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In Agrobacterium tumefaciens, horizontal transfer and vegetative replication of oncogenic
Ti plasmids involve a cell-to-cell communication process called quorum-sensing (QS). The
determinants of the QS-system belong to the LuxR/LuxI class. The LuxI-like protein TraI
synthesizes N -acyl-homoserine lactone molecules which act as diffusible QS-signals.
Beyond a threshold concentration, these molecules bind and activate the LuxR-like
transcriptional regulator TraR, thereby initiating the QS-regulatory pathway. For the last
20 years, A. tumefaciens has stood as a prominent model in the understanding of the
LuxR/LuxI type of QS systems. A number of studies also unveiled features which are
unique to A. tumefaciens QS, some of them being directly related to the phytopathogenic
lifestyle of the bacteria. In this review, we will present the current knowledge of QS
in A. tumefaciens at both the genetic and molecular levels. We will also describe how
interactions with plant host modulate the QS pathway of A. tumefaciens, and discuss what
could be the advantages for the agrobacteria to use such a tightly regulated QS-system to
disseminate the Ti plasmids.
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INTRODUCTION
In its canonical definition, quorum-sensing (QS) refers to a pro-
cess through which a bacterial population is able to monitor its cell
density and accordingly to mount coordinate responses (Fuqua
et al., 1994). This phenomenon relies on the synthesis, diffusion,
and perception of small signal molecules (autoinducers) that allow
bacteria to communicate with each other and to regulate gene
expression. In the last 40 years, a number of studies have estab-
lished that QS is widespread in the bacterial kingdom although the
nature of the signal molecules and/or signaling networks as well as
the functions regulated by QS may vary considerably depending
on the species (Miller and Bassler, 2001; Frederix and Downie,
2011; Stevens et al., 2012; Pereira et al., 2013).

In Proteobacteria, the typical QS model is epitomized by
the LuxI/LuxR bioluminescence system of Vibrio fischeri that
was described as early as 1970 (Nealson et al., 1970; Eberhard,
1972). In summary, LuxI catalyzes the synthesis of an N-
acyl-homoserine lactone, namely the 3-oxo-hexanoyl-homoserine
lactone (3OC6HSL), that acts as an autoinducer and accumulates
in a cell density-dependent manner. At a threshold concentration,
the 3OC6HSL molecules bind to their ligands, the transcriptional
factor LuxR, and the newly formed LuxR dimers induce the expres-
sion of the lux operon which includes the genes responsible for
bioluminescence but also luxI. This last autoregulatory action
results in an exponential increase of the production of autoinduc-
ers and accounts for the characteristic pattern of QS-dependent
bioluminescence in V. fischeri populations which rapidly shift at
the quorum concentration from an “off” state to an “on” state.

Interestingly many homologs of LuxI and LuxR proteins
have been found in other bacterial species such as Pseudomonas

aeruginosa, Pectobacterium atrosepticum, and Agrobacterium tume-
faciens (Fuqua et al., 1994, 1996). The first milestone in the study of
A. tumefaciens QS was the functional characterization of the TraR
protein, the LuxR homolog (Piper et al., 1993; Zhang et al., 1993).
This seminal finding opened a new area of research in horizontal
transfer of virulence Ti plasmids in A. tumefaciens that made this
phytopathogenic species a leading model for the investigation of
LuxI/LuxR QS systems. In this review, we will recap the most strik-
ing results obtained in deciphering the genetic network as well as
the molecular basis of A. tumefaciens QS. We will also present how
this QS system, consistent with the phytopathogenic lifestyle of
A. tumefaciens, is integrated into an exquisite regulatory process,
including various opine-induced regulons and lactonase activities.
Finally we will discuss the biological/evolutionary relevance of this
complex network in terms of dissemination of Ti plasmid genes
in the plant tumor environment.

OVERVIEW OF A. tumefaciens QS
A LuxI/LuxR TYPE QS INTEGRATING AN ANTAGONIST COMPONENT
The first insight of a QS system in A. tumefaciens was gained with
the functional characterization of a traR gene, homologous to
V. fischeri luxR, the product of which acted as a transcriptional
activator in the presence of a co-inducer. Actually two versions
of the traR gene were found almost concomitantly in nopaline-
and octopine-type Ti plasmids (Piper et al., 1993; Fuqua and
Winans, 1994). These genes displayed high homology between
them but were located in dissimilar regions of the two Ti plas-
mids, the expression of each of these regions being controlled by
specific opines. Along with these discoveries, the chemical struc-
ture of the co-inducer required for TraR activity was determined
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FIGURE 1 | Structures of the QS signals mentioned in this review. In parallel are indicated the full name of the molecule, its abbreviation as well as some
bacterial species known to produce it.

by spectrometry analysis as 3-oxo-octanoyl-homoserine lactone
(OC8HSL, see structure in Figure 1; Zhang et al., 1993). Soon
afterward the gene traI, for which very closely related sequences
also exist in nopaline- and octopine-type Ti plasmids, was shown
to be responsible for OC8HSL synthesis (Hwang et al., 1994).

Like other LuxI/LuxR type QS systems, A. tumefaciens QS com-
prises another component that negatively modulates the activity of
TraR and OC8HSL and this component is the Ti plasmid-encoded
protein TraM which can suppress TraR transcriptional activity.
Versions of the traM gene were identified in both nopaline- and
octopine-type Ti-plasmids (Fuqua et al., 1995; Hwang et al., 1995).
The octopine-type Ti plasmid A6 even possesses a second func-
tional traM gene borne on a chromosome, surely as a result of gene
duplication (Wang et al., 2006a). For long it has been thought that
TraM proteins were not related to any other proteins found in the
databases, but recent characterization of the Pseudomonas aerugi-
nosa QslA protein contradicted this view (Seet and Zhang, 2011),
suggesting that TraM-type functions might be relatively common
in bacteria.

At a mechanistic level, yeast two-hybrid assays revealed that
TraM and TraR could directly interact. From these data it was
deduced that the association between the two proteins was respon-
sible for the inhibition of TraR-mediated responses by preventing
proper TraR binding to DNA (Hwang et al., 1999). Two subsequent
findings strengthened the negative regulatory functions exerted by
TraM on QS. First it was established that this protein could block
TraR activity even after the transcription factor has bound to DNA
(Luo et al., 2000) and second TraM was demonstrated to promote
TraR proteolysis (Costa et al., 2012).

