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One of the most critical pathological features of Alzheimer’s disease (AD) is the
accumulation of β-amyloid (Aβ) peptides that form extracellular senile plaques in the brain.
Aβ is derived from β-amyloid precursor protein (APP) through sequential cleavage by β- and
γ-secretases. γ-secretase is a high molecular weight complex minimally composed of
four components: presenilins (PS), nicastrin, anterior pharynx defective 1 (APH-1), and
presenilin enhancer 2 (PEN-2). In addition to APP, γ-secretase also cleaves many other
type I transmembrane (TM) protein substrates. As a crucial enzyme for Aβ production,
γ-secretase is an appealing therapeutic target for AD. Here, we summarize current
knowledge on the structure and function of γ-secretase, as well as recent progress in
developing γ-secretase targeting drugs for AD treatment.

Keywords: γ-secretase, Alzheimer’s disease, anterior pharynx defective 1, nicastrin, presenilin, presenilin
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BACKGROUND
Alzheimer’s disease (AD) is the most prevalent aging associ-
ated neurodegenerative disorder, afflicting approximately 10%
of the population over age 65 and 30–50% of the popula-
tion over age 85. A subset (<10%) of AD manifests as famil-
ial early-onset AD (FAD; onset in the fourth to sixth decade)
and is inherited as an autosomal dominant disorder. Muta-
tions in the genes encoding β-amyloid precursor protein (APP)
and presenilins (PS1 and PS2) are causative in the majority
of FAD kindred (Goate et al., 1991; Levy-Lahad et al., 1995a;
Sherrington et al., 1995; Haass and De Strooper, 1999). Because
the clinicopathological features of FAD are apparently indis-
tinguishable from sporadic AD cases, great efforts have been
devoted to studying these FAD linked genes and significant
progress has been made to reveal mechanisms underlying AD
pathogenesis.

The presence of extracellular senile plaques in the brain is a key
pathological feature of AD. Senile plaques are largely comprised of
variously sized Aβ peptides, where most peptides are represented
by Aβ40 and the more deleterious Aβ42 species (Glenner and
Wong, 1984; Masters et al., 1985; McColl et al., 2012). Aβ is
produced through sequential proteolytic processing of APP by
β- and γ-secretases (Haass and Selkoe, 1993; Chami and Checler,
2012). Alternatively, cell surface APP can be cleaved by α-secretase
within the Aβ peptide domain to release the non-amyloidogenic
soluble APPα, which has been shown to be neuroprotective
(Greenfield et al., 2000). Experimental evidence from humans,
animal models, and cultured cells all suggest that Aβ is the prime
culprit for AD pathogenesis: excessive Aβ triggers a cascade of
neurodegenerative events resulting in the formation of neuritic
plaques and intra-neuronal fibrillary tangles and neuronal loss in

AD (Selkoe, 1998; Greenfield et al., 2000; Golde, 2005). However,
some studies suggest that the ratio of Aβ42 to Aβ40, rather than
the total amount of Aβ, exhibits better correlation with the age
of FAD onset (Kumar-Singh et al., 2006). Due to the importance
of Aβ generation in AD pathogenesis, γ-secretase has become an
important focus in AD research and has been considered as a
potential therapeutic target for the treatment of AD.

SUBUNITS OF THE γ-SECRETASE COMPLEX AND THEIR
ASSEMBLY
“γ-secretase” was first used to describe the proteolytic activity that
cleaves APP within the transmembrane (TM) domain (Haass and
Selkoe, 1993). The γ-secretase complex has since been charac-
terized as a high molecular weight complex that consists of four
essential subunits: PS (including PS1 and PS2), nicastrin, anterior
pharynx defective 1 (APH-1), and presenilin enhancer 2 (PEN-
2; De Strooper, 2003; Kimberly et al., 2003; Iwatsubo, 2004).
Because of its complexity, almost a decade was required to identify
and define all of the components of the γ-secretase complex (De
Strooper, 2003).

