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For several decades, cytotoxic chemotherapeutic agents were considered the basis of 
anticancer treatment for patients with metastatic tumors. A decrease in tumor burden, 
assessed by volumetric computed tomography and magnetic resonance imaging, 
according to the response evaluation criteria in solid tumors (RECIST), was considered 
as a radiological response to cytotoxic chemotherapies. In addition to RECIST-based 
dimensional measurements, a metabolic response to cytotoxic drugs can be assessed 
by positron emission tomography (PET) using 18F-fluoro-thymidine (FLT) as a radioactive 
tracer for drug-disrupted DNA synthesis. The decreased 18FLT-PET uptake is often seen 
concurrently with increased apparent diffusion coefficients by diffusion-weighted imag-
ing due to chemotherapy-induced changes in tumor cellularity. Recently, the discovery 
of molecular origins of tumorogenesis led to the introduction of novel signal transduction 
inhibitors (STIs). STIs are targeted cytostatic agents; their effect is based on a specific 
biological inhibition with no immediate cell death. As such, tumor size is not anymore 
a sensitive end point for a treatment response to STIs; novel physiological imaging end 
points are desirable. For receptor tyrosine kinase inhibitors as well as modulators of 
the downstream signaling pathways, an almost immediate inhibition in glycolytic activity 
(the Warburg effect) and phospholipid turnover (the Kennedy pathway) has been seen 
by metabolic imaging in the first 24 h of treatment. The quantitative imaging end points 
by magnetic resonance spectroscopy and metabolic PET (including 18F-fluoro-deoxy-
glucose, FDG, and total choline) provide an early treatment response to targeted STIs, 
before a reduction in tumor burden can be seen.

Keywords: chemotherapeutics, signal transduction inhibitors, magnetic resonance spectroscopy, positron 
emission tomography, ReCiST

inTRODUCTiOn

The field of medical oncology has emerged in the 1950s when various chemotherapeutic drugs were 
used to control cancer cell growth by interfering with the cell cycle and DNA replication. Later, in the 
1960s and 1970s, drugs were combined to combat the cancer at different points of the cell cycle. For 
several decades, cytotoxic chemotherapeutic agents were considered the basis of anticancer treat-
ment for patients with solid tumors and metastatic (systemic) disease. A decrease in tumor burden 
(tumor size and metastasis size/numbers), assessed by dimensional/volumetric magnetic resonance 
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FiGURe 1 | imaging platforms for treatment response to cytotoxic and cytostatic agents. For DNA disrupting agents (“Cytotoxic Chemotherapeutic 
Agents”), increased ADC values by DWI and decreased FLT and FDG uptake by PET reflect a cytotoxic treatment response due to the decreased in tumor cellularity, 
DNA synthesis and metabolism. For receptor tyrosine kinase inhibitors and PI3K/AKT/mTOR inhibition (“STIs”), a specific early decrease in glycolytic activity has 
been reported; therefore, glucose imaging using hyperpolarized 13C-pyruvate MRSI or FDG-PET is most sensitive. Inhibition of the Kennedy pathway as monitored 
by decreased total choline MRSI or 11C-/18F-choline PET is a putative marker for the treatment response of Ras/Raf/MEK/MAPK inhibitors. Glutamine and acetate 
imaging can be useful for c-myc and FASN inhibitors, respectively. For antiangiogenic agents (VEGF/VEGFR2 inhibitors), DCE-MRI is the technique of choice to 
assess decreased perfusion and vascularity. The picture was partially adapted from Munagala et al. (7).
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imaging (MRI) or computed tomography (CT), was considered 
as a radiological response to a cytotoxic treatment regimen (1, 2).

Recently, the discovery of molecular origins of tumorogenesis 
led to the introduction of novel targeted agents, the so-called sig-
nal transduction inhibitors (STIs), and their translation into the 
clinic (3–5). By focusing on molecular abnormalities, which are 
specific to the cancer cell, targeted cancer therapies have a poten-
tial to be more effective against cancer and less harmful to normal 
cells than “standard” chemotherapeutics. STIs are considered a 
cytostatic (rather than cytotoxic) treatment alternative based on 
a specific biological inhibition (rather than immediate cell death) 
(Figure 1). As such, tumor size is not a sensitive end point for 
the treatment response to STIs; novel physiological imaging end 
points are desirable (6).

