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Mantonakis et al. (2009) suggested the
pairwise-competition model (PCM) of
preference construction. The basic idea
is that humans form preferences among
choice objects (e.g., types of wines)
sequentially, such that the preferred object
is the ultimate winner of a sequence of
pairwise competitions: The object sampled
first is compared to the second, the winner
of this competition is then compared to
the third object, resulting in a winner that
is compared to the fourth, and so on. For a
set of m objects, this recursive process ter-
minates after m-1 pairwise competitions
once the final object has been compared
against the previous favorite. Canic and
Pachur (2014) recently proposed a for-
mal specification and elaboration of the
PCM. Moreover, using computer simu-
lations, they showed how variations in
the model’s parameters affect primacy and
recency effects in sequential choice and
how the model can account for various
patterns of serial position effects docu-
mented in the literature.

We appreciate the contributions of
Mantonakis and collaborators as well as
Canic and Pachur. Clearly, innovative the-
oretical ideas and their formal clarification
are key elements of progress in science.
However, we argue that making use of
the full spectrum of formal modeling
advantages necessarily involves fitting the
model to empirical data. By narrowing
down model-based analyses to computer
simulations—as Canic and Pachur (2014)
did—important questions remain unan-
swered and misleading conclusions cannot
be ruled out.

First, simulating a model and show-
ing that it predicts serial-position effects

similar to those found in empirical data
does not imply that the model fits these
data. A successful model should account
for the entire distribution of observed
data, not just for selected qualitative
aspects such as primacy and recency
effects. Formal goodness-of-fit tests
provide the necessary information but
simulations do not.

Second, if there are several nested
versions of a model as in case of the
PCM, simulations cannot tell us which
model version provides the best account
of the data taking model complexity into
account (as influenced, among others,
by the number of estimated parameters).
The model fitting toolbox, in contrast,
includes appropriate model selection mea-
sures, enabling us to identify the most par-
simonious model version that is consistent
with the data.

Third, model fitting involves parame-
ter estimation, that is, identification of the
parameter values that best account for an
existing set of data. It also provides sta-
tistical tests for parameters, enabling sta-
tistically sound evaluations of parameter
differences between groups or conditions.
Simulations, in contrast, do not provide
such an elaborated framework. Because
they ignore sampling variability in empir-
ical data, they may mistakenly suggest
parameter differences when in fact there
are none.

To illustrate the advantages of model
fitting, we apply Canic and Pachur’s (2014)
formalization of the PCM to the data of
Mantonakis and collaborators1.

1 We are grateful to Antonia Mantonakis for providing
the raw frequencies.

THE PCM AS A MULTINOMIAL
PROCESSING TREE MODEL
Fortunately, fitting the PCM to empiri-
cal data is straightforward. Inspection of
the model equations reveals that the PCM
belongs to the class of multinomial pro-
cessing tree (MPT) models (Batchelder
and Riefer, 1999), a model family with a
well-developed statistical theory (Hu and
Batchelder, 1994) that has already been
implemented in easy-to-use software tools
(Moshagen, 2010; Singmann and Kellen,
2013). MPT models are models for cate-
gorical data, such as frequencies fm,j of pre-
ferring the j-s object in the sequence, j = 1,
. . . , m, given the total number of objects is
m. They assume a joint multinomial dis-
tribution of the frequencies with underly-
ing category probabilities that correspond
to sums of products of S model parame-
ters θs and their complements (1-θs), s =
1, . . . , S, each being an element of the
unit interval [0, 1]. The basic MPT model
architecture has been found useful to rep-
resent sequences of discrete cognitive pro-
cesses underlying task performance (for
a review, see Erdfelder et al., 2009) and,
more generally, relations between latent
psychological states and categorical test
results (e.g., Botella et al., 2013; Erdfelder
and Moshagen, 2013).