In the early 1990s, linkage analysis was performed in sev-
eral FAD families, and two AD-related loci were found on
chromosome 1 and chromosome 14 (Schellenberg et al., 1992;
Levy-Lahad et al., 1995b). Subsequently, independent research
groups identified two homologous genes in these two loci: PSEN1
(encoding PS1) on chromosome 14 and PSEN2 (encoding PS2)
on chromosome 1 (Levy-Lahad et al., 1995a; Rogaev et al., 1995;
Sherrington et al., 1995). Until now, more than 150 different
AD-causing mutations have been identified in the two PS genes,
where most mutations have been found in PSEN1 (Vetrivel et al.,
2006; De Strooper et al., 2012). FAD-associated PS mutations are
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directly linked to APP processing and are all seen to increase
the relative abundance of the more aggregation-prone Aβ42
compared to Aβ40 (Borchelt et al., 1996, 1997; Duff et al., 1996;
Scheuner et al., 1996; Citron et al., 1997; Siman et al., 2000;
Flood et al., 2002; Haass et al., 2012). In addition, FAD-linked
mutations in PS1 may also affect the trafficking and consequent
processing of APP. For instance, FAD-linked PS1 variants can
significantly reduce budding of APP-containing vesicles from
both the endoplasmic reticulum (ER) and trans Golgi network
(TGN), resulting in decreased delivery of APP to the cell surface
and increased APP amyloidogenic processing for Aβ generation
(Cai et al., 2003). PSs are multi-transmembrane proteins with an
undetermined number of TM domains (Doan et al., 1996; Kim
and Schekman, 2004). However a nine TM topology model with
the amino-terminus in the cytosol and the carboxyl-terminus
exposed to the luminal/extracellular space appears to be the
most likely depiction of PS topology (Laudon et al., 2005; Oh
and Turner, 2005). In general, full-length PS is inactive and
rapidly removed by proteolytic degradation (Thinakaran et al.,
1996; Podlisny et al., 1997; Ratovitski et al., 1997; Capell et al.,
1998; Grunberg et al., 1998). Funtional PS requires endoprote-
olytic cleavage between TM6 and TM7 of nascently produced
PS to generate a 27–28 kDa amino-terminal fragment (NTF)
and a 16–17 kDa carboxyl-terminal fragment (CTF). PS NTF
and CTF bind to form stable and active PS heterodimers at
a 1:1 stoichiometry (Thinakaran et al., 1996, 1997; Podlisny
et al., 1997; Ratovitski et al., 1997; Capell et al., 1998; Grunberg
et al., 1998). PSs contain two highly conserved aspartate residues
in TM6 (D257 in PS1 and D263 in PS2) and TM7 (D385 in
PS1 and D366 in PS2), which are indispensable for γ-secretase
activity (Wolfe et al., 1999). PS1 heterodimers can be bound
by transition-state analog inhibitors of γ-secretase (Esler et al.,
2000), suggesting that PSs are the crucial catalytic components
of γ-secretase (Li et al., 2000; Kimberly et al., 2003); this notion
is confirmed by in vitro assays (Ahn et al., 2010). Other PS TM
domains also mediate PS function. For example, the TM1 of
PS1 was shown to function as a subsite for substrate handling
during the processive γ-cleavage in the hydrophilic catalytic pore
together with TM 6, 7, and 9 (Takagi et al., 2010; Ohki et al.,
2014).

Several studies suggested that it is impossible to overexpress
functionally active PS, suggesting that additional protein com-
ponents are required to form mature, stable PS heterodimers
(Baumann et al., 1997; Seeger et al., 1997; Thinakaran et al.,
1997; Capell et al., 1998; Yu et al., 1998; Li et al., 2000; Cul-
venor et al., 2004). The first PS cofactor component identified
in the γ-secretase complex is nicastrin (named APH-2 in C.
elegans), which was identified by screening for modifiers of Notch
homologs glp-1 and lin-12 in C. elegans and through immuno-
chemical purification in HEK293 cells (Goutte et al., 2000; Yu
et al., 2000). Nicastrin is a 130 kDa type I TM protein that can
be highly glycosylated within its ectodomain (Yu et al., 2000; Yang
et al., 2002). Nicastrin is considered to be the scaffolding protein
within the γ-secretase complex, and its ectodomain is proposed to
bind to the free N-terminus of ectodomain-shed substrates, acting
as a substrate receptor in γ-secretase (Shah et al., 2005; Dries et al.,
2009).