Anticancer therapies are currently undergoing enormous 
changes. Unfortunately, this biological revolution in cancer 
treatment comes at a great expense; the aggregate cost of cancer 
care rose 60% since 2003 (8, 9). In 2014, the price for each new 
approved cancer drug exceeded $120,000/year of use. Therefore, 
the National Cancer Institute (NCI) has currently acknowledged 
that “there is a tremendous need to incentivize development of 
validated and accepted diagnostics in order to keep pace with 
the explosion of new, targeted drugs that are in the pipeline” 
(10). Advances in oncologic imaging pave the way for rapid 
optimization of personalized anticancer therapies through the 
non-invasive assessment of the mechanism of actions, efficacy 
and resistance development that improve clinical decision mak-
ing for novel targeted agents beyond the traditional endpoints 

of morbidity and mortality. Among other radiological platforms, 
metabolic imaging  –  based on positron emission tomography 
(PET) and magnetic resonance spectroscopy (MRS) – is particu-
larly suited for monitoring the treatment response to cytostatic 
STIs since the signal transduction pathways are directly linked 
to the aberrant metabolic phenotype exhibited in human malig-
nancies (11–16). Introduced in 1977, 18F-fluoro-deoxy-glucose 
(FDG)-PET remains the main metabolic imaging technique for 
the non-invasive assessment of glucose consumption and the 
Warburg effect (17, 18). The use of PET has been expanded by 
the introduction of other radiolabeled ligands, such as amino 
acids and nucleosides. While tracer uptake studies represent the 
main strength of metabolic PET, 1H-MRS provides complemen-
tary metabolic information on major endogenous metabolites 
(19–21). In the past 10  years, advances in hyperpolarized  
13C-MRS allowed for non-invasive assessment of metabolic 
activities in glucose, lipid, and amino acid metabolism in tumor-
bearing animals and humans (22, 23).

AnTiCAnCeR TReATMenT STRATeGieS

Cytotoxic Drugs
Herbal and other preparations have been used for cancer treat-
ment already in the Ancient World. The very first attempt to 
treat leukemia with a chemical agent (potassium arsenite) took 
place in 1865 by Heinrich Lissauer. Then, a treatment benefit 
of estrogen in prostate cancer was shown in the early 1940s. 
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TABLe 1 | Major classes of cytotoxic agents.

Cytotoxic chemotherapeutics

Mitotic poisons DnA-reactive drugs inhibitors of DnA replication Modulators of DnA topology

Vincristine (1960)
Vinblastine (1960)
Paclitaxel (1990)
Docetaxel (1995)

N2-Mustard (1950)
Cyclophosphamide (1960)
Melphalan (1965)
Mitomycin (1970)
Bleomycin (1975)
Cisplatin (1980)
Carboplatin (1985)

Methotrexate (1955)
5-Fluorouracil (1960)
Gemcitabine (1995)

Doxorubicin (1975)
Amsacrine (1985)
Topotecan (1995)
Irinotecan (2000)

TABLe 2 | Major classes of cytostatic agents.

Cytostatic signal transduction inhibitors

Receptor tyrosine kinase 
inhibitors

Pi3K/AKT/mTOR  
inhibitors

Ras/Raf/MeK/MAPK 
inhibitors

Antiangiogenic 
(veGF/veGFR2)

Hormone therapy 
(estrogen/androgen)

immune checkpoint 
inhibitors

 – Imatinib (PDGFR)
 – Trastuzumab (Her2)
 – Lapatinib (Her2)
 – Pertuzumab (Her2)
 – Gefitinib (EGFR)
 – Erlotinib (EGFR)
 – Cetuximab (EGFR)
 – Panitumumab (EGFR)
 – Picropodophyllin (IGF-1R)
 – Linsitinib (IGF-1R)
 – Pazopanib (multi)

 – Everolimus (mTOR)
 – Temsirolimus (mTOR)
 – Enzastaurin (PI3K)
 – Afuresertib (AKT)

 – Sorafenib (Raf)
 – Dabrafenib (BRAF)
 – Trametinib (MEK)
 – Selumetinib (MEK)
 – Binimetinib (MEK)

 – Bevacizumab 
(VEGF)

 – Axitinib 
(VEGFR2)

– Estrogen receptor
 – Tamoxifen
 – Toremifene
 – Fulvestrant
– Androgen receptor
 – Milutamide
 – Finasteride