To formalize the PCM within the MPT
framework, we first consider the simplest
special case of choosing among m = 2
objects. According to the PCM, humans
show “choice inertia” and stick to their
previous favorite (i.e., the first object) with
probability π, thus avoiding any compari-
son. With the complementary probability
(1-π), they enter the competition state,
in which the second object wins with
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probability p(new) (determined by Luce’s
choice rule) and, by implication, the first
one with probability 1-p(new). Thus, pref-
erence for the first object can result from
choice inertia (probability π) or from the
first object winning against the second
when choice inertia is absent (probability
(1-π)(1-p(new))). The overall probability
of choosing the first object is the sum of
these probabilities:

p(object 1) =
π + (1 − π) · (

1 − p(new)
)
. (1)

In contrast, preference for the second
object can result from a single sequence
only:

p(object 2) = (1 − π) · p(new). (2)

These equations match the basic MPT
structure. Generalization to choice among
three or more objects is straightforward
because this only involves recursive appli-
cations of the processes already described
(although not necessarily with the same
probabilities). The corresponding model
specification file required for analyzing
the data of Mantonakis and collaborators
using the multiTree program (Moshagen,
2010) can be requested from the first
author. It provides for a 2-factorial design
(factor A: Number of wine samples in the
choice set: 2–5; factor B: Knowledge about
wines: high vs. low) as implemented by
Mantonakis et al. (2009).

FITTING THE PCM TO THE DATA OF
MANTONAKIS ET AL. (2009)
Mantonakis et al. (2009) assigned their 142
participants (69 people with high and 73
people with low knowledge about wines)
randomly to 4 groups receiving choice sets
consisting of 2–5 wine samples, respec-
tively. Following the tasting sequence, each
participant indicated her or his preferred
wine in the set. Unbeknownst to the par-
ticipants, the same wine was actually used
in each sample. Thus, it seems reasonable
to constrain the probabilities p(new)j, j =
2, . . . , 5, that the j-s wine sample wins the
competition against the current favorite
to p(new)j = 0.5 for all participants and
choice sets j. Our first version of the model,
PCM(1), is based on this assumption only.
Consequently, all choice inertia parame-
ters πj, j = 2, . . . , 5, are left unconstrained

for both high and low-knowledge partic-
ipants. This model accounts for 2 · (1 +
2 + 3 + 4) = 20 independent choice prob-
abilities across the 2 · 4 = 8 groups by
8 choice inertia parameters and is iden-
tifiable. It fits the observed choice fre-
quencies for wine experts, G2(6) = 5.63,
p = 0.47, non-experts, G2(6) = 3.97, p =
0.68, and for both samples analyzed con-
jointly, G2(12) = 9.60, p = 0.65.

Figure 1A displays the maximum
likelihood (ML) estimates of the πj

along with the 95% confidence inter-
vals. Descriptively, there appears to be an
inverted u-shaped trend for experts and a
monotonically increasing trend for non-
experts with increasing sequence lengths.
However, an equality constraint on the 4
inertia parameters (i.e., π2 = π3 = π4 =
π5) does not decrease the fit significantly,
neither for experts, �G2(3) = 7.07, p =
0.07, nor for non-experts, �G2(3) = 3.93,
p = 0.27, nor for both groups analyzed
conjointly, �G2(6) = 11.00, p = 0.09.
The second model version, PCM(2),
includes both constraints and shows
an excellent overall fit, G2(18) = 20.61,
p = 0.30. Surprisingly, the choice inertia
estimate is only slightly lower for high-
knowledge compared to low-knowledge
participants (0.485 vs. 0.532, respectively),
a difference that is far from being sig-
nificant, �G2(1) = 0.21, p = 0.64. This
suggests an even more restrictive model
version PCM(3) with all eight iner-
tia parameters equated. With a single
remaining choice inertia estimate for both
groups (0.510, shown as a constant line in
Figure 1A), PCM(3) provides an excellent
overall fit, G2(19) = 20.82, p = 0.35.

Given that all three models fit the data
nicely it must be expected that the model
with the fewest free parameters performs
best in terms of model selection criteria
that penalize model complexity. Because
standard methods such as the Akaike and
the Bayesian information criterion (AIC
and BIC) focus on the number of free
parameters only and ignore differences in
the functional form of the models, we
used the more sophisticated Fisher infor-
mation approximation (FIA; Wu et al.,
2010). FIA can safely be applied in the
present case because the Mantonakis sam-
ple exceeds Heck’s lower bound for FIA
applications (i.e., N = 142 > N ′ = 16; see
Heck et al., 2014). The FIA values for the

models PCM(1), PCM(2), and PCM(3)
were 166.4, 165.4, and 163.8, respectively,
showing that PCM(3) performs best. In
order to better judge the evidence for each
of the three models, we computed the rel-
ative weights wFIA (i.e., estimates of the
probabilities of each model being the best
one in the set). The FIA weights 0.056,
0.158, and 0.786 for the models PCM(1),
PCM(2), and PCM(3) highlight that a sin-
gle inertia parameter suffices to account
for the data.

