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A core symptom of anxiety disorders is the tendency to interpret ambiguous information
as threatening. Using electroencephalography and blood oxygenation level dependent
magnetic resonance imaging (BOLD-MRI), several studies have begun to elucidate
brain processes involved in fear-related perceptual biases, but thus far mainly found
evidence for general hypervigilance in high fearful individuals. Recently, multi-voxel
pattern analysis (MVPA) has become popular for decoding cognitive states from
distributed patterns of neural activation. Here, we used this technique to assess whether
biased fear generalization, characteristic of clinical fear, is already present during the
initial perception and categorization of a stimulus, or emerges during the subsequent
interpretation of a stimulus. Individuals with low spider fear (n = 20) and high spider
fear (n = 18) underwent functional MRI scanning while viewing series of schematic
flowers morphing to spiders. In line with previous studies, individuals with high fear of
spiders were behaviorally more likely to classify ambiguous morphs as spiders than
individuals with low fear of spiders. Univariate analyses of BOLD-MRI data revealed
stronger activation toward spider pictures in high fearful individuals compared to low
fearful individuals in numerous areas. Yet, neither average activation, nor support vector
machine classification (i.e., a form of MVPA) matched the behavioral results – i.e., a
biased response toward ambiguous stimuli – in any of the regions of interest. This may
point to limitations of the current design, and to challenges associated with classifying
emotional and neutral stimuli in groups that differ in their judgment of emotionality.
Improvements for future research are suggested.

Keywords: spider fear, multi-voxel pattern analysis (MVPA), fear generalization, fMRI, support vector machine,
interpretation bias

INTRODUCTION

The ability to recognize threatening stimuli clearly increases the chances of survival. Given that
a known threat can take many forms, it is also adaptive to be cautious with other exemplars of
the same semantic category that may predict a similar aversive outcome (Mineka, 1992). Stimulus
generalization —a learning mechanism whereby conditioned responses extend to a range of stimuli
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resembling the original conditioned stimuli (Pavlov, 1927) –
enables a fast response to novel potentially threatening stimuli.
Yet, it can turn into maladaptive behavior when non-threatening
stimuli or contexts are inappropriately treated as harmful. Here,
we will refer to this phenomenon as ‘overgeneralization of fear’
or ‘maladaptive fear generalization.’ The way we use the term
‘fear’ here includes both physiological and behavioral responses
to threat, as well as the subjective experience of fear (but see for
an alternative use of the term ‘fear’ LeDoux, 2014).

Maladaptive fear generalization is a characteristic of anxiety
disorders and post-traumatic stress disorder (Lissek et al., 2005,
2014; Mineka and Zinbarg, 2006; Kong et al., 2014; Bishop
et al., 2015) and may even play a causal role in these disorders
(Mathews and MacLeod, 2002; Wilson et al., 2006). For example,
while in spider phobia fear responses to real spiders may be
debilitating in itself, fear responses to stimuli that more or less
resemble the object of fear (e.g., a piece of dust) may interfere
most with daily functioning as phobic individuals find themselves
in a permanent state of hypervigilance, avoiding many ‘safe’
situations (e.g., not eating tomatoes as their insides resemble
the legs of a spider). Clarifying which processes enhance fear
generalization will ultimately help to answer the fundamental
question of why and how people differ in their disposition to
develop maladaptive fears.

Based on decades of animal conditioning research that focused
on the perceptual similarity and discriminability of threatening
stimuli, it has been implicitly assumed that overgeneralization
of fear is a perceptual deficit (Shepard, 1987). In line with this,
examples from research in humans show that fearful individuals
judge neutral faces as more negative (Richards et al., 2002;
Bell et al., 2011), and that individuals with spider phobia more
easily see a spider in pictures morphing from flowers to spiders
(Kolassa et al., 2007). Only recently it became evident that fear
generalization not solely depends on the physical properties
of threatening stimuli but also on their conceptual properties
(Dunsmoor et al., 2009, 2011, 2012; Soeter and Kindt, 2012, 2015;
Kindt, 2014). This raises the question whether fear generalization
observed for perceptual cues (such as when a piece of dust
triggers a fear response) is in fact a perceptual process, or may
instead emerge at a later stage of processing, when activated
fear associations start guiding (biasing) the interpretation of a
stimulus.

As the observed behavior does not reveal whether
overgeneralization of fear already occurs during the initial
perception and categorization of a stimulus, or emerges at a
later stage, it is necessary to go beyond behavioral observations
to study the (neural) processes that drive these behaviors.
A number of studies have begun to elucidate brain processes
involved in fear-related perceptual biases. These studies mainly
found heightened sensory sensitivity to all external stimuli in
high fearful individuals, expressed as enhanced early (100 ms)
event-related potentials (ERPs; Kolassa et al., 2007, 2009; Frenkel
and Bar-Haim, 2011; Weymar et al., 2013) and heightened
responses in visual areas to phobogenic objects, often paralleled
by heightened responses in the amygdala (Dilger et al., 2003;
Straube et al., 2006; Alpers et al., 2009). These findings are in
line with the commonly observed fear-related attentional bias

(Bar-Haim et al., 2007), suggesting that fear facilitates afferent
cortical processing in the human visual cortex when individuals
search for potential threat. However, although heightened
sensory sensitivity may explain a faster detection of a stimulus,
it does not necessarily imply or explain a biased classification of
that stimulus.

