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Colorectal cancer (CRC) is a genetically heterogeneous disease that develops and pro-
gresses through several distinct pathways characterized by genomic instability. In recent
years, it has emerged that inherent plasticity in some populations of CRC cells can
contribute to heterogeneity in differentiation state, metastatic potential, therapeutic
response, and disease relapse. Such plasticity is thought to arise through interactions
between aberrant signaling events, including persistent activation of the APC/β-catenin
and KRAS/BRAF/ERK pathways, and the tumor microenvironment. Here, we highlight
key concepts and evidence relating to the role of epithelial–mesenchymal plasticity as
a driver of CRC progression and stratification of the disease into distinct molecular and
clinicopathological subsets.
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INTRODUCTION
Colorectal cancer (CRC) has provided a paradigm for studying
tumorigenesis for the past two decades (1, 2). Despite significant
advances in understanding how it develops and progresses, CRC
remains a major cause of cancer mortality in the developed world,
due largely to its propensity to metastasize (3).

Early models of the molecular genetics underlying sporadic
and hereditary CRC suggested that it arises via clonal expan-
sion of crypt cells bearing loss-of-function mutations in APC or
gain-of-function CTNNB1 mutations. Such mutations result in
persistent activation of the Wnt pathway, a central regulator of
stem cell compartments and cell fate along the crypt–villus axis.
Aberrant Wnt signaling in CRC is characterized by localization of
β-catenin to the nucleus, where it interacts with various transcrip-
tion factor complexes, including TCF/LEF (4) and YAP/Tead (5),
and Rel/NFκB (6). These interactions drive growth, proliferation,
or stemness programs contributing to formation and progression
of adenomas. Subsequent mutations in oncogenes (e.g., KRAS,
BRAF) and/or tumor suppressors (e.g., SMAD4, TP53) then drive
transition of adenomatous polyps to overt adenocarcinomas and
subsequent metastatic disease (1, 2, 7, 8) (Figure 1).

The sequential acquisition of mutations within the adenoma-
carcinoma axis, coupled with classification of disease stage/grade
and histological type has provided an important paradigm to
understand the “classic form” of CRC (Table 1). However, it has
long been recognized that the disease is often associated with
considerable heterogeneity in tumor cell phenotype, therapeutic
responses, and prognoses (9–11). Indeed, comprehensive genetic
and gene expression analyses have revealed variability in the
genetic alterations and pathways that underlie CRC, leading to the

view that the disease comprises multiple types and subtypes, which
evolve through different routes (12–18). Underlying these classifi-
cations are concepts of clonal evolution, cancer stem cells (CSC),
and reversible epithelial–mesenchymal transitions (EMT), each
with the capacity to drive heterogeneity within CRC (6, 19–22).

EMT AND TUMOR CELL PLASTICITY DURING CRC
PROGRESSION
That tumor heterogeneity arises through selection and expan-
sion of different cancer cell clones bearing perturbations (e.g.,
mutations, epigenetic changes) conferring survival and prolifera-
tive fitness is widely accepted (1, 2, 8, 12). Heterogeneity can also
arise from plasticity in tumor cell behavior, via reversible phe-
notypic changes driven by micro-environmental, morphogenetic,
or therapeutic factors (21). These observations have in part been
linked to the cancer stem cell idea, according to which a small
but highly tumorigenic population of CSC having the potential to
form metastases regenerates itself and progeny exhibiting a cellular
hierarchy resembling normal tissue (6, 19–22).

