melanoma cells expressed
MT3-MMP, not MT1-MMP. It is known that αvβ3 physically asso-
ciates with MT1-MMP and the enzyme processes the integrin
αv subunit into heavy and light chains connected by a disulfide
bridge, which is the mature form. In cells lacking MT1-MMP, pro-
cessing of αvβ3 occurs via another integrin convertase, like furin,
but cleavage occurs at different sites and this mature αv chain is
less able to promote adhesion and migration than the MT1-MMP
processed αv chain (220).This and other data suggest the contribu-
tion of αvβ3 to MMP-2 activation depends on the co-expression of
MT1-MMP. It has been reported that the MT1-MPP cleaved αvβ3
integrin can bind to the intermediate 64 kDa form of MMP-2 and
enhance the autocatalytic step of the activation process to produce
more of the mature MMP-2, as conversion of the intermediate to
the mature form was low in the absence of αvβ3 (221).

Invadopodia, plasma membrane extensions enriched in cell-
matrix adhesion molecules, actin-assembly regulators and pro-
teases, form in the adhesive region of invasive tumor cells grown
on an ECM. MT1-MMP traffics to these structures in cancer cells
(222), suggesting that co-localization of αvβ3 with MT1-MMP and
active MMP-2 concentrates adhesion molecules that bind matrix
proteins with enzymes that degrade the matrix, thereby facilitating
melanoma cell invasion. Moreover,αvβ3 dependent melanoma cell
adhesion preferentially occurs on fibronectin fragments cleaved
by MMP-2 rather than on intact fibronectin, and fibronectin frag-
ments appear to promote αvβ3 recruitment into the invasive front
of melanoma cells (219).

The conclusions from the in vitro studies are supported by
in vivo data. In melanoma tissue sections, in situ zymography
revealed MT1-MMP and secreted MMP-2 accumulate at the inva-
sive front of melanoma cells, and the presence of functionally
active MMP-2 is restricted to this region (223, 224). In another
study of biopsies from patients with primary melanoma and
patients with cutaneous or nodal metastases, MMP-2 expression
was primarily in thick primary melanoma and in melanomas from
patients who developed metastasis in the 3-year follow-up period
(225). Thus, MMP-2 is very strongly associated with invading ver-
tical growth melanomas. MMP-2 expression is not confined to
tumor tissue as the surrounding stroma also synthesizes MMP-
2, and in an experimental murine system MMP-2 expression was
primarily attributed to the stroma (226), However, these data do
not fit with the wealth of patient studies that suggest MMP-2 is a
useful biomarker for melanoma.

CONCLUSION
Most patients diagnosed with melanoma now present with thin
lesions less than 1 mm thick and 90% of these patients will be
cured by surgical excision. However, approximately 5% of these
patients will develop metastatic melanoma and die within 10 years,
despite no evidence of metastasis at the time of diagnosis. Using
diagnostic criteria, there is no way to triage these patients into high
and low risk groups, which limits our ability to direct screening
and early treatment to those patients at higher risk of metastasis.
Moreover, the treatment of metastatic melanoma has advanced
little in the last three decades, with ipilimumab (a monoclonal
antibody targeting CTLA-4 on T cells) and the BRAF inhibitor,
vemurafenib, the only treatments to show an increase in overall
survival and an extension of survival time, respectively. Unfortu-
nately, ipilimumab often has significant side effects and is suitable
for only a small proportion of patients. In addition, virtually
all patients prescribed the BRAF inhibitor will develop clinical
resistance and progressive disease. The reader is referred to a
recent review on immunotherapy in advanced melanoma (227).
Thus, there is an urgent need for additional prognostic mark-
ers and therapeutic targets. It is clear that multiple markers will
be required to provide accurate prognostic information at diag-
nosis, and multiple parts of the metastatic pathway will need
to be targeted to improve survival in patients with metastatic
melanoma.

This review has focused on five molecules involved in
melanoma metastasis – MCAM, Gal-3, CSPG4, MMP-2, and PAX-
3. All of these molecules are expressed by a high proportion of
primary and metastatic melanoma and have been described by
others as biomarkers for melanoma. The word “biomarker” can
be defined as: “A characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, path-
ogenic processes, or pharmacologic responses to a therapeutic
intervention” (228). Our goal in this review has been to examine
the expression patterns and functions of each of these molecules,
with a focus on whether these “biomarkers” reveal the pathogenic
processes of melanoma metastases. We believe that a good bio-
marker could also be a therapeutic target, and that examining the
expression of a combination of molecules involved in different
aspects of the metastatic process will provide better prognostic
information compared to that obtained from a single biomarker.