Nivolumab (anti-PD-1)
Pembrolizumab 
(anti-PD-1)
Pidilizumab (anti-PD-1)
MPDL3280A 
(anti-PD-L1)
BMS-936559 
(anti-PD-L1)
MEDI4736 (anti-PD-L1)
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Shortly after, nitrogen mustard (mustine), now considered as 
truly the first chemotherapeutic agent, was discovered and 
applied for the treatment of lymphomas and other solid tumors. 
Later, with the elucidation of the double-helical structure of 
DNA in 1953, it was shown that nitrogen mustard chemically 
reacts with DNA (24). This discovery had revolutionized the 
treatment of various cancers and resulted in a rapid develop-
ment of several cytotoxic chemotherapeutics, which affect the 
integrity of the cell’s genetic material (25). As such, most of 
classic chemotherapeutic drugs act in a cytotoxic manner, kill 
cells that divide rapidly, which includes cancer cells, immune 
cells, gastrointestinal (GI) tract, hair follicles, and result in a 
wide range of serious side effects to normal cells with high 
replication rate, including myelosuppression, GI toxicity, and 
alopecia (26–28).

Most of the cytotoxic chemotherapeutic drugs affect DNA 
synthesis or cell division and are commonly divided into four 
major classes (29–33): (i) mitotic poisons (preventing microtu-
bule functions), (ii) DNA-reacting drugs (chemically modifying 
DNA as alkalyting agents), (iii) inhibitors of DNA replications 
(acting as antimetabolites for pyrine, pyrimidine, and thymine 
synthesis), and (iv) agents that change DNA topology (topoi-
somerase inhibitors and cytotoxic antibiotics) (Table 1).

Cytostatic Targeted Agents
The discovery of molecular targets has enabled the development 
of new and potentially more effective treatments for metastatic 
disease with considerably low toxic side effects (28). Due to 
our improved understanding of cancer biology and specific 

onco-pathways that lead to uncontrolled cell proliferation, the 
main focus of anticancer treatment strategies has shifted from 
cytotoxic chemotherapies (which lead to cell death) to cytostatic 
targeted STIs. This has resulted in new requirements for phar-
macodynamic markers (including imaging-based end points) 
for therapy response and resistance development to STIs (34). 
Oncologic imaging represents an ideal technology to answer 
these questions non-invasively and in real time (35–37).

Most of the targeted agents interfere with proteins that are 
involved in signal transduction processes. Progressive disease, the 
process of tumor growth, angiogenesis, invasion, and metastasis,  
is largely regulated by circulating growth factors and their bind-
ing to receptor tyrosine kinases (38, 39). Inhibition of these 
signaling pathways as a therapeutic approach has gained a lot 
of attention and current strategies include: antigrowth factor 
antibodies, receptor antagonists, anti-receptor monoclonal anti-
bodies, and small-molecule tyrosine kinase inhibitors (24, 40). 
The use of molecularly targeted anticancer drugs began with the 
introduction of trastuzumab and imatinib, which target HER2/
neu [human epidermal growth factor (EGF) receptor 2] and BCR-
ABL (from Philadelphia chromosome)/PDGFR (platelet-derived 
growth factor receptor)/c-Kit (stem cell growth factor receptor), 
for the treatment of breast cancer and chronic myeloid leukemia, 
respectively (41–43). Some of the signal transduction pathways 
commonly altered in the malignant phenotype include various the 
upstream receptor tyrosine kinases, such as vascular endothelial 
growth factor (VEGF), EGF, insulin-like growth factor (IGF1), 
and PDGF, as well as downstream signaling kinases, specifically, 
PI3K/AKT/mTOR and Ras/Raf/MEK/MAPK pathways (38, 
44–48) (Table 2).
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iMAGinG TReATMenT ReSPOnSe

Response evaluation Criteria in  
Solid Tumors
In the past, anatomical imaging using plain radiographs, CT, 
MRI, and ultrasound (US) has been applied to assess the effi-
cacy of cytotoxic chemotherapeutics based on lesion numbers 
and tumor size. Response evaluation criteria in solid tumors 
(RECIST) to measure lesion diameters have been the “gold 
standard” end point for cytotoxic agents for decades (49–51). 
Once target lesions are measured using single linear summation 
(lesion diameter by RECIST) or the bilinear volumetric approach 
[World Health Organization (WHO)], the treatment response 
is usually assigned as complete response (CR), partial response 
(PR, >30% linear decrease), stable disease (SD), or progressive 
disease (PD, >20% linear increase) (52). Since the introduc-
tion of the most recent version (RECIST 1.1) in 2009, several 
weakness areas have been identified, including the absence of 
potential early indicators of response, such as functional imag-
ing, the scarceness of validation in rare tumors, and the lack of 
validation for novel targeted agents. As such, attempts to optimize 
the RECIST criteria are still needed to accurately evaluate tumor 
responses.