An important source of plasticity in CRC and some other
solid cancers is the EMT, which together with its reverse process,
a mesenchymal–epithelial transition (MET), is essential for tis-
sue remodeling during embryogenesis and in some pathological
contexts (23, 24). Importantly, EMT–MET events also provide
a framework through which solid cancers can disseminate and
colonize distant sites (21, 25–31). During EMT, hallmarks of
differentiated epithelia such as apico-basal polarity and cell–cell
adhesions are replaced with mesenchymal traits, including rear-to-
front polarity, capacity for individual cell migration, and invasion
of basal lamina and blood vessels.

www.frontiersin.org February 2015 | Volume 5 | Article 13 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82863159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00013/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00013/abstract
http://www.frontiersin.org/people/u/186151
mailto:amardeep.dhillon@petermac.org
mailto:amardeep.dhillon@petermac.org
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive
http://loop.frontiersin.org/people/176837/overview


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pereira et al. Epithelial–mesenchymal plasticity in colorectal cancer

FIGURE 1 | Molecular phenotypes, genetic alterations, and major signaling pathways associated with CRC progression.

Table 1 | Classification of CRC on the basis of the occurrence of genetic lesions, genomic stability, and histopathology.

Genes

involved

Molecular defects Histopathology/molecular characteristics

APC

β-catein

p53

KRAS

SMAD4

TGFBR

PIK3CA

C-MYC

Point mutation, aneuploidy, polyploidy, LOH,

Activation of Wnt signaling pathway due to accumulated nuclear

β-catein

Deregulated TGFβ signaling,

Activation of PI3–PDK1 and RAF–MEK–ERK pathways

Disruption of cell cycle regulation promoting cell survival and

reduced apoptosis

Well differentiated tumors/MSS and CIN phenotype

Familial and sporadic CRC

Predominantly located in distal colon

No or low mucin production

Low tumor-lymphocyte reactivity

MLH1,2,6

PMS2

MSH3,

TGF-BRII

DNA single nucleotide mismatch repair defects

Alteration to micro-satellite repeat lengths

Accumulation of oncogenic mutations and tumor suppressor lose

Deregulated TGFβ signaling

Poor to moderately differentiated tumors/MSI phenotype

Familial and sporadic CRC

Predominantly located in distal colon

Mucinous Phenotype

Tumor-lymphocyte reactivity

Commonly located in right colon

Less aggressive/better prognosis

BRAF

MLH1

BRAF activating point mutations

Activation of RAF–MEK–ERK pathway

Methylation of MLH1 and loss of MLH1 expression that is

associated with mismatch repair defects

Serrated, poor to moderately differentiated tumors/CIMP

phenotype

Sporadic CRC

Defective mismatch repair

Commonly located in right colon

Poor prognosis

Detailed description of the characteristics used for these groupings can be found within the text and references therein.

In addition to providing a mechanism for tumor dissemination,
recent studies have identified a further pathological manifestation
of EMT – endowing cancer cells with stem-like potential (32, 33)

that appears critical for tumor initiation, metastasis, and relapse
in CRC (6, 34, 35). The coexistence of mesenchymal and stem-like
traits in cancer cells that have undergone EMT has led to the idea
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that they constitute “migrating CSC” from which metastases are
derived (21, 36). Such cells acquire the capacity to both dissem-
inate and successfully colonize new sites, where they are thought
to redifferentiate via an MET and regain the organization of cells
present in the primary tumor. This model thus provides a mecha-
nism to explain the observation that CRC metastases often retain
a similar degree of differentiation as the primary tumor.

Induction of EMT requires extensive reprograming of gene
expression in response to activation of various signaling path-
ways. Among the best studied are the Wnt, MAPK, TGFβ, and
NFκB pathways, which converge on one or more transcription
factors (TFs) driving EMT in the embryo, including members
of the zinc finger (SNAIL1, SNAIL2/SLUG, ZEB1, ZEB2/SIP1),
bHLH (TWIST1, TWIST2), forkhead (FOXC2), or homeobox
(Goosecoid, SIX1, PRRX1, PREP1) families (37–39). In CRC,
multiple TFs were reported as being aberrantly expressed based
on immunohistochemical and transcriptome studies, including
ZEB1, ZEB2/SIP1, SNAIL1, SNAIL2/SLUG TWIST, and FOXC2
(21, 40–48). Although these TFs typically function as repressors of
epithelial genes, and/or genes required for cell cycle progression,
they also activate transcription in some contexts, including that of
stemness-promoting genes and cell cycle inhibitors (21, 49, 50).