Studies on normal fear generalization have found that varying
degrees of perceptual resemblance to a conditioned stimulus
elicit graded responses (generalization curves) in the same
neurocircuitry as is involved in the acquisition and expression
of conditioned fear (i.e., insula, dorsal anterior cingulate cortex;
Dymond et al., 2014), and in salience processing in general (e.g.,
the ventral tegmental area; Cha et al., 2014). While normally
these graded responses inversely relate to activation in inhibitory
brain systems, such as the hippocampus and the ventromedial
prefrontal cortex, individuals with generalized anxiety seem
specifically impaired in recruiting these systems, broadening the
range of stimuli to which they respond with fear (Greenberg et al.,
2013; Cha et al., 2014; Bishop et al., 2015).

Even though the aforementioned studies provided useful
insights into the brain areas that are hyper- or hypoactive in
anxiety disorders, they do not distinguish between a perceptual
and a conceptual account of overgeneralization of fear in anxiety
disorders. An increased neural response to a stimulus does
not specify how that stimulus is categorized (e.g., high anxious
individuals may exhibit heightened sensory sensitivity to virtually
all stimuli, while only displaying a classification bias for a subset
of stimuli). Univariate techniques therefore seem unsuited for
addressing the question as to where in the cortical hierarchy
ambiguous stimuli are originally marked as threatening.

In contrast, multi-voxel pattern analysis (MVPA) evaluates the
information across groups of voxels, to characterize the unique
neural representation of a stimulus within a certain brain region
(Haxby et al., 2001). By training a classifier on neural patterns
related to distinct stimulus classes one can classify patterns
related to novel stimuli, providing a more sensitive way to assess
the degree to which different stimuli or cognitive states are alike
(Haynes and Rees, 2005; Kamitani and Tong, 2005; Norman et al.,
2006; Kriegeskorte et al., 2008), or altered by fear (Li et al., 2008;
Visser et al., 2011, 2013, 2015, 2016; Dunsmoor et al., 2014).

Here, we combined functional magnetic resonance imaging
(fMRI) with an adapted version of the task used by Kolassa et al.
(2007), to study overgeneralization of fear in individuals with low
and high fear of spiders. Based on previous work, we predicted
that individuals with high spider fear (HSF) would be more
likely to classify ambiguous morphs as spiders than individuals
with low spider fear (LSF). Furthermore, we examined in a data-
driven manner whether overgeneralization of fear is associated
with functional anomalies in regions traditionally associated with
(1) early perception and object identification (Ungerleider and
Haxby, 1994), which would support a perceptual account, and/or
2) regions involved in saliency (Etkin and Wager, 2007; Seeley
et al., 2007; Hermans et al., 2011; Ipser et al., 2013), and higher
cognitive processes (Miller and Cohen, 2001), which would
support a more conceptual account. Of course, if a bias is already
present in low-level areas it is likely to be present in higher-level
areas as well, given that these areas respond to the information
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relayed from lower-level areas. If, however, a bias does not
emerge until later in the processing stream, this could be an
indication that the stimulus is initially correctly identified as non-
threatening. Yet higher in the processing-stream certain features
of the stimulus may still trigger semantic associations with the
feared object, which in turn may evoke unpleasant feelings and
biased decision making. Using support vector machine (SVM)
classification in functional regions of interest we assessed at
what point in the information-processing stream (i.e., ‘low-level’
visual areas, and/or ‘higher’ areas associated with the attribution
of significance and decision making) this bias would become
apparent.

MATERIALS AND METHODS

Participants
Participants were recruited by means of advertisements in
newspapers, social media and the university website. Selection
was based on self-reported spider fear as measured by the Spider
Phobic Questionnaire (SPQ; Klorman et al., 1974), with scores
above 16 representing HSF and scores below 6 representing
LSF. Of the 44 participants that were initially included, one
participant was excluded because of excessive sleepiness, three
participants because they did not comply with task instructions,
and two participants because of excessive head motion. The final
sample included 18 participants in the HSF condition (all females,
three left-handed, mean = 24.1 ± 5.9 SD years of age), and 20
participants in the LSF condition (14 females, two left-handed,
mean= 22.9± 1.8 SD years of age). Participants earned €20, – for
their participation. All participants gave their written informed
consent before participating and had normal or corrected-to-
normal vision. None of the participants had knowledge of the
Chinese language (see Materials and Methods). Procedures were
executed in compliance with relevant laws and institutional
guidelines, and were approved by the University of Amsterdam’s
ethics committee (2014-CP-3390).

Apparatus and Materials
Stimuli
The experiment consisted of one session of fMRI scanning,
during which participants performed a task aimed to assess
overgeneralization of spider fear (Figure 1A). This task was a
modified version of the task used by Kolassa et al. (2007), who
generously provided part of the stimulus material. This material
consisted of schematic morphs that gradually transformed from
a flower into a spider by shifting the outlines of the petals until
they turned into spider legs (Figure 1B). Three variations existed
of this continuum, with each continuum consisting of seven
steps, yielding a total of 21 morphs. The presentation of a morph
was alternated with the presentation of an unambiguous picture
(Figure 1B), which was either a spider (n = 7), a flower (n = 7),
or a Chinese character (n = 7). We collected these unambiguous
pictures from the Web, adjusted their luminance, and separated
them from their original background. Both the morphs and
unambiguous pictures were presented on a gray background.