The other two additional γ-secretase components, APH-1 and
PEN-2, were identified through genetic screening in C. elegans
(Francis et al., 2002; Goutte et al., 2002). PEN-2 spans the
membrane twice, with N- and C-terminal domains facing the
lumen of the ER (Crystal et al., 2003). There is only one PEN-
2 homolog in mammals. Analysis of the APH-1 sequence shows
that it contains seven potential TM domains, with the N-terminal
domain facing the extracellular space and the C-terminal domain
facing the cytosol (Fortna et al., 2004). Two APH-1 homologs,
APH-1a and APH-1b have been identified in humans (Francis
et al., 2002; Goutte et al., 2002), and one additional homolog
APH-1c was identified in mice (Hébert et al., 2004). Mammalian
APH-1a has at least two splice variants: APH-1aL and APH-1aS.
Since APH1a deletion results in lethality that is not seen in APH-
1b and APH-1c gene deletion in mice, different APH-1 isoforms
may have different functions. Furthermore, accumulation of APP
CTF in specific regions of APH-1bc−/− mouse brain (which is
equivalent to APH-1b deficiency in humans) suggests that APH-
1b might be important in the production of Aβ (Serneels et al.,
2005). A recent study suggested that γ-secretase complex contain-
ing APH-1b tends to generate longer Aβ peptides than complexes
containing APH-1a (Acx et al., 2014).

Several studies have demonstrated that the four components
of γ-secretase cross-regulate each other coordinately.
Down-regulation or deficiency of one given component
typically destablizes other components and alters their
trafficking/maturation (De Strooper, 2003; Iwatsubo, 2004).
For example, in the absence of PS1, PEN-2 is sequestered in
the ER and cannot be transported to post-ER components
where the mature γ-secretase complex resides (Wang et al.,
2004). PS deficiency also leads to destabilization of PEN-2
(Steiner et al., 2002; Luo et al., 2003), which is degraded via the
proteasome-mediated pathway (Bergman et al., 2004; Crystal
et al., 2004). On the other hand, down-regulation of PEN-2
by small interfering RNA results in an accumulation of full-
length PS1 and a reduction of PS1 fragments, suggesting that
PEN-2 is involved in PS1 endoproteolysis (Luo et al., 2003).
Intracellular trafficking and maturation of nicastrin are also
PS dependent. In the absence of PS, nicastrin fails to reach
the medial Golgi compartment and becomes only partially
glycosylated (Leem et al., 2002). Moreover, nicastrin deficiency
reduces the levels of APH-1, PEN-2 and PS1 fragments, and
affects their intracellular trafficking (Li et al., 2003a,b; Zhang
et al., 2005). Similarly, in APH-1a knockout cells, the levels of
nicastrin, PEN-2 and PS1 fragments are reduced (Ma et al.,
2005).

The events leading to the formation of a mature γ-secretase
complex start from the formation of an initial scaffolding complex
composed of APH-1 and nicastrin (LaVoie et al., 2003). The
proximal C-terminus of the PS holoprotein then binds to the
APH1-nicastrin subcomplex by interacting with the TM domain
of nicastrin (Kaether et al., 2004; Jiang et al., 2014). Following PS
binding, PEN-2 is incorporated into the complex by interacting
with TM4 of PS (Kim and Sisodia, 2005; Watanabe et al., 2005).
At the final step, the loop domain between TM6 and TM7 of PS1 is
cleaved by endoproteolysis (Fukumori et al., 2010). Alternatively,
the APH-1-nicastrin subcomplex may bind directly to a cognate
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PS1-PEN-2 structure to generate the mature γ-secretase complex
(Shirotani et al., 2004; Capell et al., 2005). Several polar residues
within APH1 TM domains have been shown to contribute to
the assembly and activity of the mature γ-secretase complex
(Pardossi-Piquard et al., 2009c), and have been speculated to be
involved in γ-secretase substrate presentation (Chen et al., 2010).
PEN-2 has also been suggested to be important for stabilizing the
complex (Steiner et al., 2002; Prokop et al., 2004, 2005; St George-
Hyslop and Fraser, 2012).