The effects of EMT-driven TF activation can be antagonized by
several species of micro-RNA (miRNA) that in addition to repress-
ing expression of TFs, are themselves repressed by these TFs. Such
reciprocal inhibition creates self-enforcing double-negative feed-
back loops that dictate the epithelial–mesenchymal balance. Two
such loops have been well documented to operate in colorectal and
other cancer cells – ZEB/miR-200 and SNAIL/mir-34 loops (51–
53). In addition to repressing EMT-TFs, the miRNAs also directly
target other genes involved in regulating EMT (e.g., cytoskele-
tal components, Wnt pathway components) and stemness (e.g.,
BMI1, KLF4, SOX2), underscoring their critical functions in regu-
lating cellular plasticity during cancer progression (26, 51, 54–57).
Notably, both miR-200 family members and miR-34 are induced
by the tumor suppressor p53 (58–60), whose induction of miR-
34 expression was found to reduce levels of several Wnt pathway
components, including LEF-1, β-catenin, WNT1, WNT3, LPR6,
and AXIN2 (60–62). Reduction in Axin2 via this mechanism was
also reported to promote nuclear accumulation of GSK3β, where
it can phosphorylate to destabilize SNAIL1 (63).

ASSOCIATION OF EMT WITH CRC PATHOLOGY
The majority of CRCs appear moderately differentiated, with
smaller subsets being well or poorly differentiated. The latter
cancers are characterized by highly irregular glandular structure,
aggressiveness, poor prognosis, and resistance to treatment. How-
ever, moderately differentiated tumors can also contain regions of
poor differentiation, typically observed at the invasive front (21,
27, 36). Often, these cancers exhibit budding phenotype, in which
individual or clusters of tumor cells detach from the tumor mass
and invade into the adjacent stroma. This feature is adversely prog-
nostic and linked with enhanced probability of metastasis to the
lymph nodes, liver, or lung (36, 64, 65).

Budding tumor cells are thought to have undergone an EMT-
like event, losing expression of epithelial differentiation markers
while gaining the capacity to express mesenchymal and stemness

markers (36, 66). In contrast to central regions of the tumor,
budding cells at the invasive front also typically strongly express
nuclear β-catenin, which is critical for induction of EMT programs
characterized by expression of ZEB1 (42) and altered basement
membrane components (67). This intra-tumoral heterogeneity
in β-catenin expression is likely to arise from a range of fac-
tors, including micro-environmental signals, altered cell–cell and
cell–matrix adhesion, and through cross-talk with other signaling
pathways such as the ERK module (27, 36, 68, 69).

While EMT–MET events provide a framework for how differ-
entiated CRCs may metastasize, a different model was proposed by
Brabletz to account for progression of poorly differentiated cancers
(21). Rather than exhibiting high plasticity, these tumors retain a
poorly differentiated mesenchymal phenotype that is driven pri-
marily by mutational events. Such cancers may have arisen prior
to differentiation of stem or progenitor cells in the crypt, or from
cells that have evolved from differentiated tumors but selected for
mutations that render them in a stable mesenchymal-like state.
A further mechanism through which selection may occur is as a
result of therapies, where the relapsing tumors often displaying a
mesenchymal, stem-like phenotype (21). Finally, it was suggested
that the highly aggressive nature of poorly differentiated tumors
may result form their propensity to metastasize through “parallel
progression” routes (70), in which tumors and metastasis develop
and progress concurrently.

ASSOCIATION OF EMT WITH CRC SUBTYPES
An important question is whether models of tumor cell plastic-
ity involving EMT–MET events and CSC can be incorporated into
current approaches for CRC subtyping. Collectively, this approach
may help better define the heterogeneity observed in CRC and
progress the development of targeted therapies.