The implications of TraM action for the dynamics of the QS
system will be discussed in the following section.

QS-REGULATED GENES ARE INVOLVED IN FEEDBACK CONTROL AND Ti
PLASMID DISSEMINATION
Chronologically the first TraR-regulated, hence QS-regulated,
genes were the OC8HSL synthesis traI gene and the tra genes
involved in conjugation of the Ti plasmid (Piper et al., 1993;
Fuqua and Winans, 1994; Hwang et al., 1994). Next, were the
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regulatory gene traM (Fuqua et al., 1995; Hwang et al., 1995) and
finally the rep genes required for vegetative replication of the
Ti plasmid (Li and Farrand, 2000). Concomitantly, four 18 bp-
inverted repeat operator sequences (called tra box I, II, III, and
IV), the disruption of which abolished the TraR transactiva-
tion, were found in the promoter regions of the QS-regulated
genes. These promoters were assigned to two distinct classes
(class I-type and class II-type) according to the position of the
tra boxes relatively to the transcription initiation site. In pro-
moters of class I-type, the tra box is located approximately 65
nucleotides upstream of the transcription start site and in pro-
moters of class II-type, the tra box is located about 45 nucleotides
upstream of the transcription start site, partially overlapping with
the −35 element of the promoter (Figure 2; Fuqua and Winans,
1996a). The traR gene has also been reported as being self-
regulated though no tra box was detected in its promoter region
(Fuqua and Winans, 1996b).

In line with the above studies, an extensive survey of
QS-regulated genes has been recently carried out both in nopaline-
and octopine-type Ti plasmids, using gene arrays and a TraR-
overexpressing system (Cho and Winans, 2007). The results
globally confirmed the previous data. Only genes located in
the Ti plasmids were affected. In nopaline-type Ti plasmid,
31 genes were up-regulated in response to TraR overexpression
and 25 in octopine-type Ti plasmid. Among the up-regulated
genes common to the two plasmids, were the tra, rep, and
traM genes. Moreover the operon structures, the presence of
tra boxes in the promoter regions and the overall regulation of

the expression of these genes were well conserved within the two
plasmids.

Table 1 summarizes the identities and functions of the A. tume-
faciens QS-regulated genes which are detailed in the following. The
traCDGyci and traAFBH operons are divergently transcribed from
a single class II-type promoter activated by a tra box I. These genes
code for a DNA transfer and replication machinery involved in
the conjugative processing of the Ti plasmid (Farrand et al., 1996;
Cook et al., 1997; Cho and Winans,2007). The proteins TraA,TraC,
and TraD are notably thought to form a relaxosome at the oriT
of the Ti plasmid which can also repress the expressions of both
traCDGyci and traAFBH operons (Cho and Winans, 2007). The
promoter of traI-trbBCDEJKLFGHI operon belongs to the class
II-type of QS-regulated promoter but is characterized by the pres-
ence of a tra box II. The trb genes encode a mating pair formation
system for the transfer of the Ti plasmid which is related to type IV
secretion systems (Li et al., 1998). Among the proteins encoded by
these genes, TrbJ and TrbK also act synergistically to implement
an entry exclusion mechanism which ensures that conjugation
events cannot occur between donor and recipient A. tumefaciens
cells harboring similar Ti plasmids (Cho et al., 2009). In agree-
ment with the gene functions, TraR-mediated up-regulation of
the three traCDGyci, traAFBH and traI-trbCDEJKLFGHI oper-
ons results in induction of Ti plasmid conjugation. On the other
hand the control of traI expression by TraR leads to a posi-
tive feedback loop which amplifies, through increase in OC8HSL
production, the QS responses of A. tumefaciens (Fuqua and
Winans, 1994; Hwang et al., 1994). As an illustration of this

FIGURE 2 | Promoter architecture of theTraR-regulated genes in A.

tumefaciens. (A–C) Representation of the regions upstream of the
traI-trbBCDEJKLFGHI and repABC operons (A), traCDGyci and traAFBH
operons (B) traM gene (C). The tra boxes (I, II, III, and IV) are indicated by
black boxes. Under each tra box are presented the associated promoters, the
activations of which are dependent on the binding of TraR. The promoters of

class I-type are in blue while those of class II-type are in red. The
fourth identified promoter controlling the expression of repABC in a
TraR-independent way is also displayed (P). The arrows indicate the direction
of transcription. (D) The nucleotide sequences of the four tra boxes. (Adapted
from Fuqua and Winans, 1996a; Pappas and Winans, 2003a,b; White and
Winans, 2005).
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Table 1 | List of QS-regulated genes in nopaline- and octopine-typeTi

plasmids (adapted from Cho and Winans, 2007).

Gene name Function atu code

traC Conjugal transfer protein atu6126

traD Conjugal transfer protein atu6125

traG Conjugal transfer protein atu6124

yci Nuclease atu6122

traA Conjugal transfer protein atu6127

traF Conjugal transfer protein atu6128

traB Conjugal transfer protein atu6129

traH Conjugal transfer protein atu6130

traI Acyl-homoserine-lactone synthase atu6042

trbB Conjugal transfer protein atu6041

trbC Conjugal transfer protein atu6040

trbD Conjugal transfer protein atu6039

trbE Conjugal transfer protein atu6038

trbJ Conjugal transfer protein atu6037

trbK Entry-exclusion protein atu6036

trbL Conjugal transfer protein atu6035

trbF Conjugal transfer protein atu6034

trbG Conjugal transfer protein atu6033

trbH Conjugal transfer protein atu6032

trbI Conjugal transfer protein atu6031

traM Transcriptional anti-activator atu6131

repA Plasmid-partitioning protein atu6043

repB Plasmid-partitioning protein atu6044

repC Replication initiation protein atu6045

effect, exogenous supply of OC8HSL to A. tumefaciens cells accel-
erated the TraR-mediated induction of Ti plasmid conjugation
(Fuqua and Winans, 1996a).