Several proteins have been proposed as additional γ-secretase
modulatory components, which are not essential for γ-secretase
activity. Proteins including CD147 (Zhou et al., 2005), TMP21
(Chen et al., 2006) and γ-secretase activating protein (GSAP;
He et al., 2010) have been proposed to selectively modulate Aβ

production, but do not affect Notch cleavage. CD147 is a TM gly-
coprotein, which interacts with all four essential γ-secretase com-
ponents (Zhou et al., 2005). Downregulation of CD147 increases
Aβ production, whereas overexpression of CD147 has no effect on
Aβ generation (Zhou et al., 2005). However, another report sug-
gests that CD147 modulates Aβ levels by stimulating the extracel-
lular degradation of Aβ rather than regulating γ-secretase activity
directly (Vetrivel et al., 2008). TMP21 is another protein that
binds to the γ-secretase complex and regulates γ-cleavage but not
ε-cleavage through its TM domain (Chen et al., 2006; Pardossi-
Piquard et al., 2009a). However, another study failed to confirm
the interaction between TMP21 and γ-secretase, and instead
demonstrates that TMP21 influences Aβ generation through APP
trafficking (Vetrivel et al., 2007). Recently, a novel GSAP was iden-
tified to selectively increase Aβ production through its interaction
with both γ-secretase and the APP CTF (He et al., 2010), though
interaction between GSAP and APP CTF remains controversial
(Hussain et al., 2013). Although the cancer drug Imatinib was
reported to also reduce Aβ levels and tau phosphorylation in an
AD mouse model by modulating γ-secretase activity and GSAP
levels (Chu et al., 2014), these effects could not be reproduced by
other groups. Rather, additional studies found that Imatinib had
no effect on blood Aβ42 levels in human cancer patients and Aβ

production in rats and cell models (Hussain et al., 2013; Olsson
et al., 2014).

STRUCTURAL CHARACTERIZATION OF THE γ-SECRETASE
COMPLEX
The γ-secretase complex has a molecular weight of approximately
170 kDa, with an additional 30–70 kDa derived from nicastrin
glycosylation (Schedin-Weiss et al., 2014), reaching a total size
of about 230 kDa with 19 TMs. Structural characterization of
the γ-secretase complex is very important for understanding
how it recognizes and processes membrane-embedded substrates.
However, clarifying details of the γ-secretase structure has gone
through a long journey, mainly due to the challenge of expression
and purification of an intact γ-secretase complex. The struc-
tural information of the γ-secretase complex has been primar-
ily obtained by electron microscopy analysis with a maximum
resolution of 12 Å (Lazarov et al., 2006; Ogura et al., 2006;
Osenkowski et al., 2009; Renzi et al., 2011; Li et al., 2014),
revealing a globular structure with several extracellular domains,
three water-accessible cavities, and a potential substrate-binding

surface groove in the TM region (Osenkowski et al., 2009). The
first solution-state structure of human PS1 CTF was determined
by nuclear magnetic resonance, demonstrating that PS1 CTF
traverses the membrane three times (Sobhanifar et al., 2010),
which is consistent with the widely accepted nine TM structure of
PS1 (Laudon et al., 2005; Oh and Turner, 2005). Crystal structure
of an archaeal PS homolog also reveals a nine TM topology, with
two catalytic aspartate residues located on the cytoplasmic side of
TM6 and TM7, and two potential routes for substrate entry (Li
et al., 2013).

