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The striatum and the subthalamic nucleus (STN) are the main entry doors for
extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex,
thalamus and brainstem are the key sources of glutamatergic inputs to these
nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic
neurotransmission is altered in the striatum and STN of animal models of Parkinson’s
disease (PD) and that these changes may contribute to aberrant network neuronal
activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and
PD patients have revealed significant pathology of glutamatergic synapses, dendritic
spines and microcircuits in the striatum of parkinsonians. More recent findings have
also demonstrated a significant breakdown of the glutamatergic corticosubthalamic
system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic
glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum
and STN in models of PD. The potential functional implication of these alterations on
synaptic integration, processing and transmission of extrinsic information through the
BG circuits will be considered. Finally, the significance of these pathological changes in
the pathophysiology of motor and non-motor symptoms in PD will be examined.

Keywords: Parkinson’s disease, striatum, subthalamic nucleus, synaptic plasticity, glutamatergic synapses, vGluT,
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Basal Ganglia Nuclei and Connectivity

The basal ganglia (BG) are a collection of interconnected subcortical nuclei, including the
striatum, globus pallidus (GP), substantia nigra, and subthalamic nucleus (STN), which
closely interact with the cerebral cortex and thalamus. While historically considered as key
components of the motor system, the BG receive cortical projections from all functional areas
of the cerebral cortex and contribute to both motor and non-motor functions (Alexander
et al., 1986; Mink, 1996). The information flow through the BG circuitry is segregated into
motor, associative, and limbic/emotional domains based on their relationships with specific
cortical projection areas and the engagement of these regions in various behaviors (Alexander
et al., 1986; Lanciego et al., 2012). A large number of findings discussed in this review were
gathered from the motor-related nuclei of the primate BG. The striatum, the major input
structure of the BG, receives projections from the cerebral cortex, brainstem, and thalamus.
The GP consists of two anatomically and functionally separate nuclei, the external and
internal pallidal segments [GPe and GPi, respectively in primates; GP and entopeduncular
nucleus (EPN) in rodents]. The substantia nigra also comprises two separate nuclei, the
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GABAergic pars reticulata (SNr) and the pars compacta (SNc),
which contains pigmented dopamine (DA)-containing neurons.
The dopaminergic neurons of the SNc project primarily to the
striatum, but also provide significant innervation of other BG
nuclei and the thalamus (particularly in primates; Smith and
Kieval, 2000; García-Cabezas et al., 2009; Rommelfanger and
Wichmann, 2010). The glutamatergic STN is a small nucleus
which is intercalated between GPe and GPi. In addition to the
striatum, the STN is also considered as a major entry for cortical
information to the BG network (Nambu et al., 2000; DeLong and
Wichmann, 2010), while the GPi (or EPN in non-primates) and
SNr are the two main output nuclei of the BG.

The striatum and the STN receive topographically organized
projections from functionally diverse regions of the cerebral
cortex (Parent and Hazrati, 1995; Nambu et al., 1996). Because
information flows more rapidly to the BG output nuclei via the
corticosubthalamic projection than via the direct and indirect
trans-striatal pathways, the trans-subthalamic route is commonly
referred to as the ‘‘hyperdirect’’ pathway of the BG (Nambu
et al., 2000, 2002; Sano et al., 2013; Smith and Wichmann, 2015).
While the corticosubthalamic projection is less extensive than the
corticostriatal system, it originates from motor, associative and
limbic cortical regions and is a powerful source of excitation to
STN neurons through which cortical inputs can rapidly regulate
the activity of downstream BG output nuclei, the GPi and SNr
(Monakow et al., 1978; Nambu et al., 2000; Haynes and Haber,
2013). Corticosubthalamic axons target dendritic spines and
distal dendritic shafts of STN neurons in rats (Bevan et al., 1995;
Mathai et al., 2015).

The GPe is another key structure of the BG which receives
its main inputs from the striatum (the so-called indirect
pathway) and the STN. In turn, two different populations
of GPe neurons provide GABAergic innervation to all other
BG nuclei. The so-called ‘‘arkypallidal’’ cells are the main
sources of the pallidostriatal system, while the ‘‘prototypic’’
cells project massively to the STN, with collateral to the GPi
and SNr (Shink et al., 1996; Smith et al., 1998a,b; Mallet
et al., 2012; Dodson et al., 2015). There is recent evidence
for a direct GABAergic/cholinergic pallidocortical projection in
mouse (Saunders et al., 2015).

The BG outflow is directed at specific thalamic and brainstem
nuclei via the GPi and SNr, largely through collateralized axonal
projections (Parent and De Bellefeuille, 1982; Parent et al.,
1983). The BG-receiving ventral motor thalamic nuclei project
to widespread areas of the frontal lobe and send projections
back to the striatum, while descending projections from the BG
to the brainstem terminate massively in the pedunculopontine
nucleus (PPN) which, in turn, provide significant ascending
and descending projections to the thalamus, BG, reticular
formation and spinal cord (Rye et al., 1988; Lavoie and
Parent, 1994; Parent and Hazrati, 1995; Mena-Segovia et al.,
2004). Recent evidence indicates that the descending trans-
PPN projections may play an important role in regulating
brainstem and spinal motor mechanisms related to gait and
balance (Pahapill and Lozano, 2000; Garcia-Rill et al., 2011). The
PPN is also part of several feedback circuits with projections
to the BG and the thalamus (Rye et al., 1988; Lavoie and

Parent, 1994; Mena-Segovia et al., 2004). Other projections from
the SNr reach the superior colliculus, which is involved in
coordinating head and eye movements, while a specific subset
of peripallidal GPi neurons project massively to the lateral
habenula, and play a role in the modulation of reward and
limbic mechanisms (Wurtz and Hikosaka, 1986; Wickens, 2008;
Hikosaka, 2010).