Curiously the traM gene coding for the TraR antiactivator
appears also to be up-regulated by TraR (Hwang et al., 1995). It was
proposed that this regulatory mechanism allows the cells to pro-
duce TraM proteins at levels sufficient to inhibit the available TraR
under conditions of basal-level expression. Later on, when the
expression of traR is induced, the resulting increased levels of TraR
protein would overcome the available TraM, thence triggering the
QS response. This model actually highlights the importance of
relative TraR and TraM protein levels in QS regulation and sug-
gests that TraM significantly contributes to the quorum-dependent
dimension of the system by delaying the moment when TraR is
able to transactivate target genes (Su et al., 2008). Consistently, a
traM defective strain was shown to be QS active in a cell density-
independent manner (Piper and Farrand, 2000). Furthermore, a
mathematical approach claimed that TraM was necessary for the
existence of the A. tumefaciens QS “off” state (Goryachev et al.,
2005). Another implication of the traM regulation by TraR is that

the rate of TraR production must at one point exceed that of TraM
production, otherwise QS activation would continuously be inhib-
ited. Evidence that TraM is specifically transcribed from a mildly
activated promoter with a tra box IV (White and Winans, 2005) is
in line with this requirement. Alternatively an interesting but yet
unexplored possibility to explain the induction of traM expres-
sion by TraR would be that this mechanism provides the cells with
a mean to limit or shut off the QS process when this one is too
strongly activated and becomes for instance too demanding ener-
getically. This down-regulation loop is indeed common in other
LuxI/LuxR systems (Gelencser et al., 2012). Either way a more crit-
ical examination of TraM regulation is still needed to fully clarify
its role in QS. Additionally it has been shown that acetosyringone,
a phenolic compound released by wounded plant cells, could also
induce expression of traM, suggesting that during first steps of
tumorigenesis TraM could efficiently inhibit QS activity (Cho and
Winans, 2005).

The A. tumefaciens Ti-plasmids use an original system of repli-
cation and partitioning encoded in a single locus named repABC.
While RepC is essential for replicative DNA synthesis, RepA and
RepB are thought to be involved in stable partitioning of plasmids
into daughter cells (Pinto et al., 2012). Initially the expression of
the operon repABC was shown to be strongly stimulated by TraR
in bacterial backgrounds with both nopaline- and octopine-type
plasmids. This stimulation was also correlated with induction of
vegetative replication, i.e., with a drastic increase in number of
Ti plasmid copies per cell (Li and Farrand, 2000; Pappas and
Winans, 2003a). However, in the array experiment mentioned
previously (Cho and Winans, 2007), repABC up-regulation by
TraR was barely detectable. The authors argued that this result
was probably due to the very weak basal expression of the operon
and that it did not question the role of QS in controlling the
number of Ti plasmid copies because under their experimental
conditions the number of Ti plasmids per cell was still higher than
one. Another interpretation of this result might be that increased
Ti plasmid copies culminate in a negative feedback control pos-
sibly bringing back the expression of the repABC genes to their
basal levels, thereby avoiding continuous and anarchic replication
of the replicon. The promoter architecture of repABC may sup-
port this hypothesis as three different TraR-dependent (repAP1, 2,
and 3) and one TraR-independent (repAP4) promoters control the
expression of the operon (Pappas and Winans, 2003b). Promoter
repAP4 is thought to mediate the Ti plasmid replication associated
with cell division but it is also autorepressed by RepA and RepB.
Moreover repAP4 is located downstream of repAP1, 2, and 3. It is
therefore conceivable that autorepression of repAP4 might impair
activation of TraR-dependent promoters. Additionally expression
of repABC can be induced by the virulence proteins VirA and
VirG, further suggesting that the regulation of this operon is com-
plex and might be sensitive to different physiological states (Cho
and Winans, 2005; Pappas, 2008).

MECHANISTIC INSIGHTS INTO A. tumefaciens QS
A central aspect of the LuxI/LuxR type QS systems resides in
the way autoinducers, transcriptional factors and gene promoters
interact with each other. A better understanding of these mecha-
nisms is therefore crucial to evaluate the specificity of the system.
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Given the large variety of acyl-homoserine lactone derivatives
which can serve as QS signals, it may also represent a privileged
opportunity to get insight into possible crosstalk between differ-
ent bacterial QS or to develop strategies of quorum-quenching. By
combining biochemical and structural approaches with analysis of
mutant strains and in vivo expression assays, the investigations on
A. tumefaciens QS undoubtedly assemble one of the most elaborate
sets of data in this domain.

TraI and OC8HSL SYNTHESIS
To identify the substrates of OC8HSL synthesis, the enzymatic
activity of a purified A. tumefaciens TraI protein was tested in
the presence of different molecules (More et al., 1996). It was
thus determined that 3-oxo-octanoyl-acyl carrier protein (OC8-
ACP) was the fatty acid donor and S-adenosylmethionine (SAM)
the homoserine lactone precursor involved in OC8HSL synthesis.
Mechanistically the synthesis reaction is proposed to occur in a
“bi-ter” (two substrates, three products) way. The donation of the
3-oxo-octanoyl branch to the amine of SAM leads to the releases
of first apo-ACP, then OC8HSL and finally methylthioadenosine
(Parsek et al., 1999). All enzymes of the LuxI family are expected
to share similar mechanisms of reaction, though variations in
the acyl chain length and oxidation state at C3 of their acyl-ACP
substrates exist. High-resolution crystal structures were obtained
for two TraI orthologs: EsaI of Pantoea stewartii that synthesizes
3OC6HSLs and LasI of Pseudomonas aeruginosa that synthesizes 3-
oxo-dodecanoyl-homoserine lactones (Watson et al., 2001; Gould
et al., 2004). Analyses of these structures revealed that conserved
residues in the N-terminal part of the protein were essential for
SAM-binding and that selectivity of the acyl-ACP substrate was
dependent on a V-shaped cleft passing through the enzyme. Other
results also suggested that selectivity of LuxI-like proteins could
be affected by availability of different acyl-ACP substrates. Notice-
ably, besides OC8HSL, A. tumefaciens produces traces of OC6HSL
and octanoyl-homoserine lactone (C8HSL; Zhu et al., 1998).

