
September 2016 | Volume 7 | Article 3721

Methods
published: 21 September 2016

doi: 10.3389/fimmu.2016.00372

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Ignacio Sanz,  

University of Rochester, USA

Reviewed by: 
Gregory C. Ippolito,  

University of Texas at Austin, USA  
Felix Breden,  

Simon Fraser University, Canada

*Correspondence:
Chaim A. Schramm  

chaim.schramm@nih.gov;  
Peter D. Kwong  

pdkwong@nih.gov;  
Lawrence Shapiro  

shapiro@convex.hhmi.columbia.edu

†Chaim A. Schramm, Zizhang Sheng, 
and Zhenhai Zhang  
contributed equally.

‡Present address: 
Zhenhai Zhang,  

National Clinical Research Center for 
Kidney Disease, Ministry of 

Education, Nanfang Hospital, 
Southern Medical University, 

Guangzhou, Guangdong, China; 
Key Laboratory of Organ  

Failure Research, Ministry of 
Education, Nanfang Hospital, 
Southern Medical University, 

Guangzhou, Guangdong, China

Specialty section: 
This article was submitted  

to B Cell Biology,  
a section of the journal  

Frontiers in Immunology

Received: 08 June 2016
Accepted: 07 September 2016
Published: 21 September 2016

Citation: 
Schramm CA, Sheng Z, Zhang Z, 

Mascola JR, Kwong PD and 
Shapiro L (2016) SONAR:  

A High-Throughput Pipeline for  
Inferring Antibody Ontogenies from 

Longitudinal Sequencing  
of B Cell Transcripts.  

Front. Immunol. 7:372.  
doi: 10.3389/fimmu.2016.00372

soNAR: A high-throughput Pipeline 
for Inferring Antibody ontogenies 
from Longitudinal sequencing of  
B Cell transcripts
Chaim A. Schramm1,2,3*†, Zizhang Sheng1,2†, Zhenhai Zhang1,2†‡, John R. Mascola3,  
Peter D. Kwong1,3* and Lawrence Shapiro1,2,3*

1 Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA, 2 Department of Systems 
Biology, Columbia University, New York, NY, USA, 3 Vaccine Research Center, National Institute of Allergy and Infectious 
Diseases, National Institutes of Health, Bethesda, MD, USA

The rapid advance of massively parallel or next-generation sequencing technologies has 
made possible the characterization of B cell receptor repertoires in ever greater detail, 
and these developments have triggered a proliferation of software tools for processing 
and annotating these data. Of especial interest, however, is the capability to track the 
development of specific antibody lineages across time, which remains beyond the 
scope of most current programs. We have previously reported on the use of techniques 
such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related 
to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of 
Antibody Repertoires (SONAR), capable of automating both general repertoire analy-
sis and specialized techniques for investigating specific lineages. SONAR annotates 
next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks 
lineage development across multiple time points. SONAR also generates figures, such 
as identity–divergence plots and longitudinal phylogenetic “birthday” trees, and provides 
interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded 
as a ready-to-run Docker image or manually installed on a local machine. In the latter 
case, it can also be configured to take advantage of a high-performance computing 
cluster for the most computationally intensive steps, if available. In summary, this soft-
ware provides a useful new tool for the processing of large next-generation sequencing 
datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be 
found at https://github.com/scharch/SONAR, and the Docker image can be obtained 
from https://hub.docker.com/r/scharch/sonar/.