In sum, both goodness-of-fit tests
and model selection criteria suggest that
PCM(3) is the best model, despite the
fact that this model assumes neither serial
position effects for πj and p(new)j nor dif-
ferences in parameters between high- vs.
low-knowledge participants. As illustrated
in Figures 1B,C, this model accounts for
the primacy and recency effects in the
preference curves of high and low knowl-
edge participants, respectively, although
it includes a single inertia parameter
only.

DISCUSSION
What do we learn from this model fit-
ting exercise? First, we can now say that
the PCM indeed fits the entire distribu-
tion of preferential choice data obtained
by Mantonakis et al. (2009), not just
the primacy and recency effects discussed
by Canic and Pachur (2014). Somewhat
surprisingly, however, the model requires
much less parameters to account for order
effects in preferential choice data than
hypothesized by Mantonakis et al. (2009)
and proposed by Canic and Pachur (2014)
based on their simulation results. As
shown here, there is no evidence for signif-
icant differences in choice inertia, neither
across the course of the choice sequence
nor between high- and low-knowledge
participants. Rather, both groups of par-
ticipants exhibit choice inertia roughly
50% of the time. Of course, we cannot
rule out that this picture would change
for groups with larger knowledge differ-
ences than in the Mantonakis sample.
Moreover, the moderate sample size may
play a role: Given a significance level of
α = 0.05 and the current N = 142, the
power of the G2(1) goodness-of-fit test is
appropriate for medium deviations from
the null hypothesis (i.e., w = 0.3; 1-β =
0.95) but not for small deviations (i.e.,
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 Parameter estimates for PCM(1) and PCM(3)

 Observed (solid line) and expected (dashed line) frequencies for high-knowledge participants on PCM(3)

 Observed (solid line) and expected (dashed line) frequencies for low-knowledge participants based on PCM(3)
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FIGURE 1 | (A) Estimates of the choice inertia parameters of models

PCM(1) and PCM(3). Vertical lines indicate 95% confidence intervals for
the eight parameters of PCM(1). The gray area illustrates the 95%
confidence interval of the single PCM(3) choice inertia parameter. (B,C)

Observed (solid lines) and expected frequencies (dashed lines) for the
1-parameter PCM(3) model applied to the choice frequencies of
Mantonakis et al.’s (2009) high vs. low knowledge participants,
respectively.

w = 0.1; 1-β = 0.22). A sample more than
five times larger than the Mantonakis sam-
ple (specifically, N = 785) would be neces-
sary to achieve a power of 0.80 in the latter
case (Faul et al., 2009). Given the present
data, however, nothing more can be said
than that a single free parameter suffices to
fit them well.

Future research should conduct
stronger tests of the PCM than presently
possible, both by using larger samples

and by applying the model not just to the
final preferences but to the entire vector of
(preliminary) preferences during the tast-
ing sequence. Unfortunately, although it is
straightforward to generalize the PCM
accordingly, appropriate process data
for evaluating such a generalized PCM
are currently unavailable. In addition, it
would be desirable to generalize the PCM
to a multilevel model that captures indi-
vidual variability in parameters. Again,

statistical frameworks for such a general-
ization are available (e.g., Klauer, 2006,
2010) but appropriate data (including
several preference judgments per par-
ticipant) are still lacking. Last but not
least, one might think about comparing
the PCM to alternative models of order
effects in preference data, for example,
models based on signal-detection the-
ory for forced-choice judgments (e.g.,
DeCarlo, 2012).
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To conclude, given the presently avail-
able data of Mantonakis et al. (2009),
the up-to-date model fitting procedures
that we relied on do not confirm conjec-
tures about sequential trends or knowl-
edge effects in choice inertia parameters
as suggested by Canic and Pachur’s sim-
ulation results. However, they do support
the conclusion that Canic and Pachur’s
formal implementation of the PCM is an
empirically successful model of preference
formation.
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