Recent studies suggest the existence of a direct glutamatergic
cortico-pallidal projection in mammals, including humans
(Mathai et al., 2012; Smith et al., 2014c; Milardi et al.,
2015; Smith and Wichmann, 2015). This ‘‘cortico-pallidal’’
system is separate from the descending cortico-spinal and
cortico-pontine axons that travel through the internal capsule
(Naito and Kita, 1994; Milardi et al., 2015; Smith and
Wichmann, 2015), and bypasses the traditional direct, indirect,
and hyperdirect corticofugal pathways. The existence of
this direct glutamatergic cortico-pallidal projection could
have a significant impact on our present understanding of
transmission and processing of information through the BG
circuits in normal and diseased states (Smith and Wichmann,
2015).

The Striatum: Main Entry to the BG
Circuitry

The dorsal striatum, made up of the putamen and caudate
nucleus in primates, is mainly innervated by sensorimotor (post-
commissural putamen) and associative (caudate nucleus and pre-
commissural putamen) cortices, respectively, while the ventral
striatum (nucleus accumbens and olfactory tubercle) is the main
target of limbic-related inputs from the hippocampus, amygdala
and medial prefrontal cortices (Russchen et al., 1985; Alexander
et al., 1986; McGeorge and Faull, 1987; Haber et al., 1995; Parent
and Hazrati, 1995; Fudge et al., 2002). In the human literature
the term ‘‘lenticular’’ or ‘‘lentiform’’ nucleus is commonly used
to refer to the putamen and the GP (Carpenter and Sutin, 1983).

Each striatal region also receives prominent functionally-
related thalamic inputs from intralaminar, relay, associative and
midline nuclei. Among those, the caudal intralaminar nuclear
group, the centre median (CM) and parafascicular complex
(Pf), which innervates preferentially the putamen or caudate
nucleus, respectively (Smith et al., 2004, 2009a; Galvan and
Smith, 2011) is the predominant source of thalamostriatal
projections. Massive dopaminergic innervation from either
the SNc (to the dorsal striatum) or the ventral tegmental
area (VTA; to the ventral striatum) provides key modulatory
influences upon striatal processing of extrinsic cortical and
thalamic information (Smith and Bolam, 1990; Nicola et al.,
2000; Gerfen and Surmeier, 2011). Additional extrinsic inputs
from the hypothalamus, GP, STN, raphe, locus coeruleus
and PPN have also been described (Smith and Parent, 1986;
Parent and Hazrati, 1995; Smith et al., 1998a,b; Ellender et al.,
2011).

Striatal Projection Neurons and Interneurons
The main targets of extrinsic inputs to the striatum are the
GABAergic medium spiny neurons (MSNs), which represent
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90–97% of all striatal neurons (Kemp and Powell, 1971a,b,c;
Oorschot, 1996; Wickens et al., 2007a). These GABAergic
neurons can be categorized into two main populations based
on their hodological and chemical phenotypes. The ‘‘direct’’
pathway neurons send their main axonal projections directly to
the output nuclei of the BG (i.e., GPi and SNr), and express
preferentially the D1 DA receptors (D1R) and the neuropeptides
substance P (SP) and dynorphin (DYN). On the other hand, the
‘‘indirect’’ pathway neurons project preferentially to the GPe, and
express D2 receptors (D2R) and the neuropeptide enkephalin
(ENK; Gerfen et al., 1990; Sidibé and Smith, 1999; Lanciego
et al., 2004; Lei et al., 2004, 2013; Smith et al., 2009a, 2014a,b,c;
Galvan and Smith, 2011; Gerfen and Surmeier, 2011; Huerta-
Ocampo et al., 2014). Albeit less frequent, it is noteworthy that
some striatal MSNs project to both GPe and GPi/SNr and co-
express D1 and D2 DA receptor subtypes (Kawaguchi et al.,
1990; Surmeier and Kitai, 1993; Surmeier et al., 1996; Wu et al.,
2000).

The dendritic trees of both populations of striatal MSNs are
covered with spines, which are the main targets of glutamatergic
inputs from the cerebral cortex and thalamus. In rodents, the
dendrites of individual MSNs harbor as many as 5000 spines
(Wickens et al., 2007a). In addition to their glutamatergic
innervation, striatal spines also receive synaptic inputs from
midbrain dopaminergic neurons which frequently terminate
onto the neck of the spine or a nearby segment of the dendritic
shaft, thereby providing an anatomical substrate for close
synaptic interactions between glutamatergic and dopaminergic
inputs at the level of spines (Freund et al., 1984; Smith and
Bolam, 1990; Smith et al., 1994, 2009a, 2014a; Nicola et al.,
2000; Wickens et al., 2007a; Moss and Bolam, 2008). These
functional interactions are critical for the development and
maintenance of long-term synaptic plasticity of glutamatergic
corticostriatal synapses (Nicola et al., 2000; Calabresi et al.,
2007; Surmeier et al., 2007, 2010; Gerfen and Surmeier, 2011;
Picconi et al., 2012). Although D1R and D2R MSNs display very
similar morphological characteristics, the D2R MSNs exhibit
increased excitability and harbor a less extensive dendritic tree
than D1R cells in mice (Gertler et al., 2008; Kreitzer and
Malenka, 2008; Fieblinger et al., 2014b), and each type of
MSNs is differentially modulated by DA in normal and diseased
states (Surmeier et al., 2007; Day et al., 2008; Kreitzer and
Malenka, 2008; Shen et al., 2008; Kreitzer, 2009; Fieblinger et al.,
2014b).

The aspiny interneurons are far fewer in number, accounting
for about 3–10% of the total striatal population (Tepper and
Bolam, 2004; Bernácer et al., 2005, 2007, 2012). Anatomically,
they can be categorized into medium-sized GABAergic cells
and large cholinergic neurons (Kawaguchi et al., 1995; Bernácer
et al., 2007, 2012; Gonzales and Smith, 2015). Medium-
sized GABAergic interneurons can be further classified
histochemically into different subtypes: (a) parvalbumin-
positive; (b) somatostatin-, neuropeptide Y-, and nitric oxide
synthase-positive; (c) calretinin-positive (Tepper and Bolam,
2004; Bernácer et al., 2005, 2007, 2012); and (d) tyrosine
hydroxylase (TH)-positive (Tepper et al., 2010). It is noteworthy
that the latter subtype is rare in the normal primate striatum,

but undergoes an upregulation after striatal DA denervation
(Betarbet et al., 1997; Mazloom and Smith, 2006; Bernácer
et al., 2012). It remains unclear if the various subtypes of
TH-positive GABAergic cells described in TH-Cre mice
(Tepper et al., 2010) represent the same neuronal phenotype as
those seen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-treated monkeys and Parkinson’s disease (PD)
patients.