CIN, MSS/MSI, CIMP SUBTYPING
Conventional approaches to classify colorectal tumors have cen-
tered primarily on molecular [chromosomal instability (CIN);
micro-satellite stability/instability (MSS/MSI); CpG island methy-
lator phenotype (CIMP)], and pathological (TNM grade, degree
of differentiation, immunohistological markers) characteristics of
the tumor (9, 71) (Table 1). These classifications recognize the var-
ious forms of global genomic and epigenetic alterations that occur
during tumorigenesis (Table 1). CIN is the most common form
of genomic instability in CRC that underlies the sequential dereg-
ulation of classical tumor suppressor and oncogenes including
APC, KRAS, and TP53. In the MSI classification, genomic insta-
bility arises from the mutation or methylation-mediated silencing
of genes required for DNA mismatch repair (hMLH1, hMSH2,
hMSH6, and hPMS2) and based on the level of MSI, CRCs can
be classified as MSI-high (MSI-H), MSI-low, or MSS. MSI tumors
have a lower frequency of mutations in KRAS and TP53 com-
pared to MSS cancers, and a higher frequency of mutations in
genes harboring repetitive elements in their coding sequence such
as TGFBR2 (72). Recent work indicates that as a result of this loss
of TGFβRII function, MSI tumor cells lines fail to undergo EMT
in response to TGFβ, which may contribute to their better progno-
sis (73). In the CIMP classification, tumors harbor aberrant DNA
methylation patterns that result in the global epigenetic silencing
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of genes. Each of these pathways serves as an important classifier
of disease progression and response to therapy (Table 1).

INTRINSIC EMT-ASSOCIATED CRC SUBTYPES
While the CIN, MSI, and CIMP are important disease sub-
classifiers, it is now well-established that tumors defined by these
groupings can be additionally stratified into molecularly defined
subtypes. Over the past decade, genomic and expression analy-
ses involving large patient cohorts have provided insight into
the diversity within CRC. Combined with existing mutational,
clinical, and pathological classifiers, these studies have identified
several distinct molecularly defined CRC subtypes (e.g., stem-
like, mesenchymal, immune, and epithelial/differentiated), each
driven by unique and/or overlapping biological pathways and
exhibiting differing prognostic and/or therapeutic response (11,
13, 15–17, 41, 74, 75) (Figure 2). A unifying feature from each of
these studies was the identification of a CRC subtype significantly
enriched for genes associated with a poorly differentiated, mes-
enchymal/invasive phenotype, and that were often co-enriched
with genes indicative of a stem-like state (Figure 2).

Loboda et al. (41) defined two subsets, epithelial and mes-
enchymal, where the latter was linked to TGFβ signaling and low
expression levels of anti-EMT miRNAs. Examination of the het-
erogeneity within CRC gene expression profiles also revealed a

strong association between EMT gene signatures and subtyping
(13). Marisa et al. (17) identified six molecular subtypes (C1–C6)
from stage I–IV CRC patients, with two subtypes (C4 and C6)
showing a distinct down-regulation of proliferative and upregula-
tion of EMT/motility pathways. Subtype C4 was also characterized
by a stem cell-like phenotype. Furthermore, both subtypes were
distinct with regard to harboring a serrated tumor signature. Roep-
man et al. (74) identified three subtypes (A–C) within stages II and
III CRC, with C-type tumors featuring an EMT phenotype and low
proliferative activity. Two additional studies (15, 16) examined
large patient-derived CRC gene expression datasets and defined
CRC subtypes characterized by a mesenchymal gene signature. In
the study by Sadanandam et al. (16), six subtypes were described
on the basis of gene expression signatures associated with their
cell of origin within the colon crypt. In this context, a stem cell
subgroup was associated with expression of mesenchymal genes.
De Sousa et al. (15) described three CRC subtypes (CCS1–3) and
in the CCS3 grouping EMT and genes involved with migration,
invasion, and TGFβ signaling were elevated. Subsequent analy-
sis suggests that the EMT subgroups identified in both studies
show strong overlap (76). Importantly, several of the above stud-
ies demonstrated that EMT signature defined tumors consistently
display a worse prognosis and were least sensitive to conven-
tional chemotherapy regimes. Thus, a mesenchymal/invasive poor