Subjective Measures
Fear of spiders was assessed with the SPQ (Klorman et al.,
1974) and used to select participants. Prior to the experiment,
trait anxiety and anxiety sensitivity were assessed with the
Trait Anxiety inventory (STAI-T; Spielberger, 1983) and the
Anxiety Sensitivity Index (ASI; Peterson and Reiss, 1993),
respectively. State anxiety was assessed before and after the
scanning procedure with the State Anxiety inventory (STAI-S;
Spielberger, 1983).

Image Acquisition
Scanning was performed on a 3T Philips Achieva TX magnetic
resonance imaging (MRI) scanner using a 32-channel head-coil.
Functional data were acquired using a gradient-echo, echo-planar
pulse sequence (TR = 2000 ms; TE = 27.63 ms; FA = 76.1◦; 37
axial slices with ascending acquisition; 3 mm × 3 mm × 3.3 mm
voxel size; 80 × 80 matrix; 240 × 133.98 × 240 FoV) and
consisted of 415 dynamics. Foam pads minimized head motion,
and online motion correction was applied by comparing each
recorded volume to the initially recorded volume and adjusting
the plane of recording with the displacement. A high-resolution
3D T1-weighted image (TR = 8.30 ms, TE = 3.82 ms, FA = 8◦;
1 mm × 1 mm × 1 mm voxel size; 240 × 220 × 188 FoV)
was additionally collected for anatomical visualization. Stimuli
were backward-projected onto a screen that was viewed through
a mirror attached to the head-coil.

Pre-processing
Functional magnetic resonance imaging data processing was
carried out using FEAT (FMRI Expert Analysis Tool) Version
6.00, part of FSL (FMRIB’s Software Library1). Pre-processing
included motion correction using MCFLIRT (Jenkinson et al.,
2002); slice-timing correction; non-brain removal using BET
(Smith, 2002); high-pass temporal filtering (σ = 50 s), 5 mm
spatial filtering and pre-whitening (Woolrich et al., 2001).
Functional images were coregistered to each individual’s high
resolution structural images using FLIRT (Jenkinson and Smith,
2001; Jenkinson et al., 2002). Registration from high resolution
structural to standard space (MNI152 template, 2 mm) was
then carried out using FNIRT non-linear registration (Andersson
et al., 2007).

Experimental Design
Upon arrival participants were screened and instructed about the
scanning procedure. The experiment started with a structural
scan. During functional scanning participants performed the
generalization task, viewing morphs (ambiguous) as well
as pictures (unambiguous; Figures 1A,B). Participants were
requested to make a response after each stimulus by pressing a
button, indicating whether they had seen a spider, a flower, or
none of the two (represented by a question mark). With regard
to the morphs, we informed participants that the ‘drawings’
they would be seeing would resemble spiders or flowers to a
certain degree, while a proportion of these drawings would
resemble none of the two. We emphasized that responses to

1www.fmrib.ox.ac.uk/fsl
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FIGURE 1 | Design. The experiment consisted of one session of fMRI scanning during which a generalization task was performed (A). This task consisted of the
presentation of schematic flowers morphing to spiders (generously provided by Kolassa et al., 2007), intermitted by pictures of spiders, flowers and Chinese
characters. Participants had to indicate whether they saw a spider (‘sp’), a flower (‘fl’) or none of the two (‘?’). Response buttons were counterbalanced over
participants. Three variations existed of this flower-spider continuum (B). Each variation was presented once, but the fixed order of stimulus presentation
(counterbalanced over participants) was designed in such a way that priming effects could be averaged out: each step of the continuum was once preceded by a
flower, once by a spider and once by a Chinese character. Images are not to scale.

these drawings were purely subjective and that there were no
right or wrong answers. Furthermore, we explicitly instructed
participants to wait until the stimulus (3 s) disappeared and
the response screen (2 s) was presented. Consequently, reaction
times cannot be reliably interpreted, as they do not reflect the
initial response to the picture. The response screen (Figure 1A)
reminded participants which button to press (left, middle, or
right), but only the first two letters of the options were shown
(‘fl,’ ‘?,’ ‘sp’). The Chinese characters were included to introduce a
clear ‘none-of-the-two’ category, so that responses to the morphs
were not biased by response frequencies to the unambiguous
stimuli. Stimulus presentation was fixed and was designed in
such a way that priming effects could be averaged out: each step
of the continuum was once preceded by a flower, once by a
spider and once by a Chinese character (Figure 1B). Response
buttons and stimulus presentation were counterbalanced across
participants. Inter-trial intervals were fixed and relatively long
(13 s), which seems optimal for single-trial pattern analysis
(Visser et al., 2016). The task started with three practice
trials (unambiguous pictures of a flower and a spider, and
a Chinese character), which were discarded from further
analysis. Participants were instructed to pay close attention
to the pictures, even if pictures were unpleasant. Continuous
eyetracker-recordings ensured that participants complied with
these instructions.