Recently a three-dimensional structure of the intact human
γ-secretase complex was determined by cryo-electronmicroscopy
with a resolution of 4.5 Å. The overall structural model com-
prises a horseshoe-shaped structure with 19 TMs and a bilobed
ectodomain representing nicastrin (Lu et al., 2014). Although
the resolution is still insufficient to observe atomic details, it
was a pioneering step to survey the complete architecture of the
γ-secretase complex. The current speculative model suggests that
PS1 and PEN-2 are located to the “thick” end of the horseshoe
shape, whereas APH-1 and nicastrin are located toward the “thin”
end (Lu et al., 2014; Wolfe and Selkoe, 2014). Most recently, results
from the same lab presented a crystal structure of nicastrin at
1.95 Å resolution, which is the first atomic-resolution structure
for a γ-secretase component (Xie et al., 2014). The extracellular
domain of nicastrin contains a large lobe and a small lobe. The
large lobe of nicastrin, thought to be responsible for substrate
recognition, associates with the small lobe through a hydrophobic
pivot at the center (Xie et al., 2014). Based on this new model,
nicastrin, APH-1 and PS CTF are likely to be located at the
“thick” end of the horseshoe shape, whereas PEN-2 and PS NTF
are located toward the “thin” end (Bolduc and Wolfe, 2014; Lu
et al., 2014; Xie et al., 2014). Further work is required to elucidate
structural details of other γ-secretase components at the atomic
level.

BIOLOGICAL FUNCTIONS OF γ-SECRETASE
γ-secretase belongs to the family of intramembrane cleaving pro-
teases (i-CLiPs), which includes the presenilin family of aspartyl
proteases, the zinc metalloprotease site-2 protease family and the
rhomboid family of serine proteases. All i-CLiPs enzymatically
cleave their substrates within the plane of the lipid bilayer in a pro-
cess termed regulated intramembrane proteolysis (Brown et al.,
2000; Kopan and Ilagan, 2004). γ-secretase is mainly involved
in intramembranous proteolysis of type I membrane proteins. It
cleaves numerous functionally important proteins, such as APP
(De Strooper et al., 1998), Notch (De Strooper et al., 1999),
E-cadherin (Marambaud et al., 2002), ErbB4 (Ni et al., 2001),
CD44 (Lammich et al., 2002), tyrosinase (Wang et al., 2006),
TREM2 (Wunderlich et al., 2013) and Alcadein (Hata et al., 2012)
among others, suggesting the participation of γ-secretase in a
vast range of biological activities (Haapasalo and Kovacs, 2011).
The best-studied γ-secretase substrates are APP for its roles in
AD, and Notch for its importance in development and cell fate
determination (Kopan and Ilagan, 2009; Andersson et al., 2011).

During Notch cleavage, γ-secretase releases a Notch intracel-
lular domain (NICD) within the cytosol. NICD can translocate
into the nucleus and regulate gene transcription (Kopan et al.,
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1996; Schroeter et al., 1998). Notch signaling plays a critical role
in short-range cell-cell communication during development, as
it controls cell fate by regulating cell proliferation, survival, posi-
tioning and differentiation (Kopan and Ilagan, 2009; Andersson
et al., 2011). Altered expression of Notch target genes such as hairy
and enhancer of split (HES) family leads to severe developmental
defects. Ablation of γ-secretase by PS1 (Donoviel et al., 1999),
nicastrin (Li et al., 2003a,b) and APH-1 (Ma et al., 2005) gene
deletion results in embryonic lethality in mice due to ablation of
the Notch pathway. Conditional PS1 deletion in various tissues
also causes defects associated with Notch pathway, such as defec-
tive T- and B-cell differentiation (Doerfler et al., 2001; Hadland
et al., 2001; Qyang et al., 2004; Tournoy et al., 2004; Wong
et al., 2004), bloody diarrhea as a consequence of gastrointestinal
toxicity (Searfoss et al., 2003; Wong et al., 2004; van Es et al.,
2005), skin and hair defects (Xia et al., 2001; Tournoy et al., 2004),
and depletion of neural progenitor cells accompanied by severe
morphological defects and hemorrhages in the developing brain
(Kim and Shen, 2008).