Advanced imaging of Cytotoxic Response
Introduction of diffusion-weighted imaging (DWI) to assess 
tumor cellularity was the next step in bringing imaging endpoints 
from a simple volumetric measurement to a functional assess-
ment of therapy response. Tissues with high cellularity have 
restricted water diffusion, which can be quantitatively assessed 
by calculation of water apparent diffusion coefficients (ADC) 
from DWI, which are considerably low in fast proliferating 
tumors (53–56). Aggressive tumor and metastatic lesions are 
repeatedly reported to have ADC values below 1.2 × 10−3 mm2/s. 
A decrease in tumor cellularity and induction of cell death by 
cytotoxic chemotherapeutics results in increased ADC values, 
and increased ADC values have been reported as imaging bio-
markers for chemotherapy response (57–60). For example, in 
breast cancer patients, an increase in ADC values in responders 
(as early as one cycle of neoadjuvant chemotherapy) is a good 
predictor for the later decrease in MRI tumor diameters (59).

Alternative imaging platforms for cytotoxic response are 
based on metabolic PET. Malignant tissues are chiefly composed 
of rapidly dividing cells, which exhibit highly upregulated 
DNA synthesis. 18F-fluoro-3-deoxy-thymidine (18FLT) is a PET 
tracer for tumor cell proliferation (based on the high thymidine 
uptake by proliferating cells in the pyrimidine salvage path-
way during S-phase). Although not highly specific (61, 62), a 
decreased signal intensity in 18FLT-PET can be observed when 
DNA synthesis is disrupted by chemotherapeutic agents, often 
simultaneously with a profound DWI response by MRI (63–65). 
Another PET application is based on the fact that cancer cells 
use large amounts of glucose as a direct source of energy to 
permit the exaggerated utilization of amino acids and nucleo-
sides in the synthesis of DNA. The radioactive glucose analog 
FDG is the most widely used tracer in oncologic PET/CT to 

assess metabolic cancer aggressiveness based on high glucose 
uptake and metabolism through high GLUT-1 transporters 
and hexokinase expression/activity (66). It has been shown 
that in patients with lung, breast, head-and-neck, esophageal, 
colorectal cancers, and lymphoma, the standardized uptake 
values of FDG decrease in responding tumors after one cycle 
of chemotherapy (18, 67).

imaging in Radiation Oncology
Radiation therapy is used as part of cancer treatment, mostly in 
combination with systemic chemotherapy, in roughly 50% of all 
cancer cases. It is especially effective in head-and-neck, breast, 
prostate, cervical, and skin cancer, while colorectal cancer, soft 
tissue sarcomas, and high-grade gliomas usually show only a lim-
ited response rate. The posttreatment effects of radiotherapy are 
attributed to tumor inflammation, cell necrosis and often increased 
angiogenesis (68, 69). Clinically, FDG-PET/CT is frequently 
acquired at the baseline for radiation treatment planning since 
high metabolic activity is regarded as a positive predictive factor 
for treatment response (70). A profound metabolic response, as 
detected by decreased FDG uptake values on postradiation PET/
CT scans, has correlated with high progression-free survival rates 
in almost all types of cancer (71–73). Hyperpolarized MRS using 
[1-13C]-pyruvate also showed a significant decrease in lactate pro-
duction as early as 96 h after irradiation in orthotopic rat glioma 
models (74) and colorectal flank xenografts (75).

Metabolic imaging of Signal Transduction 
inhibition
Changes in tumor size, the “gold-standard” of tumor response for 
cytotoxic chemotherapeutic agents, are often not useful in moni-
toring therapy response in the first cycles of STI-based therapy. 
Humanized monoclonal antibodies and small-molecule receptor 
tyrosine kinase inhibitors have been developed to target epider-
mal growth factor receptors (EGFR), platelet-derived growth 
factor receptor (PDGFR), and insulin-like growth factor recep-
tor (IGF-1R), which are overexpressed in a significant number 
of human malignancies. These inhibitors of the receptor activity 
include gefitinib, erlotinib, imatinib, cetuximab, and trastuzumab 
and have the most profound metabolic effects by inhibiting both 
glucose and choline metabolism, which are two main metabolic 
hallmarks of cancer (76–78). Therefore, the imaging response 
to receptor inhibitors has been successfully monitored  –  both 
preclinically and clinically  –  using glucose-based (FDG-PET 
and hyperpolarized 13C-MRS) (79–89) and choline-based 
(1H-/31P-MRS and choline-PET) metabolic imaging (90–92). The 
metabolic response on FDG-PET was seen as early as 8 days after 
initiation of treatment (93).