Keywords: antibody repertoire, antibody lineage, antibody maturation, B cell ontogeny, longitudinal analysis, 
next-generation sequencing

INtRodUCtIoN

Antibodies, the soluble form of B cell receptors (BCRs), play a critical role in adaptive immunity. 
Approximately 50 million naive B cells are generated via V(D)J recombination in the bone marrow 
each day. Due to the combinatorial possibilities of recombination and the inclusion of non-templated 
“N” and “P” nucleotides, each naive B cell generally expresses a unique BCR (1). If a naive B cell 
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encounters an antigen that can be bound by its receptor and is 
stimulated by a cognate T cell, it will begin proliferating. As B cells 
proliferate, they express activation-induced cytidine deaminase, 
which causes the rapid accumulation of somatic hypermutation 
in the BCR gene (2). Daughter cells descended from the same 
naive B cell form a B cell lineage. The typical human B cell rep-
ertoire has been estimated to contain ~30,000 highly expanded 
IgM, IgG, and IgA lineages as well as ~5 million low-expansion 
IgM lineages at any given time (3).

The mutated BCRs expressed by the cells of a B cell lineage 
are selected for binding to antigen. In this way, the adaptive 
immune system can produce antibodies capable of binding to 
and protecting against nearly any invading pathogen. Most effec-
tive vaccines work by eliciting neutralizing antibodies (4), and 
many recombinant antibodies are now being used as therapeutics 
(5). In addition, B cell dysfunction may result in autoimmune 
diseases, such as systemic lupus erythematosus (6), and various 
B cell lymphomas (7, 8), among others. Understanding each of 
these B cell-related diseases requires knowledge of the proper-
ties and dynamics of natural antibody repertoires and how these 
properties change in response to factors such as age, vaccination, 
and disease.

A particularly important area of research is the generation 
and development (ontogeny) of individual B cell lineages and 
ontogeny-based vaccine design (9). These studies can reveal not 
only the mechanisms of modulating antibody-affinity matura-
tion and neutralization breadth development (2, 10–12) but 
also help to find related antibodies that are more suitable for 
use as therapeutics (13–15). However, several obstacles must be 
overcome to define the history and maturation of a single lineage. 
First, out of a total repertoire of millions of antibody lineages  
(3, 16), even a highly expanded lineage may constitute at most 
only up to 0.1% of the overall B cell population (16). Thus, careful 
selection procedures and/or extensive sampling are required in 
order to gain sufficient representation. The rapid development of 
next-generation sequencing technology (17–19) has ameliorated 
the first of these problems. It is now possible to obtain millions of 
reads quickly and cheaply, making it possible to sample the anti-
body repertoire at great depth. To help manage and process these 
data, a wealth of software tools have been introduced, most notably 
IMGT-vQuest (20), JoinSolver (21, 22), and IgBlast (23), as well as 
more recent tools such as VDJSeq-Solver (24), ImmunediveRsity 
(25), IMonitor (26), CloAnalyst (27, 28), and partis (29).

Even with adequate sampling, it can be difficult to determine 
which antibodies are members of the same B cell lineage, as there 
will generally be multiple lineages which share the same V and J 
gene. The recombination region – including 5′ and 3′ excisions, 
N and P added nucleotides, and (for heavy chains) the choice 
of D gene – is generally regarded as a definitive signature of 
membership in a single B cell lineage [e.g., Ref. (3, 25, 30–32)]. 
However, such signatures can be obscured by sequencing error 
and somatic hypermutation (12, 33), unless patterns of mutations 
across the entire variable region are taken into account (34).1 
The  light chains of a lineage are even more difficult to assess, 

1Ralph DK, Matsen FA. Likelihood-Based Inference of B-Cell Clonal Families. (2016). 
in press. Available from: https://arxiv.org/abs/1603.08127 

as they do not contain a D gene. A somewhat simpler problem 
than de novo or “unseeded” lineage identification is finding only 
those transcripts which are in the same lineage as a known “seed” 
antibody sequence, such as an antibody identified by cell sort-
ing or culture. We have previously reported several methods for 
addressing this question, including identity–divergence plots (35, 
36), inter- and intra donor phylogenetic analysis (11, 12, 35), and 
CDR3 clustering (12, 35).