Univariate fMRI Analysis
In order to create functional regions of interest (ROIs), and
to facilitate interpretation of the results in light of previous
fMRI studies on spider fear, we ran a standard voxelwise whole-
brain analysis, modeling all trials within a condition as one
regressor [10 regressors in total: seven morph steps (three per
step), unambiguous flowers (7), unambiguous spiders (7) and
Chinese characters (7)] and including six motion parameters
and temporal derivatives as regressors of no interest. Higher-
level mixed-effects analyses were conducted to assess group
differences in the contrast of interest, that is, unambiguous
spiders > unambiguous flowers. Furthermore, we explored
whether there were voxels which’ tuning curve followed the
gradient of flowers morphing to spiders (i.e., we set up a contrast
to test whether there was a linear increase or decrease as function
of morphing) and whether these voxels showed overlap with the
ones identified using the multivariate approach. Activation was
thresholded at Z > 2.3 (Z > 3.1 for creating the ROIs) and cluster-
corrected at p < 0.05. Finally, we plotted for each of the functional
ROIs the average activation per stimulus type, to examine if the
generalization curves mirrored the behavioral data.

Region of Interest Selection
The parametric map obtained for the contrast unambiguous
spiders > unambiguous flowers was thresholded at Z > 3.1 and
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masked with a whole brain mask created from the Harvard-
Oxford cortical and subcortical atlas (part of the FSL software),
which excluded brain stem and cerebellum and was thresholded
at a probability of >10%. Next, 12 ROIs were created from
clusters consisting of at least 100 adjacent voxels. Using these
functional ROIs, we then classified the ambiguous stimuli using
a SVM (see first two paragraphs of Section “Multi-voxel Pattern
Analysis”). This selection of ROIs represented a sample of
different areas in the information-processing stream, with a
high likelihood of being responsive to the task (as areas that
distinguish between unambiguous stimuli may also be responsive
to gradual changes in their features).

Multi-Voxel Pattern Analysis
Each trial was modeled as a separate regressor in a general linear
model (GLM), including six motion parameters as regressors of
no interest. The resulting parameter estimates were normalized
to down-weight noisy voxels, by dividing each voxel’s parameter
estimate by the standard error of that voxel’s residual error
term after fitting the first-level GLM. In Matlab (version 8.0;
MathWorks) we created for each participant, for each ROI
a vector containing the normalized parameter estimates per
voxel for a particular trial. Next, these vectors were used for
classification analysis (next paragraph).

For each participant, we performed a leave-two-out
classification analysis with 1,000 iterations within each
functional ROI, using a two-class SVM with a linear Kernel
function (LIBSVM, Chang and Lin, 2011), Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm. With each iteration two
unambiguous stimuli (one flower and one spider) were separated
as test set, while the other unambiguous stimuli (six flowers and
six spiders) were used to train the classifier (random selection
with replacement). Next, the two separated stimuli as well as the
21 ambiguous stimuli were classified, yielding a total number of
23 classifications per iteration (one flower, one spider, and 21
morphs). These classifications were averaged over iterations and
over the different stimulus types (spider, flower and seven steps
of the flower-spider continuum).

Statistical Analyses
Behavioral Data
The behavioral responses, denoted by Y, were dichotomized
(Y = 1 for “spider,” Y = 0 for other responses). To account
for the nesting of stimulus responses within persons, the
data were modeled with a mixed logistic regression model:
P(Y = 1) = exp(Z)/(1+exp(Z)), where P(Y = 1) denotes the
probability that Y = 1, and where Z denotes a linear combination
of fixed and random effects. Note that these models could also be
considered as mixed Rasch models (Rijmen et al., 2003; Kolassa
et al., 2007). We considered four models: model 1 consisted of a
fixed group effect (LSF vs. HSF, coded as 0 and 1, respectively)
and a random person effect. Model 2 consisted of a fixed stimulus
effect (the degree to which a stimulus resembles a spider, seven
levels) and a random person effect. Model 3 consisted of a fixed
stimulus effect, a fixed group effect, and a random person effect.
Model 4 consisted of a fixed stimulus effect, a fixed group effect, a

multivariate random person effect with a variance parameter for
each group, and a covariance parameter between the two groups.

The model fit was evaluated with AIC and BIC fit statistics, as
well as with likelihood ratio tests for nested models. The models
were estimated with the statistical software package R, version
3.1.1. (R Core Team, 2014) using the glmer() function within the
R-package ‘lme4’ (De Boeck et al., 2011; Bates et al., 2013).

SVM Classification
By iterating training and test sets we obtained normally
distributed classification scores for the brain data. Hence,
we used parametric tests to assess whether the classification
of blood oxygenation level dependent (BOLD-MRI) patterns,
obtained on the individual level, revealed on average more
spider classifications in the HSF group, compared to the LSF
group. Statistical tests were performed using SPSS (version
21). We first assessed per ROI, per group, whether the
classification of the unambiguous spider and flower stimuli
was above chance level (0.5), using a one-sample t-test, to
get a sense of the reliability of the SVM classification in
that area. Next, we performed a mixed between-within-subjects
analysis of variance (ANOVA) within each ROI, with morph
as within-subject factor and group as between-subject factor.
We specifically tested whether there was a main effect of
stimulus type (indicating that the region was sensitive to changes
in stimulus features), and if significant or trend-significant,
whether there was a main effect of group. Predictions were
tested while correcting for multiple comparisons (the number
of ROIs) by limiting the false discovery rate (Benjamini and
Hochberg, 1995). In case that the assumption of sphericity
was violated a Greenhouse–Geisser correction was applied. All
p-values are reported two-sided, with the significance level set at
α= 0.05.