FIGURE 2 | Overview of suggested contemporary subtype classification
of CRC. Genomic and expression analyses involving large patient cohorts
(highlighted in red) combined with existing mutational, clinical, and
pathological classifiers (highlighted in blue) have identified several distinct
molecularly defined CRC subtypes as indicated by the various studies. Each
of these subtypes is driven by unique and/or overlapping signaling pathways

(see Figure 1) and exhibit different prognostic and therapeutic responses. A
unifying feature is a CRC subtype enriched for genes associated with a poorly
differentiated, mesenchymal/invasive phenotype, and often co-enriched for
genes indicative of a stem-like state (highlighted in green). A more detailed
description of these subtypes and their clinical/therapeutic response can be
found within the text (13, 15–17, 41, 74).
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differentiation signature is a defining feature of CRC subtyping
and clinical response.

An important issue to emerge from the above publications
is the extent to which activation of mesenchymal and stem-like
programs are linked in CRC subtypes. Consistent with the role
that Wnt signaling plays in regulating the fate of stem cells at
the base of the crypt (8), Sadanandam et al. (16) found ele-
vated activation of this pathway in stem-like tumors and cell lines,
which co-expressed markers of intestinal and colorectal stem cells
and EMT genes (34). However, whether Wnt signaling alone is
sufficient to drive stem-like/mesenchymal programs expression
requires further clarification as Zhu et al. (75) suggest that the
pathway is not only active in mesenchymal-type tumors but also
in those exhibiting differentiated or proliferative expression sig-
natures. Instead, they found that the context of Wnt activation
differed between these cancers, with migratory/EMT subsets also
enriched for VEGF signaling, whereas Wnt and Notch were active
in differentiated/epithelial-type tumors. Only the proliferative
group (enriched for genes involved in early colon development)
showed Wnt activation alone. The notion that VEGF signaling
may be important for activating EMT/migration programs in the
context of Wnt signaling is also supported by the finding that genes
associated with sprouting angiogenesis, a process regulated by the
VEGF pathway were co-enriched in mesenchymal-type tumors
identified by Marisa et al. (17).

A second pathway that appears to be critical for activation of
EMT programs in mesenchymal tumors is the TGFβ pathway (77,
78). Transcriptional outputs of this pathway were significantly
enriched in several studies and associated with the mesenchymal
phenotype (15, 17, 41, 74). Interestingly, in one study (15), TGFβ

and EMT programs appeared to be active in the absence of Wnt
transcriptional signatures or activation of stem cell programs. One
implication of this observation is that Wnt signaling is required
for stemness programs but not necessarily required for EMT in
poorly differentiated cancers. Interestingly, the CCS3 group (15)
enriched for sessile-serrated adenoma (SSA) tumors comprised
both differentiated and poorly differentiated tumors, suggesting
that further stratification based on differentiation status may be
possible.

SESSILE-SERRATED ADENOMA PATHWAY
A distinct feature of CRC that has emerged from recent studies
is that groups harboring an EMT gene expression signature may
display a pathology related to serrated adenoma (13, 15, 17, 76). As
such, the CRC subtype displaying a serrated pathology provides
an important context to examine the role of EMT events in driving
CRC progression.

In the classical adenoma-carcinoma sequence, tumors are often
located in the distal colon or rectum and genetically are defined
by CIN. In contrast, the serrated adenoma represents an alterna-
tive pathway to tumorigenesis. Typically, the serrated adenoma
is located in the proximal or right colon and is characterized by
the sawtooth appearance of the crypt epithelium (79). Tradition-
ally viewed to have limited potential to progress to a neoplas-
tic lesion, it is now established that precursor “serrated polyp”
can be subdivided into hyperplastic polyp (HP), SSA, and tra-
ditional serrated adenoma (TSA) with both the SSA and TSA

having significant potential to develop into neoplastic lesions
(80, 81).