Once a group of transcripts in a lineage have been identified, 
phylogenetic analysis can be used to build a tree showing how the 
lineage developed and infer the sequence of unobserved ancestral 
sequences. While a few tools are available for this task (27, 37, 38), 
they do not distinguish transcripts from different time points or 
allow direct and explicit analysis of how a lineage evolves over 
time. Longitudinal information can be extremely important, 
however, for indicating whether a lineage is static or continuing to 
mature (12) and providing the ability to trace co-evolution with a 
viral pathogen (10, 11, 39, 40).

Here, we present the Software for the Ontogenic aNalysis 
of Antibody Repertoires (SONAR), an integrated pipeline for 
performing all of these types of analyses in a single environment. 
SONAR focuses on the analysis of longitudinal data to understand 
the development of a single antibody lineage over time. Early ver-
sions of this pipeline were used to successfully trace the develop-
ment of broadly neutralizing antibodies against HIV-1 such as 
CAP256-VRC26 (11, 39, 41) and VRC01 (12); it has now been 
extensively overhauled for efficiency and readability, and many 
new features have been added. Here, we release SONAR as open 
software under the GNU General Public License. SONAR source 
code is available from GitHub or as a platform-independent 
Docker image with all required dependencies already installed.

MAteRIALs ANd Methods

Computer hardware and software 
Requirements
The SONAR pipeline can be run on any operation system (OS) 
using the Docker image found at https://hub.docker.com/r/
scharch/sonar/. Local installation is available for Unix-based 
operating systems and requires Python 2.7 with the BioPython 
package (42); Perl 5 or higher with the BioPerl module (43); R 
with the ggplot2, grid, and MASS libraries; and BLAST+ (44). 
For full functionality, the following programs are also required: 
FASTX-Toolkit,2 USEARCH v8 (45), MUSCLE v3.8 (46), 
DNAML (47), BEAST2 (48), the ete2 Python package (49), and 
docopt for Python and R.3

License and distribution
Software for the Ontogenic aNalysis of Antibody Repertoires is 
made available under the GNU General Public License, version 3. 
Permission is granted to modify and redistribute SONAR in any 
fashion so long as the original copyright notice remains intact and 
any changes are clearly marked. Source code can be downloaded 
from https://github.com/scharch/SONAR.

2 http://hannonlab.cshl.edu/fastx_toolkit/ 
3 www.docopt.org 
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FIgURe 1 | overview of soNAR workflow. Green represents input data, 
blue indicates analysis steps, and red denotes graphical output.
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Reference germline gene sequences
Reference human germline gene sequences were downloaded 
from the IMGT database (release 201631-4, August 4, 2016). 
Alleles marked by IMGT as “ORF” or “P” are excluded from 
the default databases; however, files with all IMGT alleles are 
included, as well.

sample deep-sequencing data
The examples shown here make use of previously published 454 
data from donor CAP256 (11) and can be downloaded from 
the NCBI Sequence Reads Archive under accession number 
SRP034555.

ResULts

overview of soNAR
To run SONAR locally, download the source code from GitHub 
and run the setup.sh bash script. This script will ask for the 
installation paths of needed accessory programs and make 
this information available to the main SONAR programs. The  
setup.sh script also allows SONAR to be set up to use a Grid 
Engine-managed computing cluster, enabling parallel processing 
of large datasets.

The setup procedure only needs to be run the first time that 
SONAR is downloaded; updates to the source code can be down-
loaded without overwriting user-specific data. Alternatively, a 
ready-to-use Docker image can be obtained from Docker hub 
and run using the command:

docker run -i -t -v /path/to/local/project:/
project scharch/sonar

where <project> is the name of project with data to be analyzed, 
and the path indicates its location on the local disk.

Because many different sequencing protocols are used to gen-
erate antibody repertoire data, SONAR expects transcripts that 
have already been preprocessed, if necessary. This can include 
separating different experiments based on barcodes and/or col-
lapsing redundant transcripts using molecular ID tags. SONAR 
does offer a script to merge paired-end reads from the Illumina 
MiSeq platform and to remove transcripts with the expected 
number of errors above a chosen threshold using USEARCH (45), 
but other forms of quality control must be performed manually 
before running the SONAR pipeline.