RESULTS

Participant Characteristics
Participants in the LSF and HSF group did not differ in
trait anxiety and anxiety sensitivity (F1,36 = 0.04; p = 0.847;
F1,36 = 1.22; p = 0.277, respectively; Table 1). In the HSF group,
the (anticipated) confrontation with spider-related material was

TABLE 1 | Mean values ± SD of self-reported fear of spiders (SPQ), anxiety
sensitivity (ASI), state anxiety (STAI-S, pre- and post-scan), and trait
anxiety (STAI-T) per group.

HSF (n = 18) LSF (n = 20)

SPQ 21.0 (±3.0)∗ 3.2 (±1.6)∗

ASI 8.3 (±4.2) 10.0 (±5.0)

STAI-T 35.2 (±9.5) 35.8 (±9.0)

STAI-S pre 36.4 (±9.1)∗ 29.3 (±8.5)∗a

STAI-S post 35.7 (±13.8)# 28.5 (±7.4)#a

aBased on 19 participants. SPQ, spider phobia questionnaire; ASI, Anxiety
Sensitivity Index; HSF, high spider fear; LSF, low spider fear. Significant and
trend-significant group effects are marked as follows: *p < 0.050; #p < 0.080.
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FIGURE 2 | Behavioral data. The average proportions in both groups of stimuli identified as spiders, flowers, or neither/nor. These results replicate previous
findings (Kolassa et al., 2007), suggesting that an individual with high fear of spiders is more likely to classify an ambiguous stimulus as a spider.

TABLE 2 | Number of estimated parameters (df), log-likelihood (logLik), AIC, BIC, and Akaike weights of the four models described in section on
Univariate fMRI Analysis.

df logLik AIC BIC Akaike weights

Model 1 3 −529.72 1065.44 1079.48 0.000

Model 2 8 −303.43 622.86 660.32 0.042

Model 3 9 −299.53 617.05 659.19 0.771

Model 4 11 −298.95 619.89 671.40 0.186

associated with higher state anxiety before scanning (F1,35= 6.02,
p = 0.019, η2

p = 0.15), and marginally higher state anxiety after
scanning (F1,35 = 3.97, p= 0.054, η2

p = 0.10).

Behavioral Responses
Figure 2 displays the average proportions in both groups of
stimuli identified as spiders, flowers, or neither/nor. Table 2
summarizes the fit of the four models as described in the Section
“Statistical Analyses.”

The fit statistics indicate that model 3 (i.e., the model with a
fixed stimulus effect, a fixed group effect, and a random person
effect) was the best fitting model. This conclusion was supported
by the results of the likelihood ratio tests in Table 3. The fit of
model 3 was significantly better than the fit of models 1 and 2,

TABLE 3 | Results likelihood ratio tests.

−2log(Lik-ratio) df p

Model 1 vs. model 3 460.38 6 <0.0001

Model 2 vs. model 3 7.80 1 0.005

Model 3 vs. model 4 1.16 2 0.56

while the fit of model 4 was not significantly better than the fit of
model 3.

The parameter estimates of model 3 are displayed in Table 4.
The interpretation of the parameters is as follows: since LSF
is arbitrarily chosen as reference group, the probability that

TABLE 4 | Parameter estimates of model 3.

Parametera Estimate SE

Fixed effects:

Morph 1 −6.4112 1.1208

Morph 2 −2.0682 0.4191

Morph 3 −0.9872 0.3895

Morph 4 −0.2625 0.3827

Morph 5 0.6497 0.3896

Morph 6 1.9926 0.4402

Morph 7 3.7894 0.6796

Group 1.4036 0.4859

Random effect:

Intercept person (SD) 1.314

aEstimates based on the following parameterization: glmer [Y ∼ −1 + stimulus +
group + (1 | person), family = binomial].
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a randomly selected person with LSF will classify morph
3 as “spider” is exp(−0.9872)/(1+exp(−0.9872)) = 0.271,
while the probability that a randomly selected
person with HSF will classify morph 3 as “spider” is
exp(−0.9872+1.4036)/(1+exp(−0.9872+1.4036)) = 0.603.
Note that the estimates of the stimulus parameters increase
from morph 1 to 7, which implies that the probability that a
stimulus will be classified as spider increases from morph 1 to 7.
The estimated group effect is statistically significant, z = 2.889,
p = 0.004. These results replicate previous findings (Kolassa
et al., 2007), suggesting that an individual with high fear of
spiders is more likely to classify an ambiguous stimulus as a
spider.

Univariate fMRI Results
Whole brain univariate analyses showed typical salience-network
activation in response to spider pictures compared to flower
pictures (Table 5 and Figure 3). This effect was strongest in
individuals with HSF, who showed more activation in the salience
network as well as visual (association) areas, than individuals with
LSF (Table 5). These results are in line with previous findings
(Dilger et al., 2003; Straube et al., 2006; Alpers et al., 2009).
Univariate analysis on activity related to the ambiguous stimuli
revealed a cluster in the occipital cortex that responded more
to ‘spiderness’ and a cluster in the dorsal paracingulate cortex
that responded more to ‘flowerness,’ but no group differences

were observed here (Table 6). Finally, Figure 4 shows the average
activation per stimulus type, in 12 functional ROIs. Although
individuals with high fear of spiders showed on average more
activation than individuals with low fear of spiders in the
occipital cortex and a cluster comprising the left amygdala and
insula, these effects only reached trend significance (F1,36 = 3.13;
p= 0.085 and F1,36 = 3.20; p= 0.082, respectively) and were not
specific for ambiguous stimuli (i.e., no effects of morph step in
any of the ROIs).