DA Mesostriatal System

DA plays a fundamental role in normal BG function. The
mesostriatal dopaminergic system, which comprises the
mesolimbic and the nigrostriatal pathways, enables BG
control of motor planning and action selection (Wurtz and
Hikosaka, 1986; Berns and Sejnowski, 1998; Gurney et al.,
2001). Because of its involvement in a wide array of physiologic
and pathologic processes, the anatomical and functional
organization of the DA mesostriatal systems has been the
topic of extensive studies for many years (for reviews, see
Wickens et al., 2007b,c; Kreitzer, 2009; Gerfen and Surmeier,
2011). Despite such interest, the exact role of DA in normal
BG function is complex and remains poorly understood. The
whole striatum is densely innervated by dopaminergic axons
and terminals (Lavoie et al., 1989; Prensa and Parent, 2001;
Matsuda et al., 2009; Bolam and Pissadaki, 2012; Pissadaki
and Bolam, 2013) that originates from the ventral midbrain
including the SNc (A9), VTA (A10) and retrorubral Area
(RRA; A8). The A9 group is the most densely packed group
of midbrain dopaminergic cells located in the SNc. Projections
from SNc and RRA neurons terminate in the dorsal striatum,
while VTA neurons are the main source of DA innervation
to the ventral striatum (Gerfen et al., 1987; Lynd-Balta and
Haber, 1994a,b). Dopaminergic terminal boutons represent
nearly 10% of all striatal terminals (Groves et al., 1994). Like
other monoamines, there is evidence that DA can mediate
its effects in striatal and extrastriatal brain regions through
neurotransmitter diffusion (Arbuthnott et al., 2000; Cragg and
Rice, 2004; Arbuthnott and Wickens, 2007; Wickens et al.,
2007b; Descarries et al., 2008; Moss and Bolam, 2008; Rice and
Cragg, 2008; Rice et al., 2011). Consistent with this hypothesis,
most DA receptors in the striatum are located extrasynaptically
in spines and dendrites of striatal neurons (Hersch et al.,
1995; Yung et al., 1995; Delle Donne et al., 1996, 1997; Nicola
et al., 2000; Wang and Pickel, 2002; Gerfen and Surmeier,
2011).

GABA and Glutamate: Co-transmitters of the
Nigrostriatal System
Recent evidence indicates that DA neurons in the SNc and
VTA are capable of co-releasing GABA with DA, and inhibit
striatal projection neurons (Tritsch et al., 2012, 2014). It is
estimated that 5–10% of SNc DA neurons express GAD65 and
fewer than 1% contain the vesicular glutamate transporter 2
(vGluT2) in rodents (González-Hernández et al., 2001; Bérubé-
Carrière et al., 2009; Hnasko et al., 2010). Therefore, distinct
subpopulations of DA neurons may release GABA or glutamate,
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and reliable detection of IPSCs and EPSCs may result from
innervation of SPNs by several DA neurons (Matsuda et al.,
2009). Future studies are needed to better understand the
physiological (or pathological) conditions under which GABA,
glutamate and DA are released or co-released from nigrostriatal
axons.

The release of GABA from DA terminals is independent of
vesicular GABA transporter (vGAT), but requires activity of
the vesicular monoamine transporter 2 (vMAT2) for vesicular
loading. The inhibitory GABAergic synaptic transmission from
DA neurons does not depend on synthesis of GABA by either
GADs (GAD65, GAD67) or GABA transaminase, suggesting that
DA neurons inhibit MSNs by releasing GABA they acquire from
the extracellular space usingmembrane uptake of GABA (Tritsch
et al., 2014). Although the actions of DA are not believed to
be spatially localized (Arbuthnott and Wickens, 2007), this co-
release of GABAmay confer dopaminergic neurons an additional
point-to-point mode of action, and the flexibility to differentially
control GABAergic transmission in a target-dependent manner
across their extensive axonal arbors (Tritsch et al., 2014). It
is noteworthy that evidence for GABA expression and release
from other populations of monoaminergic neurons has been
reported in other brain regions (Iijima, 1993; Trottier et al., 2002;
Maher and Westbrook, 2008; Hirasawa et al., 2009; Broadbelt
et al., 2010). Together, these findings expand the repertoire
of synaptic mechanisms available to monoaminergic cells, and
suggest that perturbations of GABA co-transmission might
contribute to the etiology of monoaminergic pathologies or to
the therapeutic efficacy of vMAT2 antagonists in specific brain
disorders.

There is also evidence that a certain contingent of SNc
and VTA DA neurons can store and release glutamate via the
vGluT2, providing an additional level of chemical heterogeneity
to the nigrostriatal system (Sulzer et al., 1998; Chuhma et al.,
2004; Bérubé-Carrière et al., 2009; Yamaguchi et al., 2013; Antal
et al., 2014; Morales and Root, 2014; Trudeau et al., 2014). The
localization of metabotropic glutamate receptor 5 at the edges of
striatal dopaminergic synapses in the monkey striatum (Paquet
and Smith, 2003) is consistent with these observations.

Striatal DA Receptor Subtypes
In addition to the strong and segregated expression of D1R and
D2R in direct and indirect pathway MSNs, both GABAergic
and cholinergic interneurons also express different subtypes of
DA receptors, and their activity is tightly regulated by DA,
most particularly that of cholinergic interneurons, which express
both D2R and D5R (Yan and Surmeier, 1997; Yan et al.,
1997; Day et al., 2006; Wang et al., 2006; Surmeier et al.,
2007; Kreitzer, 2009; Gerfen and Surmeier, 2011). D3R and
D4R are also expressed in both the dorsal and ventral striata
(Landwehrmeyer et al., 1993; Rivera et al., 2002; Centonze
et al., 2003). DA receptors are expressed to variable degree
in other BG nuclei, providing a substrate for extrastriatal
DA functions (Smith and Kieval, 2000; Rommelfanger and
Wichmann, 2010). In addition to their post-synaptic localization,
DA receptors are localized pre-synaptically in glutamatergic and
GABAergic terminals throughout the BG circuitry, providing

multiple targets through which DA regulatory influences can
impact neurotransmission in normal and diseased states. The
readers are referred to comprehensive reviews of the topic
for additional information (Arbuthnott et al., 2000; Reynolds
and Wickens, 2002; Costa, 2007; Rice and Cragg, 2008;
Surmeier et al., 2010; Gerfen and Surmeier, 2011; Rice et al.,
2011).