Software for the Ontogenic aNalysis of Antibody Repertoires 
proceeds in three conceptual steps (Figure 1). First, it annotates 
the bulk transcripts using BLAST+ (44), which produces a 
picture of the overall repertoire sampled by a single experiment. 
Second, SONAR attempts to classify transcripts into distinct 
lineages, using either seeded or unseeded techniques. Finally, 
SONAR combines related transcripts from multiple time points 
or experiments to conduct an ontogenic analysis.

All SONAR scripts can be called with a -h or -help option to 
print detailed documentation and usage options at the command 
line. This documentation will also typically be produced if a script 
is called with insufficient or incorrectly formatted options.

Module 1: Annotation
This module characterizes the overall repertoire captured by 
sequencing. To do so, the germline V(D)J gene of each tran-
script is assigned using BLAST+ with optimized parameters. 
Because IgBlast was not available as a stand-alone program 
that could be run locally when we began building SONAR, we 
developed separate scripts to find the V and J genes and assign 
the boundaries of CDR3 using the alignment boundaries output 
by BLAST. While a blunt tool, such as BLAST, cannot resolve 
uncertainty in the assignment of the exact allele of a particular 
germline gene used in recombination (29), SONAR is designed 
primarily for use with highly mutated neutralizing antibody 
sequences, for which a definitive assignment is often not possi-
ble. SONAR does report the top allele found by BLAST but only 
uses the gene for all phylogenetic analyses. In addition, the exact 
alleles carried can vary widely among different donors (50), and 
this information is typically not available. Similarly, SONAR 
currently makes no attempt to assign the exact boundaries of 
recombination, as this information is often obscured for highly 
mutated antibodies (29). In addition, the IMGT databases 
included in the distribution contain some alleles with identi-
cal sequences but multiple designators (e.g., IGHV3-30*18 
and IGHV3-30-5*01 or IGKV1-12*02 and IGKV1D-12*02), 
which cannot be distinguished by BLAST, and SONAR shares 
this limitation. The output from this module includes a master 
table with the disposition of each input transcript and summary 
statistics for gene usage. This information can be passed to the 
plotting module to create figures describing the repertoire 
(Figure 2).

1.0-MiSeq_assembly.pl
This optional script merges paired-end reads from Illumina 
MiSeq (or HiSeq) and removes reads that cannot be merged or 
are of low quality. Trimming is done via the FastX Toolkit, and 
merging is done with USEARCH. Prior to merging, reads can be 
trimmed by a specific number of nucleotides or based on quality 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
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FIgURe 2 | sample figures for Module 1 analyses. (A) The V gene usage for donor CAP256 at 59 weeks post-infection (SRA ascension SRX395942). cDNA 
was amplified with VH3 family-specific primers; the peak for VH3-30 is from the expansion of the CAP256-VRC26 lineage. (B) The J gene usage for the same 
dataset. The CAP256-VRC26 lineage uses JH3. (C) The status assigned to each transcript in this dataset by SONAR. Approximately 30% of the transcripts are 
identified as containing in-dels (light green), which is typical for uncorrected 454 data. Approximately 60% are high-quality transcripts (dark purple), but only ~2% of 
these (~3% overall) are non-redundant at the 97% threshold (light purple). (d) CDR H3 length distribution (in amino acids, IMGT delineation) for all nine donor 
CAP256 time points. The CAP256-VRC26 lineage can be seen in the peak at 37 amino acids, which first appears at the 34 weeks post-infection time point.
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scores. Low quality reads can be discarded after merging using the 
number of expected miscalled bases (as calculated by USEARCH 
from the quality scores at each position).

1.1-blast_V.py
This script initiates the analysis for each project. The name of the 
current working folder is used as the project name, which is used 
as the stem for all output files. New directories are created for 
working files and processed output. If the work or output directo-
ries already exist, the script exits with an error unless the -f (force) 
flag has been specified. This prevents accidental overwriting of 
existing data.