OC8HSL SPECIFICALLY INTERACTS WITH TraR
The first evidence of the interaction between TraR and OC8HSL
was obtained through purified active TraR complexes which co-
eluted with OC8HSLs in a ratio 1:1 (Zhu and Winans, 1999).
Analysis of the protein turnover also indicated that binding of
OC8HSL occurs rapidly in cells, surely during the own synthesis
of TraR on polysomes (Zhu and Winans, 2001). Further crys-
tal structures provided a mechanistic explanation for the specific
interaction between TraR and OC8HSL as they revealed that the
N-terminal part of TraR formed an enclosed cavity into which
OC8HSL molecule could be engulfed and tightly maintained
through numerous hydrophobic interactions as well as four hydro-
gen bounds (Vannini et al., 2002; Zhang et al., 2002b; Figure 3).
To analyze the specificity of the interaction between OC8HSL and
TraR, 31 analogs of OC8HSLs were tested for their abilities to
activate TraR. Most of these compounds turned out to be potent
antagonists of TraR under wild-type conditions of TraR expression
and significant stimulators under conditions of TraR overexpres-
sion. These two features demonstrate that the specificity of the
interaction between TraR and its ligand could be dependent on

FIGURE 3 | Structures of theTraR–OC8HSL dimers in complex with

DNA. The images were created using data from The Protein Data Bank
(PDB; www.rcsb.org) (Berman et al., 2000) and the PyMOL Molecular
Graphics System software. (A) PDB ID: 1H0M from Vannini et al. (2002).
(B) PDB ID: 1L3L from Zhang et al. (2002b).

TraR concentration (Zhu et al., 1998). Moreover the 3-oxo func-
tion of the OC8HSL molecule seems to play important role in the
interaction process as 3-oxo-C6-, 3-oxo-C7-, 3-oxo-C11-, and 3-
oxo-C12-homoserine lactones (see structures in Figure 1) can also
activate TraR, though with a much lower intensity than OC8HSL
(Zhu et al., 1998; Luo et al., 2003b). Consistently non-conservative
mutations of the threonine 129 of TraR, that was predicted to
stabilize the 3-oxo group in the binding pocket, led to a strong
impairment of TraR activity (Chai and Winans, 2004). In addi-
tion, alanine 49 and glutamine 58 in the N-terminal part of TraR
were found to be important for the binding of the C8 acyl chain of
OC8HSL since their conversion to bulkier amino acids resulted in
higher affinity toward homoserine lactone derivatives with shorter
acyl chain (Chai and Winans, 2004).

INTERACTION BETWEEN OC8HSL AND TraR FACILITATES FORMATION
OF ACTIVE HOMODIMERS
The observation that C-terminal deletion mutants of TraR exerted
strong dominant negativity over their wild-type counterparts
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led to the hypothesis that TraR–OC8HSL complexes had to
multimerize to be active (Luo and Farrand, 1999). Thereafter,
size exclusion chromatography techniques revealed that puri-
fied active OC8HSL–TraR complexes formed homodimers, and
hybrid expression reporter systems demonstrated that OC8HSL
was required for this dimerization to take place (Qin et al., 2000).
The existence of active OC8HSL–TraR homodimers was further
supported by analysis of crystal structures which also suggested
that these dimers were significantly asymmetric (Vannini et al.,
2002; Zhang et al., 2002b). Two dimerization domains were
identified in TraR sequence, one in the N-terminal part of the
protein, partially overlapping with the OC8HSL-binding domain
and another, less extensive, in the C-terminal part (Luo et al.,
2003a). Several findings illustrated the role of OC8HSL binding
in the maturation and dimerization process of TraR. In absence of
OC8HSL, TraR proteins were intrinsically unstructured, insolu-
ble in cells and rapidly degraded by proteases. On the opposite,
presence of OC8HSL directed the release of active TraR into
cytosol and enhanced the resistance of the protein against pro-
teolysis (Qin et al., 2000; Zhu and Winans, 2001; Pinto and
Winans, 2009). Additionally the proper folding of TraR and acqui-
sition of mature ternary structure following the interaction with
OC8HSL was shown to be mediated by the chaperone GroESL
(Chai and Winans, 2009).

TraR–OC8HSL HOMODIMERS SPECIFICALLY RECOGNIZES tra BOXES
As mentioned above, tra boxes are 18 bp-inverted repeat operator
sequences with a pronounced dyad symmetry, found in the two
classes of TraR-regulated promoters (Fuqua and Winans, 1996a).
The crystallization of TraR–OC8HSL complexes in presence of
the tra box I sequence strongly suggested that each subunit of
TraR–OC8HSL dimer binds to half of the tra box via C-terminal
helix-turn-helix DNA binding motifs, thereby leading to an exten-
sive DNA–protein interaction (Vannini et al., 2002; Zhang et al.,
2002b; Figure 3). However, it was later demonstrated that six
nucleotides at the center of the tra boxes did not interact with
TraR and that yet these nucleotides contributed to proper acti-
vation of transcription, presumably by creating a flexible DNA
bend (White and Winans, 2007). In parallel different screenings
of TraR mutants resulted in the identification of three regions
located in the N- and C-terminal part of the protein, which
are critical for transactivation function but not for accumula-
tion or DNA binding ability (Qin et al., 2004a, 2009; White and
Winans, 2005). This finding suggested that these regions could
cooperatively modulate the recruitment of the RNA polymerase
and thereby differently control the expressions of TraR-regulated
genes. Consistently some TraR mutants defective in transactiva-
tion of the traI promoter could still activate the traM promoter
(Costa et al., 2009).

TraM-MEDIATED INACTIVATION OF TraR IS DUE TO OLIGOMERIC
ASSOCIATION
In an effort to better understand how TraM could deactivate TraR,
two crystal structures of TraM were obtained. They showed that
the TraM protein can form homodimers with one unit linked to
the other by an extensive hydrophobic interface (Chen et al., 2004;
Vannini et al., 2004). The importance of this interface and the

dimerization properties of TraM were also assessed using deletion
mutants (Qin et al., 2004b). In addition, purifications of inactive
TraR/TraM complexes carried out by different groups and with
different biochemical techniques led to the conclusion that the
inactive complexes were composed of two TraR–OC8HSL dimers
and two TraM dimers both in vitro and in vivo (Chen et al., 2004;
Vannini et al., 2004; Qin et al., 2007). Several domains important
for this oligomerization and the resulting inhibitory effect were
identified both in TraR and TraM sequences (Luo et al., 2000;
Swiderska et al., 2001; Qin et al., 2007). Moreover, to explain the
way TraM could inactivate DNA-bound TraR–OC8HSL dimers,
a study convincingly proposed a stepwise mechanism according
to which the apparition of inactive TraR–OC8HSL/TraM com-
plexes was preceded by a nucleoprotein intermediate comprising
one dimer of each protein in association with DNA (Qin et al.,
2007). Interestingly the biochemical and structural properties of
the TraR/TraM complexes were also investigated in the Rhizobium
sp. strain NGR234 and led to similar conclusions regarding the
mechanisms by which TraM can negatively impact TraR functions
(Chen et al., 2007).