Glutamatergic Synaptic Plasticity in PD
and its Models

Striatal Spine Loss in PD
Striatal spine loss has been reported in the striatum of
various animal models of PD and in parkinsonian patients. In
both MPTP-treated monkeys and PD patients, the extent of
spine pruning is tightly correlated with the extent of striatal
dopaminergic denervation (Ingham et al., 1989; Stephens et al.,
2005; Zaja-Milatovic et al., 2005; Smith and Villalba, 2008;
Smith et al., 2009b; Villalba et al., 2009; Toy et al., 2014;
Figures 1A,B, 4).

Striatal Spine Loss on Direct vs. Indirect
Striatofugal Neurons
Although there has been some controversy as to whether
the striatal spine loss targets preferentially direct (D1R-
positive) vs. indirect (D2R-positive) striatal MSNs, recent
evidence indicates that both neuronal subtypes are affected,
but through different mechanisms. Some authors reported that
D2R striatopallidal neurons, but not D1R striatonigral neurons,
selectively lose spines in reserpine-(systemic administration)
and 6-hydroxydopamine (OHDA)-treated (injection in the
medial forebrain bundle) mice with striatal DA depletion (Day
et al., 2006). However, other reports described spine loss
on both direct and indirect pathway neurons in intrastriatal
6-OHDA-treated or systemically MPTP-treated mice (Suárez
et al., 2014; Toy et al., 2014). Similarly, both populations
of striatal projection neurons undergo significant spine loss
in monkeys chronically treated with low doses of MPTP
(Villalba et al., 2009; Villalba and Smith, 2010, 2013).
These findings are consistent with the homogeneous loss of
spines across large populations of striatal MSNs described
in Golgi studies of human parkinsonians and animal models
of parkinsonism (Ingham et al., 1989; Stephens et al.,
2005; Zaja-Milatovic et al., 2005; Smith and Villalba, 2008;
Smith et al., 2009b; Villalba et al., 2009; Villalba and
Smith, 2010, 2013). However, other monkey studies, using
an acute regimen of MPTP toxicity, suggested a decrease
in D2R spines accompanied with an increase in the density
of D1R spines in the caudate nucleus of MPTP-treated
cynomolgus monkeys (Scholz et al., 2008). The use of
different animal models, different regimens and locations of
neurotoxin administration, variable quantitative methods and
observations of different striatal regions may contribute to these
discrepancies.

In addition to spine pruning, recent evidence showed that
the length and complexity of the dendritic tree of both
direct and indirect pathway MSNs are significantly reduced in
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FIGURE 1 | Dendritic spines in the monkey striatum. (A,B) Light
micrographs of dendrites from Golgi-impregnated medium spiny neurons
(MSNs) in the caudate nucleus of a control (A) and a
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated (B) monkey.
Note the dramatic spine loss of the dendrite of the MSN from the
MPTP-treated monkey compared with control. (C1–D2) Three-dimension
(3D)-reconstructed images of glutamatergic axo-spinous synapses from
control (C1,C2) and MPTP-treated (D1,D2) monkeys. (E) Histogram
comparing the morphometric measurements (mean ± SEM) for spine volume
(µm3), post-synaptic density (PSD) area (µm2) and terminal volume (µm3) of
structural elements at corticostriatal (vGluT1-positive) glutamatergic synapses
using 3D reconstruction method of serial ultrathin sections collected from 30
axo-spinous synapses in each group from three control and three
MPTP-treated animals. The spine volumes, the PSD areas, and the volume of
vGluT1-containing terminals are significantly larger in MPTP-treated
parkinsonian monkeys than in controls (∗t-test; p < 0.001). Scale bar in (B)
(applied to A) = 5 µm (See Villalba et al., 2009; Villalba and Smith, 2010,
2011a, 2013).

6-OHDA-treated mice (Fieblinger et al., 2014a). In contrast
to spine loss, that responds to L-DOPA therapy in this
animal model, dendritic arbor atrophy is unresponsive to DA
replacement therapy (Fieblinger et al., 2014a).

Does Striatal Spine Loss Affect Corticostriatal
and Thalamostriatal Synapses?
Using unbiased stereological synaptic counts, Ingham et al.
(1998) reported ∼20% decrease in the total number of axo-
spinous asymmetric synapses in the striatum of 6-OHDA-
treated rats. Recent findings from our laboratory also show a
significant decrease in the total number of putative glutamatergic

FIGURE 2 | Tripartite synapses (TS) in the monkey striatum. (A,D)
Electron micrographs of perisynaptic astrocytic processes (Ast) wrapping a
vGluT1 axo-spinous synapse in control (A) and MPTP-treated (D) animal.
(B,C,E,F) The three-dimensional (3D) reconstruction of a
vGluT1-immunoreactive TS highlight the differences in the extensions of the
astrocytic processes between control (B,C) and MPTP (E,F). In the TS of
control animals, the perimeters of the axon-spinous interfaces were only
partially surrounded by astroglial processes (B,C). In MPTP-treated animals,
TS vGluT1-containing synapses displayed a large increase in astroglial
processes ensheatment (E,F). (G) Histograms comparing the surface area of
perisynaptic glia associated with vGluT1- and vGluT2-immunopositive
axo-spinous synapses in control (N = 3) and MPTP-treated (N = 3) monkeys
(mean ± SEM). The surface of the perisynaptic glia was significant larger (∗,
t-test, p = 0.017 for vGluT1 and p = 0.006 for vGluT2) in MPTP-parkinsonian
monkeys than in control. (H) Histograms comparing the ratio of the volume of
the perisynaptic glia over the total volume of spine and the axon terminals in
TS formed by vGluT1- or vGluT2-immunoreactive terminals. This ratio was
significantly larger in MPTP than in control condition (∗, t-test, p = 0.049 for
vGluT1 and p = 0.028 for vGluT2). No significant difference was found
between TS formed by vGluT1- or vGluT2-immunoreactive terminals. Total
number of reconstructed spines = 32 (8 per group). Statistics were performed
by using SigmaPlot (version 11.0). Abbreviations: Ast, astrocyte; PSD,
post-synaptic density; Sp, dendritic spine; T, axon terminal (see Villalba and
Smith, 2011b for details).