APP is initially cleaved by α- or β-secretase, and the remaining
membrane-bound C-terminal fragments of APP (APP αCTF and
βCTF) are further cleaved by γ-secretase to generate p83 or Aβ,
respectively. The p83 fragment is rapidly degraded and widely
believed to have negligible function, whereas Aβ is neurotoxic
(Selkoe, 2001; Zhang et al., 2011; Proctor et al., 2012; Slowik et al.,
2012; Youmans et al., 2012; Chen et al., 2013; Rosén et al., 2013).
In addition to releasing Aβ40 and Aβ42, γ-secretase cleavage
also generates Aβ46 (ζ-site) (Zhao et al., 2004, 2007) and Aβ49
(ε-site) (Sastre et al., 2001; Weidemann et al., 2002). The existence
of different Aβ species, including the shorter Aβ38 fragments
suggests that γ-secretase cleaves APP in a sequential manner, first
at the ε-site, followed by at the ζ-site, the γ-site, and possibly other
sites (Takami et al., 2009; Okochi et al., 2013).

In addition to generating Aβ, γ-secretase cleavage of APP
also generates an APP intracellular domain (AICD) within the
cell. Similar to NICD, we and others have found that AICD also
possess transcriptional transactivation activity and can regulate
the transcription of multiple genes including APP, GSK-3b, KAI1,
neprilysin, BACE1, p53, EGFR, and LRP1 (Baek et al., 2002; Kim
et al., 2003; von Rotz et al., 2004; Pardossi-Piquard et al., 2005;
Liu et al., 2007; Zhang et al., 2007). In addition, free AICD can
induce apoptosis and may play a role in sensitizing neurons to
toxic stimuli (Kinoshita et al., 2002; Giliberto et al., 2008).

ALTERNATIVE NON-PROTEOLYTIC FUNCTIONS FOR
γ-SECRETASE COMPONENTS
Although PS (Donoviel et al., 1999), nicastrin (Li et al., 2003a,b),
or APH-1 (Ma et al., 2005) gene deletion in mice results in
lethality and abnormal embryonic phenotypes which resemble
that of Notch null mice (Swiatek et al., 1994; Conlon et al., 1995;
Huppert et al., 2000), specific phenotypes among different gene
deletion strains are not identical, implying that each of these
γ-secretase components may have its own unique physiological
functions in addition to the γ-secretase activity.

PSs have been thoroughly studied for decades and has been
associated with multiple functions, including calcium homeosta-
sis, neurite outgrowth, apoptosis, autophagy, synaptic function,

and tumorigenesis (Sisodia et al., 1999; Leem et al., 2002;
Thinakaran and Parent, 2004; Kang et al., 2005; Lee et al.,
2010; Torres et al., 2012; Bezprozvanny and Hiesinger, 2013;
Eimer and Vassar, 2013; Veeraraghavalu et al., 2013; Wang et al.,
2014). Several FAD mutations in PSs result in enhanced calcium
release via inositol 1,4,5-trisphosphate receptors (IsnP3R) and
the ryanodine receptors (RyR) receptors (Cheung et al., 2008;
Hayrapetyan et al., 2008; Bezprozvanny and Hiesinger, 2013;
Del Prete et al., 2014). PSs also function as passive ER calcium
leak channels, and some FAD mutations in PSs disrupt the ER
calcium leak function, resulting in elevated ER calcium levels
and impaired store-operated calcium entry (Tu et al., 2006;
Zhang et al., 2010; Bezprozvanny and Hiesinger, 2013). Moreover,
autophagic/lysosomal deficits found in neurons of PS1 deficient
mice indicate an essential role of PS1 in lysosomal-dependent
proteolysis (Lee et al., 2010). Some studies reported that PSs could
participate in neurotransmitter release and regulate synaptic scal-
ing independent of γ-secretase activity (Zhang et al., 2009; Pratt
et al., 2011).