PLANT FACTORS ASSOCIATED TO A. tumefaciens QS
ROLE OF THE OPINES: MASTER CONTROL AND FINE-TUNING OF QS
REGULATION
Opines are the small organic compounds which are produced
during development of crown gall disease in transformed plant
cells through the action of synthesis genes present on the T-DNA.
All A. tumefaciens Ti plasmids harbor operons specialized in the
uptake and assimilation of the opines they contribute to pro-
duce (Dessaux et al., 1992, 1998; Platt et al., 2012b). The two
types most investigated in laboratories are the octopine- and the
nopaline-type. Moreover, specific opines, called conjugal opines,
are strictly required to enable conjugation of the A. tumefaciens Ti
plasmid (Kerr et al., 1977; Petit et al., 1978). Therefore the find-
ing, at the beginning of the 1990s, that this phenomenon was
also dependent on the TraR/TraI QS system (Zhang and Kerr,
1991), sparked off significant interest and a number of stud-
ies aimed at understanding how these regulatory steps could be
related. Successive genetic analysis, sequence determination and
promoter dissections ultimately allowed the complete elucida-
tion of the signaling pathway, clearly establishing the prominent
role played by the conjugal opines for traR expression and QS
initiation.

In the case of nopaline-type Ti plasmids, agrocinopines A
and B which are a mixture of two non-nitrogenous phosphodi-
esters of sugars serve as conjugal opines (Ellis et al., 1982). These
molecules can provoke, presumably by direct inhibitory interac-
tion, the release of the transcriptional repression exerted by AccR, a
member of the FucR family of transcriptional regulator (Beck von
Bodman et al., 1992). In turn this derepression causes the expres-
sion of two divergently oriented operons: the acc (agrocinopines
catabolism) and arc (agrocinopine regulation of the conjugation)
operons of the Ti plasmid. The acc operon encodes seven pro-
teins involved in internalization and degradation of agrocinopines
plus the repressor AccR (Kim and Farrand, 1997) while the arc
operon encodes five proteins, the fourth being TraR (Piper et al.,
1999). In contrast, in octopine-type Ti plasmids, traR is the last
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of 14 genes of the occ operon which codes for functions asso-
ciated with octopine assimilation (Fuqua and Winans, 1996b).
Octopine molecules are formed in transformed plant cells from
arginine and pyruvate. Octopine is a conjugal opine as it binds to
OccR, a transcriptional activator of the LysR family, thereby elicit-
ing transcription of the occ operon including traR (Habeeb et al.,
1991; Cho and Winans, 1993). Remarkably, the absence of the
conjugal opines totally prevents QS-mediated conjugation of both
nopaline- and octopine-type Ti plasmids. Moreover, despite the
differences in traR location, the structures of the TraR-regulated
operons are well conserved between the nopaline- and octopine-
type Ti plasmids (Cho and Winans, 2007). This feature actually
supports the view that traR and TraR-regulated genes constitute
a functional unit, subjected to multiple and fortuitous recom-
bination events in the course of A. tumefaciens evolution, and
whose integration under the strict control of an opine regu-
lon may have resulted in an important selective advantage for
the bacteria (Piper et al., 1999; Oger and Farrand, 2001). In this
sense the fact that such different molecules as agrocinopines and
octopine can regulate traR expression in different Ti plasmids is
remarkable.

Apart from the master control depicted above, opines are
also involved in at least two other fine-tuning QS regulatory
mechanisms. The first one was described in the A. tumefa-
ciens strain R10 that harbors an octopine-type Ti plasmid. In
this strain, the existence of a TraR antiactivator encoded by
the Ti plasmid and different from TraM, named TrlR, was evi-
denced. Interestingly, TrlR expression was inducible by the opine
mannopine (Oger et al., 1998). TrlR strongly resembles TraR
but lacks its DNA-binding domain (Zhu and Winans, 1998).
Experimental data provided evidence that TrlR could block TraR
activity by forming inactive TrlR:TraR dimers (Chai et al., 2001).
However, the impact of TrlR on QS implementation, espe-
cially in vivo, remains poorly understood. A second example
of QS fine-tuning by opines is documented. In the nopaline-
type A. tumefaciens C58 strain, expression of the Ti plasmid
gene aiiB was shown to be induced by the agrocinopines, the
same opines which are required for QS initiation (Haudecoeur
et al., 2009b). Curiously aiiB codes for the AiiB lactonase that
is highly similar to the AiiA lactonase from Bacillus sp. These
proteins belong to a large family of Zn-hydrolases that encom-
passes lactonases of Arthrobacter, Bacillus, Klebsiella, Mesorhizo-
bium, Photorhabdus, and Rhizobium. Biochemical and structural
properties of AiiB were investigated. The AiiB protein is able
to cleave the lactone rings of a large range of homoserine
lactone derivatives, with a general preference for non-3-oxo-
substituted molecules and substrates with an acyl chain longer
than four carbons (Liu et al., 2007). Further conjugation exper-
iments demonstrated the capacity of this lactonase to modulate
A. tumefaciens QS responses both in vitro and in planta (Haude-
coeur et al., 2009b). Globally the characteristics of trlR and
aiiB (specific to octopine- and nopaline-type, respectively, and
close homologs to traR and aiiA, respectively) suggest that these
two genes could have arisen from gene duplication (for trlR)
and horizontal gene transfer (for aiiB). On the other hand the
conservation of an opine dependent regulation of their expres-
sion implies that there would be – somehow paradoxically – an

advantage for A. tumefaciens cells to dampen QS communication
at moments when opines, including conjugal opines, accumulate
in tumors.