terminals (as revealed by asymmetric synaptic specializations) in
the putamen of MPTP-treated parkinsonian monkeys (Villalba
et al., 2013). To determine if this terminal loss is accounted for
by a reduction in the number of cortical vs. thalamic boutons,
antibodies raised against the vesicular glutamate transporter
1 (vGluT1) or vGluT2 were used as specific markers of
corticostriatal or thalamostriatal terminals, respectively. Findings
obtained in these studies remain controversial. On one hand,
data from chronically MPTP-treated parkinsonian monkeys
revealed that the relative density of vGluT1- or vGluT2-
positive terminals in the putamen and the caudate nucleus
is either unchanged or significantly increased compared with
controls (Raju et al., 2008). These findings are consistent
with human data showing a slight increase in the amount
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of vGluT1 protein expression in the putamen of PD patients
compared with controls (Kashani et al., 2007). However,
data from unilateral 6-OHDA-treated rats or mice indicate
a profound reduction in the number of vGluT1-positive
terminals, without any significant alteration in vGluT2-postive
thalamic boutons, in these animals (Zhang et al., 2013;
Fieblinger et al., 2014a). Whether these discrepancies are due
to differences in the toxin being used (6-OHDA vs. MPTP),
or the chronic nature of the MPTP regimen administered in
monkeys compared with the acute 6-OHDA-induced lesion
of the nigrostriatal projection in rodents remains to be
determined.

Anatomical and functional data indicate that the loss of
spines induces various forms of structural and functional
synaptic homeostatic adaptations in MSNs of parkinsonian
animals. For instance, the various components of vGluT1-
and vGluT2-positive corticostriatal and thalamostriatal synapses
undergo structural changes consistent with an increased synaptic
strength, ie increase in the volume of the spines, increase
in the size of the pre-synaptic terminals, increase in the
area and complexity of the post-synaptic densities (PSD) and
massive growth of the spine apparatus (Figures 1C–E), in
the putamen of chronically MPTP-treated monkeys (Villalba
and Smith, 2010, 2011a, 2013). Similar changes have been
associated with intraspinous increase in protein synthesis and
calcium buffering in other brain regions (Fifková et al., 1983;
Bourne and Harris, 2008; Plotkin et al., 2013), thereby providing
further evidence for increased corticostriatal glutamatergic
transmission at these remaining synapses. However, this
remains to be demonstrated using adequate electrophysiological
approaches.

In a recent study, Fieblinger et al. (2014a) used glutamate
uncaging approach at specific axo-spinous corticostriatal
synapses, and found that the intrinsic excitability of direct
pathway MSNs was increased, while that of indirect pathway
neurons was decreased, in 6-OHDA-treated mice. On the
other hand, the excitatory corticostriatal synaptic connectivity
on indirect, but not direct, striatofugal neurons was lower
in 6-OHDA-treated mice than controls. Finally, they also
reported that in neither case was the strength of corticostriatal
connections globally scaled (Fieblinger et al., 2014a). Together,
these observations indicate that striatal MSNs undergo
complex homeostatic (or pathologic) changes of glutamatergic
synapses in response to striatal DA depletion that could affect
differentially the direct and indirect striatofugal pathways
in PD.

Is the 6-OHDA-treated Rodent Model of PD
Suitable to Study Striatal Spine Plasticity in PD?
Together, these recent findings (Zhang et al., 2013;
Fieblinger et al., 2014a; Suárez et al., 2014) and previous studies
(Ingham et al., 1989, 1998; Meshul et al., 2000; Day et al.,
2006; Deutch et al., 2007; Neely et al., 2007) highlight the
complex nature of the plastic changes striatal MSNs undergo
in the 6-OHDA-treated rodent model of PD. However,
the translation of these findings to the parkinsonsian state
in humans must be achieved with caution because of the

differential pathology of striatal glutamatergic afferents between
the models under study and PD patients. Most importantly,
PD is characterized by a massive degeneration of CM/Pf
neurons (Henderson et al., 2000a,b; Smith et al., 2014a;
Villalba et al., 2014), the main sources of the glutamatergic
thalamostriatal system. The loss of these neurons and their
corresponding axonal projections to the striatum is likely to
further contribute to the synaptic homeostasis and scaling
properties of remaining glutamatergic synapses in the PD
striatum. Thus, the translation of morphological and functional
studies of glutamatergic synapses in the striatum of PD
models to the human parkinsonian condition must take into
consideration the extent of CM/Pf degeneration (Villalba et al.,
2013, 2014).

Although chronically MPTP-treated rhesus monkeys display
40–50% neuronal loss in CM/Pf (Villalba et al., 2013, 2014), the
extent of Pf neuronal loss reported in various rodent models of
PD is variable. While some authors did not find evidence for
Pf degeneration 3 months after unilateral 6-OHDA nigrostriatal
dopaminergic lesion in rats (Henderson et al., 2005; Kusnoor
et al., 2012), other studies reported significant Pf cell loss
in the same animal model (Aymerich et al., 2006; Sedaghat
et al., 2009), or after systemic MPTP administration in mice
(Freyaldenhoven et al., 1997). Some authors also showed that
intrastriatal administration of 1-methyl-4-phenylpyridinium ion
(MPP+) induces significant Pf cells damage in rats (Ghorayeb
et al., 2002a). It remains to be determined whether these
discrepancies were the result of differences in the neurotoxin
exposure protocols, animal strains or other technical differences
between these studies.