By default, all fasta and fastq files in the work directory are 
processed, but a specific file or files can be stipulated. Reads 
which are too short or too long to correspond to an antibody 
variable region are discarded. Input sequences are broken into 
groups and blasted against a library of germline V genes. Human 
heavy, kappa, and lambda libraries are included with the source 
code, but a custom library can be specified using the -lib option. 
By default, BLAST+ is run locally using one thread; however, 
multiple threads can be used or the individual blast jobs can be 
submitted to a cluster if one is present.

1.2-blast_J.py
This script parses the output of BLAST+ from 1.1-blast_V.
py to extract the assigned germline V gene and generates new 
BLAST+ jobs to search for the germline J gene. To improve 
assignment efficiency, only the portion of the NGS transcript 
after the 3′ end of the V gene match is scanned; transcripts with 
no matched V gene are discarded. By default, this script also 
uses BLAST+ to assign the constant region and D gene for heavy 
chain transcripts, but this functionality can be disabled to speed 
up processing time. Outputs from this script are text tables in 
output/tables with the top V gene hit for each transcript and a 
summary of how many times each V gene allele is observed in 
the dataset.

1.3-finalize_assignments.py
This script parses the output of BLAST+ from 1.2-blast_J.py to 
extract the assigned germline J gene and uses the boundaries of 
the V and J gene alignment to extract CDR3. Each transcript is 
also checked for frameshifts and stop codons, and a final status is 
assigned. Outputs in output/tables include top assignments and 
summary tables for J genes (plus D genes and constant regions, 
if applicable). In addition, a master table is generated indicating 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FIgURe 3 | sample figures for Module 2 analyses. (A) Identity–divergence plot of transcripts assigned to VH3-30 for donor CAP256 at 59 weeks post-infection. 
Bulk sequencing data are shown as a heat map with colors as indicated. The CAP256-VRC26 lineage is visible as a distinct island of transcripts at higher identity. 
(B) The same plot with transcripts identified as likely lineage members by intradonor analysis overlaid as orange points. Two thirds of these transcripts are found in 
the high-identity island; the remaining third in the main body of transcripts at ~70% identity are false positives. This is a typical result, showing why multiple tools for 
lineage determination are included in SONAR and manual curation is strongly advised.
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the source, characteristics, and disposition of each transcript. 
In output/sequences are files with various subsets of the input 
sequences, including all transcripts with successful V and J 
assignments, successful CDR3 extraction, and transcripts with 
all of the above plus no detected frameshifts or stop codons. Data 
about the repertoire can be visualized using 4.1-setup_plots.pl 
(Figure 2).

1.4-dereplicate_sequences.pl
This script uses USEARCH to eliminate redundant transcripts 
and those below a given sequencing depth threshold. Clustering 
is also used to account for the introduction of error during PCR 
and sequencing, eliminating artificial diversity (36).The default 
identity threshold for clustering is 99%, and only clusters contain-
ing at least three transcripts are retained. Both parameters can be 
adjusted by the user.

Module 2: Lineage determination
The process of classifying a set of NGS transcripts into com-
ponent lineages without any additional information is termed 
“unseeded lineage assignment.” By contrast, “seeded lineage 
assignment” uses the sequences of one or more known antibodies 
as seeds to find all transcripts in the dataset that are from the 
same lineage, while leaving the remainder of transcripts unclas-
sified. Unseeded lineage assignment is typically accomplished by 
clustering transcripts based on sequence similarity in CDR3 (3, 
25, 30–32), though more sophisticated algorithms have recently 
been described (34, see footnote text 1). SONAR offers 2.4-clus-
ter_into_groups.py to carry out unseeded lineage assignment, 
but the suite overall focuses more heavily on seeded lineage 
assignment, since phylogenetic analysis is carried out on specific 
lineages. We have previously demonstrated several techniques 
for effective and efficient seeded lineage assignment, which are 
included in Module 2 of SONAR (11, 35, 36, 40, 51).