Classification Results
Table 7 displays the proportions of correctly classified neural
response patterns related to the unambiguous stimuli, in 12
functional ROIs. In most occipital areas, classification accuracy
was significantly above chance for both the HSF and the
LSF group. Additionally, in the HSF group classification was
above chance in amygdala, insula, anterior cingulate cortex,
supramarginal gyrus, and the precentral gyrus. An exploratory
analysis showed that in these areas (ROI 3-5, 11-12) the
classification of unambiguous spiders was significantly higher in
the HSF group than in the LSF group (all ps < 0.018), suggesting
that the pictures of real spiders elicited more generalized
responses when individuals were afraid of spiders (Watts and
Dalgleish, 1991).

With regard to the morphs (ambiguous stimuli), no group
differences were observed in the proportion of response patterns

TABLE 5 | Brain areas showing differential activation for the unambiguous pictures (n = 38).

Brain region (COG) MNI coordinates Volume

x y z # voxels Maximum Z

Spider > Flower

Group mean (n = 38)

Salience network (i.e., frontoinsular cortex, orbitofrontal cortex, dorsal anterior
cingulate extending into posterior cingulate cortex, paracingulate cortex, superior
frontal gyrus and juxtapositional lobule cortex, temporoparietal junction, amygdala,
thalamus, brainstem, cerebellum) and lateral occipital cortex

1 1 −27 69638 8.49

High spider fear (n = 18) > Low spider fear (n = 20)

Lingual gyrus, precuneus, intracalcarine cortex −3 −62 10 14658 4.91

R superior, middle frontal gyrus, precentral gyrus 23 4 54 1354 4.16

R insula, frontal operculum, orbitofrontal cortex 49 16 −5 1308 4.65

R middle temporal gyrus (temporooccipital part), lateral occipital cortex (inferior
division), angular gyrus, parietal operculum cortex, supramarginal gyrus

56 −52 12 1137 4.13

Anterior cingulate cortex 1 18 25 1102 3.95

L insula, frontal operculum, orbitofrontal cortex −39 12 −8 704 3.89

L parietal operculum cortex, supramarginal gyrus −56 −39 28 520 3.8

Flower > Spider

Group mean (n = 38)

R precentral gyrus, R post-central gyrus 9 −31 67 473 3.60

High spider fear (n = 18) > Low spider fear (n = 20)

No significant clusters

Whole brain activation (Z > 2.3, cluster-corrected at p < 0.05), showing clusters of voxels that discriminate between unambiguous spider and flower pictures, and within
this contrast, activation that discriminates between groups. Coordinates are in MNI-space and depict for each significant cluster the Center of Gravity (COG). Labels are
derived from the Harvard–Oxford cortical and subcortical atlases. L = left; R = right.
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FIGURE 3 | Neural classification. Univariate parametric maps showing clusters of voxels that discriminate between unambiguous flower and spider pictures (top
panels, Z > 3.1, cluster corrected at p < 0.05). Bottom panels show the average SVM classifications in two functional ROIs. In the lateral occipital cortex response
patterns were more often classified as spider in individuals with low spider fear (p < 0.029; uncorrected).

TABLE 6 | Brain areas showing differential activation for the ambiguous pictures (n = 38).

Brain region (COG) MNI coordinates Volume

x y z # voxels Maximum Z

More spider

Group mean (n = 38)

Occipital cortex 2 −80 8 8591 4.85

High spider fear (n = 18) > Low spider fear (n = 20)

No significant clusters

More flower

Group mean (n = 38)

Paracingulate gyrus, superior frontal gyrus 4 35 31 1633 3.64

High spider fear (n = 18) > Low spider fear (n = 20)

No significant clusters

Whole brain activation (Z > 2.3, cluster-corrected at p < 0.05), showing clusters of voxels which’ tuning curves followed the gradient of flowers morphing to spiders and
vice versa, and within these contrasts, activation that discriminates between groups. Coordinates are in MNI-space and depict for each significant cluster the Center of
Gravity (COG). Labels are derived from the Harvard–Oxford cortical and subcortical atlases.

classified as spider (Table 8), except for a small (uncorrected)
effect in the left lateral occipital cortex. This effects was
even in the opposite direction as hypothesized, given that
response patterns were more likely to be classified as spiders
when individuals were not afraid of spiders (Figure 3, left
panel).

It is noteworthy that the classification did not change
substantially when we corrected for average activation, which
we did by subtracting the signal per trial, averaged across voxels
within that ROI (i.e., preserving the spatial pattern, but scaling
the activation so that every trial’s mean activation in a particular
ROI was zero).
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FIGURE 4 | Average activation per stimulus type, in 12 functional ROIs.
L = left; R = right.