The need of animal models that include degeneration of
the thalamostriatal system from CM/Pf is warranted for future
studies of the plastic reorganization of striatal glutamatergic
afferents in PD (Smith et al., 2014b; Villalba et al., 2014). Based
on recent studies and others, it appears that MPTP toxicity
might be a more reliable tool to induce CM/Pf neuronal loss and
degeneration of the thalamostriatal system in mice and monkeys
(Ghorayeb et al., 2002b; Smith et al., 2014a,b; Toy et al., 2014;
Villalba et al., 2014).

L-DOPA-induced Dyskinesias (LID) and Striatal
Spine Plasticity
Although striatal spine loss has long been recognized in the
striatum of DA-depleted animals and PD patients, the effects
of DA replacement therapy on spine pruning, reorganization
of synapic connectivity and homeostatic plasticity remains
poorly understood. However, recent studies showed that L-
DOPA therapy partly restores some structural and functional
aspects of corticostriatal connection in rodent models of PD
(Zhang et al., 2013; Nishijima et al., 2014; Suárez et al., 2014;
Fieblinger and Cenci, 2015). Some authors, indeed, reported
that the loss of spines and vGluT1-positive terminals in the
striatum of 6-OHDA-treated rats and mice could be reversed
by chronic treatment with L-DOPA (Zhang et al., 2013;
Suárez et al., 2014). However, in animals that developed L-
DOPA-induced dyskinesia (LID), the spines displayed abnormal
synaptic relationships with vGluT1-positive terminals such
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FIGURE 3 | vGluT1-positive innervation in the monkey subthalamic nucleus (STN). (A) Light micrograph showing vGluT1-positive varicose processes.
(B) Average density (mean ± SEM; N = 3) of vGluT1-immunoreactive varicosities in the dorsolateral STN of normal and parkinsonian monkeys (∗, t-test, p = 0.012).
(C) Comparison of the average STN volume (mean ± SEM; N = 3) between normal and parkinsonian monkeys. (D) Electron micrograph showing an asymmetric
synapse (arrows) in the dorsolateral monkey STN. (E) Average density (mean ± SEM; N = 3) of vGluT1-immunopositive terminals in the dorsolateral STN of normal
and parkinsonian monkeys (∗, t-test, p = 0.02). (F) Average density (mean ± SEM; N = 3) of asymmetric synapses in the dorsolateral STN of normal and pakinsonian
monkeys (∗, t-test, p = 0.029). (G,H) Electron micrographs showing vGluT1-containing terminals forming asymmetric synapses with a spine (G) and a dendritic shaft
(H). (I) Post-synaptic targets of vGluT1-immunopositive terminals in the dorsolateral STN. No differences were found in the proportion of vGluT1-immunoreactive
terminals forming asymmetric synapses with dendritic shafts and spines in normal and parkinsonian animals. Scale bar A = 10 µm and in (D; applies also to G)
and H = 0.2 µm. Abbreviations: Den, dendrite; Sp, dendritic spine; T, axon terminal (See Mathai et al., 2015).
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that single spines often received synaptic inputs from 2 or
more vGluT1-positive terminals (Zhang et al., 2013). Because
this pathology was not found in non-dyskinetic L-DOPA-
treated animals, the authors concluded that aberrant cortical
innervation of striatal MSNs may be an important substrate
of dysfunctional neuronal communication associated with LID
(Zhang et al., 2013). Another main conclusion of this study was
that neither the 6-OHDA lesion nor the L-DOPA treatment
affected the prevalence and synaptic connections of vGluT2-
positive thalamostriatal terminals in this animal model (Zhang
et al., 2013). These observations were recently confirmed and
extended in a recent study, which showed that both direct and
indirect pathwayMSNsmanifest complex, and opposite, changes
in homeostatic plasticity that affect their average firing rate in
PD and LID states (Fieblinger et al., 2014a). Results of this
study further demonstrated that the only adaptation found to be
exclusively associated with LID was the restoration of excitatory
axo-spinous synapses on the surface of indirect pathway neurons
(Fieblinger et al., 2014a; see also Suárez et al., 2014).

As discussed above, an important shortcoming of these
studies is the lack of evidence for thalamostriatal degeneration
in the animal models used in these studies. The use of animal
models of PD with CM/Pf pathology is essential to relate the
neuroplastic properties of striatal MSNs and their glutamatergic
responses to the human PD state (Smith et al., 2014b).

Cellular, Molecular and Genetic
Mechanisms for Striatal Spine Loss in PD

Although the mechanisms underlying striatal spine loss in PD
remain unclear, there is converging evidence that intraspinous
calcium (Ca2+) dysregulation likely contributes to this pathology
(Segal et al., 2000; Sabatini et al., 2001; Oertner and Matus,
2005; Day et al., 2006; Deutch et al., 2007; Surmeier et al., 2007,
2011; Chen et al., 2008; Soderstrom et al., 2010; Surmeier and
Schumacker, 2013). The Cav1.3α1 channels on D2R-containing
neurons appear to be particularly important in mediating
the spine pruning on indirect striatofugal neurons in mice
(Day et al., 2006; Deutch et al., 2007; Surmeier et al., 2007;
Soderstrom et al., 2010; Fieblinger et al., 2014b). In line with
evidence that abnormal Ca2+ homeostasis may participate in this
pathology, striatal MSNs devoid of the Ca2+ buffering protein,
calbindin D-28k (CaB; Francois et al., 1994), such as those in
the postcommissural putamen (sensorimotor striatal territory),
display the most severe striatal spine pruning in parkinsonian
monkeys (Smith and Villalba, 2008; Smith et al., 2009b; Villalba
et al., 2009).

In vitro data suggest that the activation of the Ca2+-dependent
protein phosphatase, calcineurin, and the up-regulation of the
transcriptional activity of the myocyte enhancer factor 2 (MEF2)
and related regulatory genes (Nurr77, Arc) participate in the
loss of glutamatergic synapses and spines in the striatum
(Pulipparacharuvil et al., 2008; Tian et al., 2010; Villalba
and Smith, 2013). Evidence that cholinergic signaling through
M1 muscarinic receptors and Kir2 potassium channels may
trigger the loss of glutamatergic synapses in rodent models
of parkinsonism has also been suggested (Shen et al., 2008).