Age-related neuronal and synaptic loss and synaptic plastic-
ity deficits in nicastrin conditional knockout mice demonstrates
essential roles of nicastrin in regulation of learning and memory
and the maintenance of neuronal survival in the brain (Tabuchi
et al., 2009; Lee et al., 2014). Furthermore, nicastrin is found to
control cell death via Akt and p53-dependent pathways at the
post-transcriptional level in a γ-secretase activity-independent
manner (Pardossi-Piquard et al., 2009b). APH-1 and PEN2 are
also shown to trigger an anti-apoptotic response by lowering p53-
dependent control of caspase-3 (Dunys et al., 2007).

γ-SECRETASE AS A THERAPEUTIC TARGET FOR AD
γ-secretase is an attractive therapeutic target for AD due to its
essential role in the generation of Aβ. Early drug discovery efforts
focused on the development of γ-secretase inhibitors (GSIs).
However, general inhibition of γ-secretase may potentially result
in severe consequences by interfering with other physiological and
developmental processes such as its involvement in proteolysis
of non-AD components including Notch (Wong et al., 2004;
Haapasalo and Kovacs, 2011; Imbimbo et al., 2011; Schor, 2011;
Tamayev and D’Adamio, 2012). In a phase III clinical trial of the
GSI semagacestat, it was found that semagacestat not only had
no effect on improving cognitive status, but also was associated
with more adverse events including skin cancers and infections,
compared to placebo controls (Doody et al., 2013).

Therefore, the drug discovery efforts have shifted to the devel-
opment of γ-secretase modulators (GSMs), which are γ-secretase
targeting compounds that alter Aβ production without signif-
icantly lowering the normal physiological function of Notch
and other substrates(Crump et al., 2013). A subset of nons-
teroidal anti-inflammatory drugs (NSAIDs) was the first GSM
compounds identified (Weggen et al., 2001). R-flurbiprofen (or
Tarenflurbil), a single enantiomer of a clinically approved racemic
NSAID, had showed some efficacy in a phase II clinical trial
with a subgroup of patients suffering from mild AD (Wilcock
et al., 2008). However, R-flurbiprofen did not show significant
improvement compared to placebo controls during phase III
clinical trials (Green et al., 2009). The first generation of GSM
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compounds demonstrate limited pharmacological potential due
to low potency and undesired neuropharmacokinetic properties,
while second generation GSMs such as E2012 and EVP-0015962
show improved potency and brain availability and encourag-
ing preclinical profiles in recent years (Oehlrich et al., 2011;
Pettersson et al., 2011, 2013). Second generation GSMs can be
generally divided into acid GSMs, non-acid GSMs and natural
product derived GSMs (Crump et al., 2013; Golde et al., 2013).
Acid GSMs, including GSM-1 and its analogs (GSM-2 and GSM-
10h) and EVP-0015962 usually reduce Aβ42 and increase Aβ38
levels (Page et al., 2008; Hawkins et al., 2011; Mitani et al., 2012;
Rogers et al., 2012). E2012, the first non-acid GSM to enter clinical
development, lowers Aβ42 and Aβ40 and raises Aβ37 and Aβ38
levels (Portelius et al., 2010; Borgegard et al., 2012; Crump et al.,
2013). Recently identified natural product derived GSMs appear
to be unusual as they decrease both Aβ42 and Aβ38 (Hubbs et al.,
2012; Loureiro et al., 2013).

CONCLUDING REMARKS
The γ-secretase complex plays crucial roles in various physiologi-
cal processes. Because of the importance of γ-secretase in Aβ gen-
eration, γ-secretase has been targeted for AD drug development,
but with little success so far due to the complexity of its structural
organization and the varied nature of its multiple substrates.
A better understanding of the structure-function relationship
of γ-secretase will help in developing modulators which limit
cleavage of other important physiological γ-secretase substrates
for use in AD therapy.
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