DISCUSSION

The aim of the present study was to examine how fear
influences the processing of ambiguous stimuli. We used SVM
classification to explore whether overgeneralization of fear is
associated with functional anomalies in regions traditionally
associated with early perception and object identification,
and/or with regions involved in saliency and higher cognitive

processes. Identifying where in the information-processing
stream fear affects ambiguity resolution could potentially indicate
whether this bias is primarily perceptual, or conceptual in
nature.

In line with previous findings (Kolassa et al., 2007), individuals
with HSF were more likely to classify ambiguous morphs
as spiders than individuals with LSF. Unexpectedly, neither
average activation, nor SVM classification in 12 functional ROIs
revealed a pattern that mirrored the behavioral effect. We
even obtained some evidence that response patterns in visual
association areas related to ambiguous stimuli were more likely
to be classified as spiders when individuals were not afraid of
spiders.

These findings seem to point to a methodological limitation
of the current paradigm. Unlike most studies, which used
either pictures of phobogenic material (Dilger et al., 2003) or
schematic morphs (Kolassa et al., 2007), we alternately presented
morphs and pictures of real spiders. In the SVM classification,
we trained a classifier on the unambiguous pictures to classify
the schematic morphs. This seemed the most ecologically valid
approach, as we were interested in the degree to which the
morphs would resemble ‘true’ spiders or flowers, not in the
similarity between schematic morphs per se. However, by mixing
the two types of stimuli, we may have unintentionally deflated
the valence of the spider drawings, skewing the classification
of these stimuli. Although these morphs could have been a
valid representation of the fearful category if presented alone,
the (anticipated) presence of stimuli that are substantially
more arousing may have turned the morphs into relatively
safe stimuli. For individuals without spider fear both classes
of unambiguous stimuli were virtually neutral, so training a
classifier on these stimuli showed a linear increase in the
likelihood that an ambiguous morph is classified as a spider. In
contrast, for individuals with HSF the classifier is trained on two
very distinct categories: one neutral and one highly emotional.
This is also evident from the fact that these unambiguous
categories are better classified – thus more distinct – in high
fearful individuals than in low fearful individuals. In this
scenario, a relatively neutral morph is classified as a flower,
probably not on the basis of perceptual or even conceptual
similarity, but on the absence of a strong emotional response.
Between-run classification, with ambiguous and unambiguous
stimuli presented in separate runs, could partially solve this
problem: without the continuous anticipation of the (terrifying)
unambiguous spider pictures, the spider drawings could be
semantically categorized as spiders, instead of merely being
categorized as ‘relatively safe.’ Between-run classification also
has the advantage of ensuring complete independence between
train and test set, thereby preventing possible biases in pattern
classification (Mumford et al., 2014). Yet, even in separate
runs, the unambiguous spider pictures will undoubtedly elicit
a much stronger emotional response than the morphs, which
may still hamper a balanced classification of stimulus categories
if the unambiguous stimuli were to be used for training. This
exemplifies that it is methodologically challenging to classify
emotional and neutral stimuli in groups that differ in their
judgment of emotionality.
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TABLE 7 | Mean values ± SD from the support vector machine classification of neural patterns related to presentations of unambiguous stimuli, in 12
functional ROIs.

Brain region # voxels Proportion of correctly Proportion of correctly

classified flower stimuli classified spider stimuli

HSF (n = 18) LSF (n = 20) HSF (n = 18) LSF (n = 20)

ROI 1: L amygdala, anterior insula, inferior temporal gyrus, anterior
division, inferior frontal gyrus, frontal operculum, frontal pole

3110 0.62∗ (± 0.22) 0.58# (± 0.20) 0.70∗ (± 0.19) 0.62∗ (± 0.19)

ROI 2: L lateral occipital fusiform cortex, lateral occipital cortex
inferior division, occipital fusiform gyrus

4542 0.76∗ (± 0.17) 0.69∗ (± 0.20) 0.79∗ (± 0.23) 0.69∗ (± 0.18)

ROI 3: R amygdala, anterior insula, inferior temporal gyrus, anterior
division, inferior frontal gyrus, frontal operculum, frontal pole

3090 0.68∗ (± 0.18) 0.57 (± 0.18) 0.75∗ (± 0.17) 0.61∗ (± 0.16)

ROI 4: R lateral occipital fusiform cortex, lateral occipital cortex
inferior division, occipital fusiform gyrus

4806 0.76∗ (± 0.14) 0.71∗ (± 0.14) 0.84∗ (± 0.16) 0.69∗ (± 0.11)

ROI 5: dorsal anterior cingulate cortex, paracingulate cortex,
superior frontal gyrus, juxtapositional lobule cortex

5044 0.62∗ (± 0.18) 0.49 (± 0.17) 0.71∗ (± 0.15) 0.57 (± 0.18)

ROI 6: L and R thalamus 1125 0.57# (± 0.16) 0.53 (± 0.14) 0.59∗ (± 0.17) 0.57∗ (± 0.15)

ROI 7: L occipital pole 113 0.61∗ (± 0.21) 0.64∗ (± 0.16) 0.68∗ (± 0.14) 0.63∗ (± 0.19)

ROI 8: L intracalcarine cortex 133 0.69∗ (± 0.17) 0.56 (± 0.18) 0.68∗ (± 0.18) 0.61∗ (± 0.19)

ROI 9: posterior cingulate cortex 122 0.56 (± 0.16) 0.58∗ (± 0.15) 0.57# (± 0.14) 0.56 (± 0.16)