FIGURE 4 | Schematic showing morphological changes in dendritic
spines and glutamatergic afferents in striatal MSNs and projection
neurons in the STN in MPTP-treated parkinsonian monkeys. In the
striatum of parkinsonian monkeys, there is a significant reduction in the
density of Sp on MSNs, but the remaining spines and terminals display an
increase in volume. The size of the PSD at corticostriatal and thalamostriatal
synapses is also increased and more commonly perforated in parkinsonian
animals than controls. In the STN, there is an overall decrease in the
prevalence of vGluT1-positive cortical terminals in contact with dendrites and
spines of STN neurons in parkinsonian animals. Potential changes in the
ultrastructure of spines and afferent glutamatergic terminals, as shown in the
striatum, remain to be determined in the STN.

Because of its role in the regulation of neurite length and
branching, LRRK2 mutation in PD may contribute to striatal
spine pathology (MacLeod et al., 2006; Parisiadou et al., 2009; Lee
et al., 2010).

Changes in the Morphology of Astrocytes
Associated with Glutamatergic Synapses
in the Striatum of MPTP-Treated Monkeys

Data from our laboratory showed that in addition to the
structural remodeling of the pre-synaptic terminals and post-
synaptic spines at cortical and thalamic glutamatergic synapses
(Villalba and Smith, 2010, 2011a, 2013), there is a significant
growth in the extent of glial coverage of striatal glutamatergic
synapses in parkinsonian monkeys (Villalba and Smith, 2011b;
Figure 2). Perisynaptic astrocytes exhibit an interdigitated
finger-like morphology in control animals (Figure 2A), while
there is an expansion of astrocytic processes to cover a
larger extent of the perimeter of axo-spinous complexes after
MPTP-treatment (Figure 2). In MPTP-treated monkeys, the
appositions between the axo-spinous complex and the astroglial
processes are much tighter and continuous than in controls
(Figures 2E,F). These differences between the normal and
MPTP conditions were seen for both vGluT1- and vGluT2-
positive glutamatergic synapses (Villalba and Smith, 2011b;
Figures 2G,H).

A recent comparative study using 3D reconstruction in four
animal models of PD, as well as in human PD, have shown
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that in response to DA denervation, astrocytes in both the
striatum and GP occupy a larger striatal volume (Charron et al.,
2014). This increase in striatal volume occupied by astrocytes
in parkinsonism is due to an enlargement of astrocyte cell
body and processes reorganization at the level of asymmetric
synapses (Charron et al., 2014), but also to an increase in
the number of astrocytes, a change known as reactive gliosis
(Dervan et al., 2004; Henning et al., 2008; Charron et al.,
2014). These morphological and ultrastructural changes in the
perisynaptic astrocytes might underlie an active participation
of glial processes in structural plasticity in the striatum, as
previously shown in the hypothalamus (Theodosis et al., 2008)
and hippocampus (Ventura and Harris, 1999; Witcher et al.,
2007, 2010), suggesting that both glial and neuronal elements of
axo-spinous glutamatergic synapses in the primate striatum are
endowed with a high level of structural and functional plasticity.
It is likely that such a synaptic arrangement is not homogeneous
across all excitatory synapses (Ventura and Harris, 1999;Witcher
et al., 2007, 2010), suggesting that some glutamatergic synapses
may be more leaky and prone to spill over glutamate in
the extracellular medium to activate extrasynaptic glutamate
receptors than others.

These modifications in astrocytes morphology and in their
spatial relationships with glutamatergic synapses in PD models,
together with the different molecular mechanisms by which
astrocytes respond to changes in neuronal activity, suggest that
pathological changes in striatal astrocytes might play a key
role in triggering and/or contributing to the morphological and
functional changes in striatal network plasticity in parkinsonism
(Villalba and Smith, 2011b). A better understanding of glia-
neuronal communication in normal and pathological conditions
might help to develop new PD neurotherapeutic strategies.

Breakdown of the Corticosubthalamic
Projection in Parkinsonism

The striatum and the STN are the main entry points for cortical
information to the BG. Glutamatergic inputs to the STN originate
from the cerebral cortex (Monakow et al., 1978; Nambu et al.,
1996; Haynes and Haber, 2013), the thalamus (Sadikot et al.,
1992), the brainstem PPN (Lavoie and Parent, 1994) and local
axon collaterals of STN neurons (Kita et al., 1983; Kita and Kita,
2012). The parkinsonian state is associated with ultrastructural
remodeling of synaptic connections which may contribute to
activity changes in the BG. So far, such changes have been
documented for the corticostriatal, thalamostriatal and pallido-
subthalamic projections (Ingham et al., 1989; Meshul et al.,
2000; Villalba et al., 2009; Villalba and Smith, 2011a, 2013;
Fan et al., 2012). In line with evidence that the activity of
the hyperdirect corticosubthalamic projection is altered in PD
(Mathai and Smith, 2011; Yamawaki et al., 2012; Shimamoto
et al., 2013; de Hemptinne et al., 2013; Delaville et al., 2015),
we found a significant breakdown of the corticosubthalamic
projection, characterized by a profound loss of vGluT1-positive
terminals in the STN of parkinsonian monkeys (Mathai et al.,
2015; Figures 3, 4).

However, the functional impact of this pathology on the
corticosubthalamic transmission and the downstream BG-
thalamocortical circuitry remains to be clarified (Mathai et al.,
2015). As shown in the striatum, possible homeostatic (or
pathologic) changes in the strength and connectivity of
remaining glutamatergic and GABAergic terminals in the STN
might be induced (Ingham et al., 1989; Meshul et al., 2000; Smith
et al., 2009b; Villalba and Smith, 2011a,b, 2013; Fieblinger et al.,
2014a; Mathai et al., 2015). The known increase in the baseline
(Bergman et al., 1994), and the greater degree of synchrony of
STN neurons with cortical activity in PD are, indeed, in line with
aberrant changes in corticosubthalamic transmission in the PD
state (Williams et al., 2002, 2003, 2005; Moran et al., 2008; Gatev
and Wichmann, 2009; Moshel et al., 2013; Shimamoto et al.,
2013; Devergnas et al., 2014).