In this review we have shown that these five molecules, although
they have unique roles, both interact with each other and show
similarities in their function. For example, both Gal-3 and PAX3
are anti-apoptotic, Gal-3 binds CSPG4 and Gal-1 binds MCAM.
MCAM downstream signaling regulates the expression of MMP-2,
nuclear Gal-3 up-regulates MMP-2 expression and MMP-2 cleaves
Gal-3. MCAM, CSPG4, and Gal-3 are associated with angiogen-
esis and CSPG4 is involved with the activation of pro-MMP-2
on melanoma (relevant references are in the review). It will be
interesting to see if Gal-3 can similarly bind MCAM as although
both Gal-1 and Gal-3 bind glycosylation structures presented by
core proteins the binding specificities of these two galectins dif-
fer. Gal-1 can recognize a range of different complex N -glycans,
whereas Gal-3 recognizes poly-N -acetyllactosamine containing
glycans that may be N- or O-linked (229). Figure 1 displays
more of the cross connections that were revealed by the detailed
examination of these five molecules.
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FIGURE 1 | Functional associations between MCAM, Gal-3, CSPG4, MMP-2, and PAX-3.

FIGURE 2 | MCAM, Gal-3, CSPG4, MMP-2, and PAX-3 as biomarkers and targets in melanoma metastasis.

It is particularly interesting that the combination of PAX3,
MCAM, and CSPG4 is associated with less differentiated, motile
cells of the melanocytic lineage and MCAM and CSPG4 are recog-
nized stem cell markers. Indeed, the genes encoding these two stem
cell markers are targets of PAX3 (68). The fact that the majority of
metastatic melanoma express these stem cell markers, and when
present, neither MCAM or CSPG4 is expressed by a minor popu-
lation of cells within the melanoma leads one to think about rare
cancer stem cells in melanoma. Interestingly, it has been demon-
strated that approximately one in four cells from stage II, III, and IV

melanomas obtained directly from patients are capable of devel-
oping tumors and moreover many markers are reversibly turned
on and off in vivo (230). These findings directly question whether
melanoma follows a cancer stem cell model and they also indi-
cate that multiple biomarkers should be examined at each stage of
melanoma progression for a reliable indication of prognosis.

MCAM, MMP-2, and Gal-3 expression in primary melanoma
have been linked to poorer overall survival (89, 90, 144, 206, 207)
and could be used in combination with current prognostic indi-
cators to identify patients at high-risk of recurrence (Figure 2).
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MCAM is believed to contribute to the later stages of metasta-
tic spread (e.g., the formation of secondary tumors) (107), while
MMP-2, and CSPG4 are likely to play a role earlier in the course of
the disease. Gal-3 shows a bi-modal distribution – with increased
intracellular expression early in disease progression and decreased
expression in later metastatic lesions (144). This is due to Gal-3’s
ability to act both as a transcriptional activator within the nucleus
(147–150) and as a mediator between cell surface proteins (e.g.,
CSPG4, MCAM, integrins) and the ECM in the extracellular envi-
ronment (161, 163, 167, 231). PAX-3 is expressed by all cells of
the melanocytic lineage and is a key player in melanocyte develop-
ment (36). However, it has recently been suggested that melanoma
may be driven by cells with a less differentiated, highly motile phe-
notype and that PAX-3 may actively drive melanoma progression
(57, 58). Currently, PAX-3 along with MCAM appears to be a use-
ful biomarker for assessing tumor load and the effectiveness of
treatment in later stage disease (55).

Although molecular biomarkers for cutaneous melanoma have
received a lot of attention in recent years the introduction of one
or more molecular biomarkers into clinical melanoma staging has
lagged behind other cancers. This is partly due to the nature of

the disease, and is compounded by the increasing diagnosis of
melanoma from thin primary lesions, which leave no tissue for
study outside of the standard clinical pathology procedures. In
addition, some melanoma may recur many years after the origi-
nal diagnosis, whereas others may recur within 5 years (17). We
have highlighted throughout our review that currently there is no
way of predicting which patients with thin melanomas are likely
to relapse and when. The fact that cutaneous melanoma orig-
inates in melanocytes that have arisen from the neural crest and
migrated to the skin is an additional difficulty, as this suggests nor-
mal melanocytes may have a molecular signature characteristic of
an invasive phenotype. Therefore, the use of multiple markers will
provide the best indicator of prognosis. Specifically, we believe
that further study of a panel of markers, like those examined here,
which have overlapping functions and are implicated at multiple
stages of the disease process, may lead to the identification of a
set of genes that can reliably assist in diagnosis and prognosis.
Whether or not a combination of MCAM, MMP-2, CCPG4, PAX-
3, and Gal-3 can identify those thin melanomas that comprise the
5% that will develop metastases at a later stage will require further
studies of clinical material.
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