2.1-calculate_id-div.pl
This script carries out seeded lineage assignment, using Muscle 
(46) (the default), ClustalO (52), or MAFFT (53) to align each tran-
script to its assigned germline sequence and to known antibody 
sequences of interest. Output is a table with the percent identity of 
each transcript to each of the specified known antibody sequences 
and its percent divergence from germline V gene. These data can 
be visualized using 4.3-plot_identity_divergence.R (see below) to 
identify “islands” of transcripts that are likely to be in the same 
lineage as an antibody or antibodies of interest (Figure 3A).

2.2-get_island.py
Once an island of transcripts likely to be in the same lineage as the 
seed antibody has been identified on an identity–divergence plot, 
this script can be used to extract the transcripts in the island and 
save them to a new file in output/sequences/nucleotide.

2.3-intradonor_analysis.py
This script offers a second method to perform seeded lineage 
assignment by using an iterative phylogenetic analysis to find tran-
scripts, which are in the same lineage as set of known antibodies. 
Transcripts are randomly split into groups and used together with 
known antibody sequences to build neighbor-joining trees rooted 
on the germline V gene of the known antibodies. Transcripts in 
the minimum sub-tree spanning all of the known sequences are 
passed forward into the next iteration. The algorithm is considered 
to have converged when 95% of the input sequences in a round 
are in the minimum sub-tree, and these transcripts are deemed 
to be in the same lineage as the known antibodies. The algorithm 
is generally intended to find somatically related antibodies from a 
single lineage within a single donor. However, in the special case 
of VRC01 class antibodies (35), we have shown that exogenous 
VRC01 class heavy chains can be used for “cross-donor” analysis 
to identify a lineage of VRC01 class antibodies within a new 

http://www.frontiersin.org/Immunology/
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donor (35, 54). For both intradonor and cross-donor analysis, the 
accuracy and specificity of the algorithm depends on the number 
of seed sequences used and how closely related they are. Various 
filtering options are available for the transcripts before starting 
the analysis, and the tree-building steps of each iteration can be 
submitted to a high-performance computing cluster, if available. 
4.3-plot_identity_divergence.R can be used to overlay the tran-
scripts thus identified as in the same lineage on the visualization 
of the overall repertoire (Figure 3B).

2.4-cluster_into_groups.py
This script provides both a third technique for seeded lineage 
assignment and a basic approach for unseeded lineage assign-
ment. Antibody transcripts are first separated into groups based 
on assigned V and J genes. The transcripts in each group are 
then clustered based on their CDR3 nucleotide identity using the 
UCLUST algorithm in USEARCH, and each cluster is identified 
as a distinct unseeded lineage. Known antibodies of interest can 
also be included among the transcripts to be clustered, allowing 
seeded lineage assignment for one or more lineages (12, 35).

Module 3: Phylogenetic Analysis
Once transcripts in the lineage of the seed antibodies have been 
identified from one or more cross-sectional samples, the overall 
phylogenetic structure of an antibody lineage can be examined 
and the ontogeny of the lineage can be inferred. This includes 
building and analyzing a phylogenetic tree, inferring intermedi-
ates along the maturation pathway of an interested antibody, as 
well as estimating the evolutionary rate of the lineage over time.

3.1-merge_timepoints.pl
This script collects transcripts in the lineage of the seed antibodies 
identified at multiple time points using Module 2 and renames 
them to indicate their temporal origins. A unique label may be 
specified for each file, such as a sample date or visit code. This 
script then identifies and collapses transcripts that appear at 
multiple time points and assigns a “birthday” based on the first 
observation.