Thus, together with evidence for significant synaptic
remodeling and altered glutamatergic transmission of the
corticostriatal system in PD (Raju et al., 2008; Villalba and Smith,
2013; Fieblinger et al., 2014a), these findings suggest significant
changes in the integration, processing and transmission of
extrinsic cortical information to the BG in PD.

Concluding Remarks

For the past 25 years, it has been well recognized that
degeneration of the nigrostriatal DA system induces loss of spines
and complex plastic changes in the anatomical and functional
organization of glutamatergic synapses in the mammalian
striatum (Figure 4; for a review, see Villalba and Smith, 2013).
The loss of spines has been demonstrated in various animal
models and confirmed in PD patients. It has also been shown
that the extent of spine loss in the striatum is tightly correlated
with the degree of striatal DA denervation, but not with the
severity of parkinsonian motor features, at least in MPTP-
treated monkeys (Zaja-Milatovic et al., 2005; Smith and Villalba,
2008; Smith et al., 2009b; Villalba et al., 2009). Controversies
remain as to whether direct or indirect pathway neurons are
preferentially affected by this spine pathology. The animal species
and the toxin being used, the chronic vs. acute regimen of
intoxication and the time points at which observations are
being made post-lesion likely contribute to the variability of
results obtained in recent years (Ingham et al., 1989, 1998;
Stephens et al., 2005; Zaja-Milatovic et al., 2005; Day et al.,
2006; Scholz et al., 2008; Villalba et al., 2009; Suárez et al.,
2014; Toy et al., 2014). Although indirect pathway neurons
appear to be more sensitive than direct pathway neurons at
early time points after DA depletion induced by 6-OHDA or
reversible DA depleting agent like reserpine (Day et al., 2006;
Fieblinger et al., 2014a), chronic MPTP toxicity in non-human
primates and mice models of PD induces more widespread
pathological effects upon both populations of striatofugal
neurons (Villalba et al., 2009; Toy et al., 2014). In addition to
spine loss, it has become clear that striatal MSNs also undergo
a significant reduction in the length and number of dendritic
branches in rodent models of PD, and that such changes affect
invariably both populations of striatofugal cells (Fieblinger et al.,
2014a).
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The impact of striatal spine loss on the anatomical and
functional connectivity of cortical and thalamic glutamatergic
afferents has also generated significant interest in recent years,
but significant issues remain to be addressed. Although authors
agree that striatal spine loss is associated with a decrease
in the number of total striatal glutamatergic synapses in
the striatum, controversy remains as to whether these are
accounted for by the loss of cortical over thalamic synapses
(Raju et al., 2008; Villalba et al., 2013; Zhang et al., 2013;
Fieblinger et al., 2014a). In acute, 6-OHDA-treated animals,
vGluT1-positive corticostriatal terminals are selectively affected,
without any impact on thalamostriatal vGluT2-positive boutons
(Zhang et al., 2013; Fieblinger et al., 2014a), while the total
number of vGluT1-immunoreactive boutons and amount of
vGluT1 protein expression in the striatum is not significantly
affected in chronically MPTP-treated parkinsonian monkeys and
PD patients (Kashani et al., 2007; Raju et al., 2008; Villalba
et al., 2013). In regards to the impact of spine loss on the
prevalence of thalamic terminals and synaptic organization of the
thalamostriatal system, the situation remains unclear, and also
appears to be affected by the animal model being used (Kashani
et al., 2007; Raju et al., 2008; Villalba et al., 2013; Zhang et al.,
2013; Fieblinger et al., 2014a).

The concerns raised in this review about the animal model
being used to address issues related to glutamatergic plasticity in
PD is particularly important in the case of the thalamostriatal
system because of the differential extent of CM/Pf (or Pf in
rodents) cell loss in various models of PD (Freyaldenhoven et al.,
1997; Ghorayeb et al., 2002a; Henderson et al., 2005; Aymerich
et al., 2006; Sedaghat et al., 2009; Kusnoor et al., 2012; Smith
et al., 2014a,b; Villalba et al., 2014). The lack of information
about CM/Pf cell loss in some rodent models used in previous
studies of striatal synaptic plasticity is a major limiting factor
that complicates the use of this model to assess neuroplastic
properties of striatal neurons and glutamatergic afferents in
relation to PD. Because CM/Pf neuronal loss is a key pathological
feature of PD (Henderson et al., 2000a,b; Smith et al., 2014a;
Villalba et al., 2014), combined with the fact that the CM/Pf is

the main source of thalamic inputs to the striatum, we believe
that studies of striatal glutamatergic systems plasticity must be
achieved in animal models that display thalamic pathology (Toy
et al., 2014; Villalba et al., 2014).

Another interesting issue that has been put forward in recent
years in regards to striatal spine loss in PD is the fact that L-
DOPA can restore the loss of spines on subsets (mainly D2R
indirect pathway neurons) of striatal neurons in 6-OHDA-
treated rats and mice. However, the chronic use of L-DOPA
and the subsequent development of LID in this model is linked
with the development of aberrant and excessive corticostriatal
axo-dendritic and axo-spinous synapses (Zhang et al., 2013).
It is unclear as to whether this pathological plasticity of the
corticostriatal projection is also seen in other animal models of
LID or in dyskinetic patients.

Although the striatum remains the BG structure that received
most attention in studies of synaptic plasticity, recent evidence
indicates that afferents to the STN are also morphologically
and functionally disrupted in PD models. In MPTP-treated
monkeys, a significant loss of vGluT1-containing cortical
terminals has been reported, suggesting a partial degeneration of
the hyperdirect corticosubthalamic pathway (Mathai et al., 2015).
On the other hand, GABAergic GPe terminals also undergo
major plastic changes that result in an increased strength of the
pallidosubthalamic system in rodent models of PD (Fan et al.,
2012). Ongoing studies are in progress to better understand
the underlying mechanisms and the functional consequences
of these plastic changes on the transmission, integration and
processing of extrinsic information by STN neurons in PD.
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