THE EXPRESSION OF THE OC8HSL-DEGRADING BlcC (FORMERLY AttM)
LACTONASE IS INDUCED BY PLANT METABOLITES
As AiiB, the BlcC protein is a member of the AiiA lactonase family.
Different studies have shown that BlcC degrades various homoser-
ine lactone derivatives, including gamma-butyrolactone (GBL, see
structure in Figure 1) and OC8HSLs. The blcC gene is part of the
three-gene blcABC operon which codes for the catabolic pathway
converting GBL to succinate, through gamma-hydroxybutyrate
(GHB) and succinic semialdehyde (SSA) intermediates (Chai et al.,
2007). Remarkably BlcC confers to Agrobacterium the ability to
grow with GBL as sole source of carbon, but it does not with
OC8HSLs (Carlier et al., 2004). The expression of the blcABC
operon is tightly controlled by the transcriptional repressor BlcR.
Carbon and nitrogen starvation, GBL,GHB,and SSA can all release
the repression exerted by BlcR, hence allowing the expression of
the blcABC genes (Zhang et al., 2002a; Carlier et al., 2004). The
plant metabolite gamma-amino butyric acid (GABA), through
conversion to SSA (Chevrot et al., 2006; Wang et al., 2006b), and
the plant defense signaling hormone salicylic acid, through an
unknown mechanism (Yuan et al., 2008), can also induce blcC
expression. Based on the observations that GABA induces the
expression of the blcABC operon and that GABA accumulates
in tumors, it was proposed that the BlcC activity could coincide
with QS communication during interactions between A. tume-
faciens and plant hosts. However, in tomato tumors, the effect
of BlcC on QS-dependent Ti plasmid conjugation was weak and
transient (Khan and Farrand, 2009), suggesting that plant tumor
tissues could exert a negative control on the expression of the BlcC
expression.

The capacity of A. tumefaciens to take up GABA was extensively
investigated in the last years. Studies revealed the involvement
of two distinct transport systems. The gene atu2422, located on
the circular chromosome is widely conserved within the Agrobac-
terium genus and codes for a periplasmic GABA-binding protein
that controls GABA import through the bra ABC transporter
(Planamente et al., 2010). Interestingly the GABA import by
atu2422 is strongly antagonized by proline, alanine, and valine,
suggesting that these compounds which accumulate in tumors
could also indirectly modulate the overall BlcC lactonase activity
in the bacterial cells (Haudecoeur et al., 2009a). In comparison, the
periplasmic binding protein encoded by the linear chromosome
gene atu4243 appears highly specific for GABA (Planamente et al.,
2012). Strikingly, the expression of atu4243 is totally repressed
by atu4232-encoded protein and mechanisms of derepression
are so far unknown (Planamente et al., 2012). Collectively these
data illustrate the complexity of factors coming into play when
searching to determine the impact of BlcC on A. tumefaciens
QS. Of special interest would be the critical examination of
plant metabolism to evaluate how the GABA, GBL, GHB, and
SSA produced in the tumors may activate BlcC in colonizing
A. tumefaciens cells. Such studies might reveal that the role
of BlcC varies according to the metabolic status of the plant
hosts.
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INTERACTIONS BETWEEN THE Ti AND At PLASMIDS IN THE PLANT
TUMOR
Another interesting feature of the blcC gene lies in its location
on the companion At plasmid. This makes it the only compo-
nent involved in A. tumefaciens QS that is not present on the Ti
plasmid. Ecologically this characteristic raises interesting ques-
tions and notably that to know whether the dissociation of the At
and Ti plasmids could result in a QS deregulation. To date very
little is known about the maintenance of the At plasmid in A.
tumefaciens populations. If no gene essential for the survival of
A. tumefaciens C58 is present on the At plasmid (Goodner et al.,
2001; Wood et al., 2001), the carriage of this At plasmid imposes
in vitro high fitness costs to A. tumefaciens host cells (Morton
et al., 2013). On the other hand, the At plasmid encodes sev-
eral functions which confer or may confer a fitness advantage to
agrobacteria in plant tumors (Haudecoeur et al., 2009b). Besides
the degradation of butyrolactones and their derivatives mentioned
above, the At plasmid is involved in the assimilation of some
opines of Amadori compounds (Vaudequin-Dransart et al., 1998;
Baek et al., 2005). The At plasmid also seems to have a positive
impact on the virulence capacity of A. tumefaciens (Matthysse
et al., 2008), although this point is debatable as it was recently
shown that a large deletion in the At plasmid resulted in increase
of the bacterial virulence (Morton et al., 2013). In conclusion,
one can reasonably assume that, as for Ti plasmids, the tumor
compartment is an appropriate environment for the dissemina-
tion of the At plasmid. Remarkably it was recently demonstrated
that in A. tumefaciens C58, the conjugations of At and Ti plas-
mids are related events controlled by the agrocinopines-responsive
regulator AccR and it was suggested that this mechanism of
co-regulation could be instrumental in the conservation of the
reciprocally beneficial functions carried by the two replicons
(Lang et al., 2013).

OC8HSL-ASSOCIATED PLANT RESPONSES
The interactions between A. tumefaciens and plant hosts are medi-
ated by several factors, from the phenolic compounds accumulated
at wound sites that induce the expression of the Ti plasmid vir
genes, to the opines produced in the tumor niche that control
horizontal transfer of bacterial plasmids. It is therefore tempting
to speculate on a possible implication of QS signal molecules in
this generic trans-kingdom association, especially as several lines
of evidence showed that N-acyl-homoserine lactone molecules
could induce specific responses in eukaryote cells (Williams, 2007).
For instance, in axenic plant systems, exogenous supply of differ-
ent homoserine lactone derivatives was found to modulate plant
immunity and development although the outcomes drastically dif-
fered according to the nature of the tested QS molecules (Klein
et al., 2009; Hartmann and Schikora, 2012).