3.2-run_DNAML.py
This is a wrapper script for using DNAML (47) to build a maxi-
mum likelihood tree representing the phylogenetic development 
of the lineage and to infer unobserved ancestral sequences. In 
most cases, the user should provide a manually verified, high-
quality alignment in PHYLIP format, in order to allow for 
accurate inference of ancestor sequences. However, the program 
will call MUSCLE to align the collected transcripts if no align-
ment is provided. DNAML will be run three times on randomly 
ordered input, and outgroup rooted on the germline V gene 
sequence. All other options for DNAML are left at their default 
settings. The phylogenetic tree produced can be displayed using 
4.4-display_tree.py (see below), and an example can be seen in 
Figure 4A.

3.3-pick_intermediates.pl
This script analyzes the phylogenetic tree and ancestral sequences 
inferred by DNAML to pick developmental intermediates that 
show how a known antibody of interest evolved from the inferred 

unmutated common ancestor. The user may either specify how 
many approximately equally spaced intermediates should be 
selected or the approximate number of amino acid changes 
between consecutive intermediates. The script can also identify 
the inferred sequence for the most recent common ancestor of 
multiple antibodies of interest.

3.4-collapse_minor_branches.pl
Often there are too many sequences (hundreds or thousands) to 
be clearly displayed on a phylogenetic tree. This script clusters 
lineage CDR3 sequences in a phylogenetically aware manner to 
produce a partially collapsed version of the phylogenetic tree 
emphasizing the major branches of the lineage. The identity 
threshold for clustering CDR3s and the minimum number of 
sequences required to define a “major” branch may be adjusted 
by the user. Known antibody sequences may be specified and 
will be displayed regardless of whether or not they are part of a 
major branch. The summary table will also indicate the temporal 
persistence of each major branch, where available. A collapsed 
version of the tree in Figure 4A is shown in Figure 4B.

3.5-evolutionary_rate.pl
This script generates an xml-formatted configuration file for 
BEAST2 (48) to calculate the evolutionary rate of an antibody 
lineage. DNA sequences from at least two time points are required 
to run this script. The script can separate antibody variable region 
sequences into different partitions and generate configuration 
files to calculate the evolutionary rates spontaneously for V(D)J 
region, CDR regions, framework regions, and the first + second 
and third codon positions (2, 12).

Module 4: Figures and output
The final module of SONAR produces figures visualizing the 
results of the analyses conducted by the other three modules.

4.1-setup_plots.pl and 4.2-plot_histograms.R
These scripts plot histograms or bar charts to show the distribu-
tions of many different repertoire properties, such as transcript 
lengths, germline gene usage, SHM levels, and CDR3 net charge, 
among others. These properties may be calculated for all tran-
scripts in the raw data, all functional transcripts (successful V 
and J assignment, in-frame junction, and no stop codons), unique 
transcripts only (as determined by the parameters provided to 
2.1-calulate_id-div.pl), or a manually specified subset of tran-
scripts. Multiple repertoire features or data from multiple samples 
may be plotted on a single figure, as well, and many options are 
provided for adjusting the appearance of the final figure. All 
options are provided by the user to 4.1-setup_plots.pl, which 
extracts and reformats the required data and then automatically 
calls 4.2-plot_histograms.R to plot the data and generate the final 
figure. Sample plots are shown in Figure 2.

4.3-plot_identity_divergence.R
This script uses the output of 2.1-calulate_id-div.pl to plot bulk 
NGS data as a heat map with the x axis corresponding to the 
divergence from the assigned germline V gene for each transcript 
and the y axis showing the full-length sequence identity to an 
antibody of interest. In these plots, transcripts from the same 

http://www.frontiersin.org/Immunology/
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lineage as the antibody reference typically appear as clearly dis-
tinguishable islands separated from the main body of unrelated 
transcripts (11, 12) (Figure 3A). In addition, markers can be used 
to indicate the positions of specific transcripts, such as those iden-
tified by Module 2 as members of the same lineage (Figure 3B). 
Finally, multiple longitudinal datasets can be provided to gener-
ate a single figure with a row of identity–divergence plots showing 
the evolution of the repertoire over time.