ROI 10: L supramarginal gyrus 397 0.60# (± 0.23) 0.55 (± 0.14) 0.61∗ (± 0.21) 0.57# (± 0.17)

ROI 11: R precentral gyrus 215 0.64∗ (± 0.15) 0.47 (± 0.14) 0.71∗ (± 0.17) 0.48 (± 0.15)

ROI 12: precuneus 301 0.57 (± 0.23) 0.49 (± 0.14) 0.63∗ (± 0.18) 0.47 (± 0.18)

One-sample t-tests were used to test if the proportion of correctly classified stimuli was significantly above chance level (0.5), with 17 degrees of freedom for the high
spider fear (HSF) group and 19 degrees of freedom for the low spider fear (LSF) group. *p < 0.050; #p < 0.080. L = left; R = right.

TABLE 8 | Summary of statistics of the support vector machine classification of neural patterns related to presentation of morphs (n = 38), in 12
functional ROIs.

Brain region # voxels Main effect of morph (7) Main effect of group (2)

(within-subject) (between-subject)

F6,216 p η2
p F1,36 p η2

p

ROI 1: L amygdala, anterior insula, inferior temporal gyrus, anterior
division, inferior frontal gyrus, frontal operculum, frontal pole

3110 1.86 0.089 0.049 0.296 0.590 0.01

ROI 2: L lateral occipital fusiform cortex, lateral occipital cortex
inferior division, occipital fusiform gyrus

4542 3.92 0.001 0.10 5.15a 0.029a 0.13a

ROI 3: R amygdala, anterior insula, inferior temporal gyrus, anterior
division, inferior frontal gyrus, frontal operculum, frontal pole

3090 2.42 0.040 0.06 1.97 0.169 0.05

ROI 4: R lateral occipital fusiform cortex, lateral occipital cortex
inferior division, occipital fusiform gyrus

4806 5.26 <0.0005 0.13 1.57 0.218 0.04

ROI 5: Dorsal anterior cingulate cortex, paracingulate cortex,
superior frontal gyrus, juxtapositional lobule cortex

5044 2.83 0.011 0.07 1.40 0.244 0.04

ROI 6: L and R thalamus 1125 0.96 0.451 0.03 NT NT NT

ROI 7: L Occipital pole 113 2.27 0.052 0.06 0.03 0.870 0.00

ROI 8: L intracalcarine cortex 133 6.11 <0.0005 0.15 0.12 0.734 0.00

ROI 9: posterior cingulate cortex 122 0.84 0.540 0.02 NT NT NT

ROI 10: L supramarginal gyrus 397 3.23 0.005 0.08 0.85 0.361 0.02

ROI 11: R precentral gyrus 215 0.37 0.900 0.01 NT NT NT

ROI 12: precuneus 301 2.26 0.039 0.06 3.88a 0.056a 0.10a

All significant values (p < 0.05) are in italics, and those that reach FDR-corrected significance are in bold (corrected for 12 ROIs). NT, not tested: areas without significant
main effect of morph are not tested for group effects.aGroup effect caused by more classifications as spider in the low spider fear group. L = left; R = right.
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Even though the design may have skewed the classification
of morphs in some areas of the brain, participants did
eventually indicate that they had seen a spider. Given that
every behavioral response must have a neural correlate, one
would assume that it should be possible with SVM classification
to detect an area that codes for this behavior. We did
not find such an area. Again, this suggests that our study
design may not have been optimal for detecting subtle effects.
While overgeneralization of fear was observed at the level
of the group, individual behavior consisted of three discrete
responses per stimulus type, yielding a proportion of stimuli
classified as flower or spider. Thus, individual behavior was
not necessarily representative of the group average. Although
we based our behavioral task on previous research (Kolassa
et al., 2007), future research should explore the possibility of
having participants evaluate ambiguous stimuli on a continuous
scale, which seems a more sensitive approach for linking
individual behavior to brain data. Further, it may be useful
in future research to add a jitter between the presentation of
a stimulus and presentation of the response screen, so that
responses could be independently modeled as regressor of no
interest. This would make it easier to separate decision-making
processes from basic perceptual processes. Lastly, the number
and spacing of stimuli used in this experiment were based on
previous studies. In these studies pattern analysis was applied
to distinguish face and house stimuli (Epstein and Kanwisher,
1998; Haxby et al., 2001) and to assess the effects of Pavlovian
conditioning (Visser et al., 2011, 2013, 2015, 2016), which is a
powerful manipulation. The present manipulation – gradually
morphing a flower into a spider – was presumably subtler
and therefore required a greater number of trials. Increasing
the power and using different behavioral measures would
likely yield stronger effects and would open up avenues for
model-based searchlights, using (continuous) representational

similarity analysis (Kriegeskorte et al., 2008; Kriegeskorte, 2011)
instead of the rather coarse (dichotomous) classification analysis.
Approaches like these could further elucidate how fear influences
the perception, categorization and interpretation of ambiguous
stimuli.

In sum, while we found behavioral evidence for over-
generalization of fear in spider phobia, replicating previous
findings (Kolassa et al., 2007), we were not able to identify
a neural signature of this bias. The question as to where in
the information-processing stream this bias emerges therefore
remains a topic for further investigation.
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