To our knowledge only three studies investigated the impact of
OC8HSL on plants. In the first one, authors devised an inducible
gene expression system based on TraR-OC8HSL activity which
they introduced in Arabidopsis thaliana plants (You et al., 2006).
To verify that induction with OC8HSL of the transferred gene
did not affect the transcriptome of the transformed plants, the
authors extracted RNA from 12-day-old seedlings treated or not
by foliar application with 1 mM of OC8HSL for 24 h and carried

out microarray experiments using Agilent technology. Processing
of the data prompted them to conclude that no gene was dif-
ferentially expressed by presence of the QS signal. In a second
paper, a proteome analysis of Arabidopsis thaliana roots grown
for 24 h in a hydroponic system in the presence or not of 10 μM
of OC8HSL revealed that the levels of 53 proteins involved in
the metabolism of carbohydrate and energy, protein biosynthesis,
defense responses, and cytoskeleton remodeling, were significantly
affected by the QS signal (Miao et al., 2012). The modest num-
ber of proteins differentially affected in this study suggests that
plants sense A. tumefaciens QS signals only in a very restricted
way. Noteworthy, in the two above-mentioned experiments, the
used concentrations of homoserine lactone derivatives were in
the micromolar and millimolar range while the concentrations
at which QS molecules are active in A. tumefaciens are usu-
ally rather in the nanomolar range. Finally Arabidopsis thaliana
defense responses upon exposure to OC8HSL-producing Rhizo-
bium etli were recently analyzed. The results established that this
condition had no impact on the plant defense (Zarkani et al.,
2013), thereby strengthening the notion that plants are immune to
OC8HSLs.

IMPLICATIONS AND SELECTIVE ADVANTAGES OF THE
TIGHTLY REGULATED QS SYSTEM IN A. tumefaciens
Taken together the findings presented above described a very
sophisticated system in which A. tumefaciens QS action is not only
placed under the strict control of the conjugal opine regulon but
is also modulated by various adjacent components like antiactiva-
tor or lactonases (Figure 4). Now we will discuss the implications
of such hierarchical regulatory cascades and speculate about the
selective advantages they may confer to A. tumefaciens.

CONJUGATION OF Ti PLASMID IN OPINE-PRODUCING TUMORS
As mentioned previously, the expression of traR gene requires
the presence of conjugal opines. Therefore the QS system of
A. tumefaciens functions only in host plants and only after trans-
formed tissues have accumulated sufficient amount of conjugal
opines. This restriction suggests that mature tumors are the
most conducive environments for Ti plasmid dissemination and
that, in these plant tumors, the selective advantages conferred
to A. tumefaciens by a functional Ti plasmid would overcome
the associated costs of maintenance. Supporting these notions,
it has been demonstrated that Ti plasmid imposed a high fitness
cost under conditions reminiscent of tumorigenesis but not any-
more when opines were fully supplied (Platt et al., 2012a). It has
also been observed that large proportion of A. tumefaciens cells
present in mature tumors were devoid of Ti plasmids or harbored
a mutated Ti plasmid (Fortin et al., 1993; Belanger et al., 1995).
Thus the master control by conjugal opines could allow a large
dissemination of functional Ti plasmids in an A. tumefaciens pop-
ulation characterized by a high proportion of potential recipient
cells. The resulting selective advantages would be manifold. By
amplifying the number of genes involved in opine assimilation,
this mechanism could increase the colonizing fitness of the A.
tumefaciens population, especially in older tumors where nutritive
resources are scarcer. Multiplication of vir genes may also enhance
aggressiveness of the bacteria. In relation, several reports already
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FIGURE 4 | Representation of the sophisticated hierarchical QS

regulation in A. tumefaciens strain C58. QS-dependent conjugation and
copy-number amplification of the Ti plasmid is initiated when OC8HSL and
TraR reach appropriate concentration and form transcriptional active dimers.
QS-signaling is positively regulated by the conjugal opines agrocinopines
which are produced by the transformed plant cells (1) and induce
production of TraR by releasing AccR repressive action (2). Then, active
TraR-OC8HSL dimers activate the production of TraI, thereby triggering a
positive feedback in the synthesis of OC8HSLs (3) which are diffusible
molecules (4). The QS activation is delayed by the TraR-antagonist TraM (5),
as well as OC8HSL-cleaving lactonases AiiB and AttM (6) whose
expressions are controlled by agrocinopines and GABA, respectively. SAM,
S-adenosylmethionine; ACP, acyl carrier protein. The Ti plasmid genes and
the At plasmid genes are in blue and pink boxes, respectively.

correlated an impairment of A. tumefaciens QS communication
with a diminution of the crown gall symptoms (Haudecoeur et al.,
2009b; Planamente et al., 2010, 2012). At last dissemination of
Ti plasmids would increase the potential of migratory agrobac-
terial cells to initiate new infections. Interestingly Ti plasmid
transfers to other bacterial species present in plant tumors may
also occur, a feature that would favor genetic biodiversity. In
this regard it is unfortunate that, even if the plant tumors are
generally considered as privileged entry points for other bacteria,
no information on plant tumor microbiomes are available at the
moment.

DOES A. tumefaciens QS REALLY MEASURE A QUORUM OF DONOR
CELLS?
Since the finding that A. tumefaciens QS controlled Ti plasmid
conjugation, a “nagging” question remained to understand the
relevance of a system in which donor cells could only monitor the
density of other donors that already harbor a Ti-plasmid. Indeed as
conjugation cannot happen in a cell already containing a resident
Ti plasmid (Cho et al., 2009), the risk of uselessly activating, at the
quorum concentration, the horizontal transfer machinery in the
absence of sufficiently numerous recipient cells seems elevated.
Nonetheless, as evoked previously, the master control of QS by