It has been suggested that up to 30–35% of CRCs evolve
through a serrated pathway (82–84). In addition to their distinct
morphology, serrated CRCs are also distinct in the genetic back-
ground that drives their development. For example, serrated colon
tumors predominately display mutations in BRAF and KRAS
rather than APC. With respect to the MSI and CIN classifica-
tion, serrated tumors usually lack CIN but are often MSI-H and
CIMP-H (71, 85, 86). Thus, serrated tumors have been classified in
three subtypes: CIMP-low/MSS/MSI-low/KRAS mutant; CIMP-
H/MSI-H/BRAF mutant; CIMP-low/MSS/MSI-low/BRAF mutant
(9, 87). In the context of EMT-driven cellular plasticity, it is impor-
tant to note that clinically CIMP-low/MSS/MSI-low/BRAF mutant
tumors confer a poor prognosis and display high tumor budding.
This observation is consistent with the increased EMT potential
associated with wild-type TGFβRII and active TGFβ signaling
and MSI-low status. In contrast CIMP-H/MSI-H/BRAF mutant
tumors have a more favorable prognosis (86, 88, 89). Here, EMT
potential is reduced due to the increased incidence of mutated
TGFβRII (72, 73).

CLINICAL IMPLICATIONS AND CONCLUDING COMMENTS
The CRC classifications outlined above may provide new oppor-
tunities for the more targeted therapeutic/clinical management
of CRC disease progression. This possibility is illustrated in the
studies by Sadanandam et al. (16), De Sousa et al. (15), and Roep-
man et al. (74). Each of these studies revealed subtype-specific
responses to therapy that could potentially contribute to more
effective manage of disease. In case of the study by De Sousa et al.,
the CCS3-serrated subtype was reported to be resistant to cetux-
imab therapy, suggesting that new targeted therapies would be
required for this subtype (15). The identification of CCS3 specific
elevated TGFβ signaling suggested that this pathway may be an
avenue for targeted therapy (15). The six CRC subtypes identified
in the study by Sadanandam et al. (16) also displayed subtype-
specific responses to therapy. Here, three subtypes, CR-TA, CS-TA,
and Goblet were suggested to not respond to FOLFIRI chemother-
apy treatment and patients with this form of disease may better
spared this therapy in the context of local disease. However, in the
context of metastatic disease, the CR-TA and CS-TA subtypes were
suggested to respond to cetuximab therapy (16). In contrast, stem
cell-like-subtypes and inflammatory subtypes may respond best to
FOLFIRI treatment. The specific treatment of a stem cell-like sub-
type is an important consideration given that such populations
of cells are key drivers of the moderately differentiated pheno-
type that are seen in most CRCs and which due to their stem-like
behavior (e.g., low proliferative index) have thus far proved highly
resilient to current therapies. Collectively, these studies strongly
support the idea that distinct, clinically relevant CRC subtypes
can be used as a guide for subtype-specific therapy.

Tumor heterogeneity has posed a major obstacle for the suc-
cessful treatment of metastatic forms of CRC and several other
common cancers. The studies highlighted here have provided
a substantial insight into CRC heterogeneity. The identification
of various degrees of epithelial–mesenchymal plasticity, acting in
concert with clonal evolution and the concept of CSC, have helped
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dissect the heterogeneity underlying CRC and resulted in a more
detailed classification of CRC into distinct molecularly defined
subtypes. These classifications will provide new opportunities for
understanding CRC and the key oncogenic pathways and mech-
anisms required for disease progression. This new information
may also be invaluable for re-focusing basic and translational/pre-
clinical studies on identifying and targeting key pathways required
for the malignant growth of the most aggressive subtypes.
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