4.4-display_tree.py
This script uses the ete2 library (49) to generate publication-
quality images of the trees output by 3.2-run_DNAML.py or 

3.4-cluster_tree.pl. Each branch is colored by the birthday time 
point assigned by 3.1-merge_timepoints.pl. Options are provided 
to label both intermediates (internal nodes) and sequences 
(leaves/tips) of interest or to collapse specific branches of the tree. 
Additional options for adjusting various graphical parameters are 
also available. Sample trees are shown in Figure 4.

other Utility scripts
A variety of additional stand-alone scripts are provided to help 
carry out common tasks. These include detecting frameshift 
mutations from pyrosequencing, subsetting sequence files, and 
manipulating phylogenetic trees in various ways.

http://www.frontiersin.org/Immunology/
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data Vignette
We have previously used earlier versions of the SONAR scripts 
to analyze several lineages of broadly neutralizing antibodies 
targeting HIV-1, including the CAP256-VRC26 lineage (11, 39, 
41). The raw sequencing data for donor CAP256 are available 
from the NCBI Sequence Reads Archive with accession number 
SRP034555. As a tutorial, SONAR includes the commands used 
to download these data and run the pipeline on it on the Docker 
container, along with the outputs produced.

dIsCUssIoN

Here, we present an integrated pipeline for analyzing NGS data of 
BCR transcripts to identify and to trace the development of a spe-
cific antibody lineage across multiple time points. This pipeline 
has already been used successfully to investigate multiple broadly 
neutralizing antibody lineages against HIV-1 (11, 12, 39, 41) and 
can easily be applied to other systems of interest, including anti-
bodies against influenza virus and pathogenic autoantibodies.

Software for the Ontogenic aNalysis of Antibody Repertoires 
serves as an all-in-one solution, allowing a user to go from 
raw data to final analysis within a single ecosystem. With the 
recent proliferation of software for analyzing NGS data from 
BCR repertoires (55, 56), several specialized programs are 
available for assigning exact allelic origins and recombination 
points (27, 29). However, SONAR’s unique strength lies in the 
ability to easily identify transcripts related to an antibody of 
interest and, especially, to integrate sequences from multiple 
time points. Therefore, while SONAR assigns a particular allele 
to each transcript based on the BLAST output, all downstream 
analyses group the alleles of each germline gene in order to be 
more inclusive. SONAR is also explicitly agnostic as to the exact 
recombination points and P- and N-insertions within a specific 
antibody sequence. Importantly, because SONAR is focused on 
finding transcripts related to a known antibody, this impreci-
sion can yield better results in the description of a lineage’s 
ontogeny. Moreover, by working with simple fasta-formatted 
sequence files, SONAR provides interoperability with these 
specialized tools, as well as with others devoted to dividing an 
entire repertoire into its component lineages [e.g., Ref. (57, see 
footnote text 1)].

Software for the Ontogenic aNalysis of Antibody Repertoires 
relies on a number of external programs and libraries, including 
BLAST+, MUSCLE, USEARCH, DNAML, and others. Because 
each of these may also have their own dependencies, setting up 
SONAR can be difficult. To increase the ease of use, we have 
created a fully setup Docker image,4 which can be downloaded 
and run on any computer or operating system without need for 
installation of any additional software.

The current version of SONAR closely resembles that used 
to carry out previously described analyses (2, 11, 12) and pro-
vides a fully functional, integrated pipeline for the ontogenic 
analysis of antibody repertories. In addition, SONAR remains 
under active development. Current focuses include a module 
to estimate functional selection pressure dynamics over time 
for antibody lineages (2). As we have shown that mutability and 
substitution bias modulate how somatic hypermutation occurs 
at each position in the antibody variable region (10), a module 
to characterize germline gene-specific mutational profiles from 
transcripts sampled by NGS would allow estimation of how likely 
certain mutation patterns are to be reproduced in either natural 
infection or vaccination. Other new functionalities are also being 
developed, and both bug fixes and new features will be added to 
the GitHub repository as they become available.
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