conjugal opines might provide a way to circumvent this difficulty
by allowing the conjugation of Ti plasmid only in mature tumors,
i.e., in environments where the proportion of recipient cells would
have extended. In such a context, the adjustment of the activation
of the tra regulon according to a quorum of donor cells should
maximize the efficiency of Ti plasmid dissemination and would
be fully sensible. Under laboratory conditions, all the collected
data firmly sustain the notion that A. tumefaciens QS functions as
a cell density-dependent process. However, these conditions, using
most of the time cell cultures and constant concentration of con-
jugal opines to initiate QS, may not reflect natural conditions. In
V. fischeri the quorum nature of the system is defined by a produc-
tion of LuxR at relatively high basal level and by a concentration of
OC6HSL which increases as a function of cell density until reach-
ing the threshold of LuxR activation (Miller and Bassler, 2001). In
contrast, in A. tumefaciens, production of an active TraR regulator
is subordinated to the presence of conjugal opines and to that of the
antiactivator TraM. Taking full consideration of this characteristic
implies that QS can be partly dissociated from solely functioning
as a measure of population density. Another element of complex-
ity may be brought by the non-linear accumulation of OC8HSL in
tumors. Indeed plant tumors are not homogenous structures; they
emerged from wound sites and underwent neoplastic expansion
(Aloni et al., 1995; Veselov et al., 2003). In these complex envi-
ronments colonizing A. tumefaciens shall form different clusters
of cells more or less isolated one from the other and located in
surface or intercellular spaces where diffusion rates are different
as well as temporally changing. It therefore appears unlikely that
the OC8HSL concentration which can be measured in a tumor
or a part of the tumor does strictly mirror the cell density of the
pathogen in this environment. Interestingly when they simulated
the QS-induced transition in liquid cell cultures or biofilm, Gory-
achev et al. (2005) noticed that the first condition required a much
higher threshold density than the second. They consequently came
to the conclusion that A. tumefaciens QS served as a detector of
biofilm formation rather than a sensor of cell concentration. If
a growing attention has been given in the last years to mecha-
nisms of biofilm formation in A. tumefaciens (Tomlinson et al.,
2010; Hibbing and Fuqua, 2012), no data so far have related them
to QS and very little is known about the formation of biofilms
in the context of the agrobacterial interactions with plant host.
However, it would definitely be relevant for the bacteria to place
the coordination of Ti plasmid conjugation upon biofilm percep-
tion since the cell aggregates would constitute a very appropriate
context for activation of the horizontal transfer machinery, either
by minimizing the distances between donor and recipient cells
or by acting as a shield against all kinds of physical or biological
perturbations.

RELATIONSHIP BETWEEN QS REGULATION, Ti PLASMID
CONJUGATION, AND A. tumefaciens HOST CELL
In the above discussion, the question of the QS-dependent dis-
semination of Ti plasmids was addressed only according to the
selective advantages this dissemination may confer to agrobacte-
rial cells. However, another perspective would be to consider Ti
plasmids as selfish elements which somehow hijack A. tumefaciens
cells in order to disseminate their genetic backgrounds. In this
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framework Ti plasmids would take advantage of the opine and QS
regulations to optimize the efficiency of their conjugations. It is
furthermore important to note that the tumor conditions where
the selective advantage conferred to A. tumefaciens cells by the
Ti plasmids is the strongest coincide with the conditions where
the dissemination of these Ti plasmids is the most important.
The recent discovery in A. tumefaciens C58 that the conjugations
of both Ti and At plasmids are exacerbated by conjugal opines
(Lang et al., 2013) further supports the notion that Ti and At plas-
mids may collaborate to transform avirulent A. tumefaciens cells
into virulent in order to perpetuate and disseminate their genetic
traits.

CONCLUSION
In this review, we described the A. tumefaciens TraI/TraR QS sys-
tem and showed how it exquisitely regulated the dissemination of
Ti plasmids.

The QS systems of LuxI/LuxR type are generally thought
to have originated early in evolution of Gram-negative Pro-
teobacteria, with functional pairs of autoinducer synthases and
receptors coevolving as regulatory cassettes, although in many
cases these cassettes could also be inherited horizontally (Gray
and Garey, 2001). In A. tumefaciens, the TraI/TraR system and the
related QS-regulated genes are well conserved in all nopaline- and
octopine-type strains studied to date, suggesting that this regula-
tory mechanism has been anciently selected. The target genes of
A. tumefaciens QS are involved in the dissemination of Ti plasmids,
both by replication and conjugation, but also in positive and neg-
ative feedback controls with the OC8HSL-synthesis TraI enzyme
and the TraM antiactivator. Different studies demonstrated that
this last protein plays a critical role in the implementation of the
QS, even if it is not clear yet whether TraM is more relevant in
delaying QS activation or in stabilizing and limiting QS activity.

At the molecular level, the A. tumefaciens QS communication
has been largely deciphered. Two crystal structures have notably
been obtained for TraR, in association with OC8HSL and DNA,
providing a first class access to the interaction specificities of the
system. Thorough biochemical investigations of active and inac-
tive complexes also allowed to better understand multimerization
processes of the QS components.

Consistent with the particular phytopathogenic lifestyle of the
bacteria, A. tumefaciens QS system displays an original scheme
including several differently acquired regulatory elements. The
most important of these elements, common to all A. tumefaciens
strains, are the conjugal opines which accumulate in tumors as
a consequence of plant transformation and are strictly required
for traR expression and hence for QS initiation. In parallel, only
specific to some A. tumefaciens strains, lactonases such as AiiB
and BlcC or supplementary anti-activator like TrlR can also mod-
ulate QS responses. This complex network of horizontal and
lateral regulation suggests that there would be an advantage for
A. tumefaciens to restrain as much as possible the window of QS
activation.

Assessing reasons why a biological system has been selected
is always challenging because this selection hinges on a trade-
off between advantages and drawbacks which cannot be fully
appreciated under laboratory conditions. By perusing different

possibilities, we nonetheless hypothesized that the tight regulation
of A. tumefaciens QS surely allowed the bacteria to disseminate the
Ti plasmid in an environment where carrying the replicon would
be clearly advantageous and at a moment when the energetic and
physical factors would be ideal.

For the future, some important questions still remain to be
answered to complete our understanding of A. tumefaciens QS
functioning during the interactions with the host plant. For
instance how do conjugal opines and TraM cooperate to produce
active TraR-OC8HSL dimers? Precise dosage of conjugal opines in
the course of tumor development as well as advances in knowledge
of traM regulation might help solve this question. It would also be
very interesting to better determine how the BlcC lactonase inter-
feres with OC8HSL levels in tumors induced on different plants
hosts and what are the ecological implications regarding horizon-
tal transfers of both At and Ti plasmids. At last, analysis of bacterial
populations found in natural tumors could deliver exciting results
regarding abundance of potential Ti plasmid recipient cells. This
kind of data might also unveil the extent of competition between
the phytopathogen and other bacterial species present in plant
tumors, hence leading to a novel appreciation of A. tumefaciens
QS activity.
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