Upstream receptor upregulation leads to the downstream 
activation of two main intracellular onco-pathways: the GTPase 
Ras/Raf/MEK/MAPK and the lipid kinase PI3K/AKT/mTOR 
pathways. It has been convincingly shown that the PI3K/AKT/
mTOR pathway directly downregulates glucose metabolism: a 
significant decrease in glucose uptake, lactate production, and 
glycolytic enzyme expression has been seen with several mTOR 
(94–97) and PI3K inhibitors (98, 99). 13C-MRSI measurements 
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of the conversion of hyperpolarized [1-13C]-pyruvate into 
lactate have been used to image the decrease in tumor LDH 
activity due to the inhibition of the PI3K/AKT/mTOR pathway. 
Confirming these MRS data, the decreased FDG uptake was 
seen on PET scans upon mTOR/PI3K inhibition (97, 100, 
101). Most recently, the US Centers for Medicare and Medicaid 
Services (CMS) have approved the coverages of FDG-PET/CT 
for treatment response in most solid tumors, especially for the 
treatment strategies based on receptor tyrosine kinase inhibi-
tors and PI3K/AKT/mTOR mediated pathways (88). FDG-PET 
is intrinsically a quantitative imaging technique for early STI 
treatment response based on calculations of the standardized 
uptake value (SUV) of FDG uptake (77, 97). An improved 
quantification of treatment response based on decreased SUVs 
has been introduced as the PET response criteria in solid 
tumors (PERCIST 1.0) (102).

In contrast, MEK inhibitors, with MEK being the main 
therapeutic target from the Ras/Raf/MEK/MAPK pathway, do 
not exhibit a considerable glycolytic effect as revealed by FDG-
PET and hyperpolarized MRS (64, 103, 104), but significantly 
reduce choline metabolism (104–106). Choline is a precursor 
of phosphatidylcholine, the major cell membrane phospholipid. 
Ras/Raf/MEK/MAPK pathway inhibition leads to the decrease 
in choline transporters and might also influence the activity of 
choline kinase (CHKα) leading to a significant decrease of the 
total choline peak detected by MRS. 11C- or 18F-choline PET/
CT can be used to detect a significant decrease in tracer uptake 
following treatment with various targeted STIs, especially those 
from the Ras/Raf/MEK/MAPK pathway (107).

While the PI3K/AKT/mTOR pathway is considered to be 
“glucose-dependent,” recent studies have shown that the MYC 
oncogene, which encodes a master transcription factor c-Myc, 
regulates glutamine catabolism to fuel growth and prolif-
eration of cancer cells through upregulating glutaminase (GLS) 
(108–110). The first success in imaging glutaminase activity by 
MRS was achieved using hyperpolarized 13C-glutamine (111). 
Recently, 11C- and 18F-labeled glutamine has been synthesized 
and successfully utilized for non-invasive PET detection of 
c-Myc tumors in rodent models (112, 113). In addition, recent 
in  vitro MRS studies with c-Myc overexpressed breast cancer 
cells showed a significant suppression of glutaminolysis when 
treated with aminooxyacetate, an inhibitor of aminotransferases 
involved in amino acid metabolism (114, 115). Several c-Myc 
inhibitors are now in preclinical testing, and glutamine-PET 
will be an obvious technique of choice for monitoring metabolic 
treatment response.

Positron emission tomography measurements of the uptake 
and trapping of 11C-acetate, due to the increased expression of 
fatty acid synthase (FASN), have been used to detect prostate 
cancer and hepatocellular carcinoma – two cancers where FDG-
PET evaluations have proven to be challenging or non-effective 
(116–118). The use of 11C-acetate PET/CT can be useful while 
assessing treatment response to FASN and fat oxidation inhibi-
tors, such as orlistat and etomoxir, in prostate cancer (119, 120).

Finally, the therapeutic efficacy of antiangiogenic agents target-
ing the VEGF/VEGFR2 pathway can be monitored using dynamic 
contrast-enhanced (DCE)-MRI (121–123). The time-dependent 

signal enhancement on dynamic T1-weighted MRI reflects 
intratumoral contrast delivery after an intravenous injection of 
gadolinium contrast and is proportional to tumor perfusion and 
vascularity. A dramatic decrease in T1-enhancement, calculated 
as decreased gadolinium transfer constant, Ktrans, or the decreased 
area under the enhancement curve, AUC, was seen after tumor 
treatment with VEGF antibodies, such as bevasizumab, or 
VEGFR2 tyrosine kinase inhibitors.

imaging of Hormone- and immune-Based 
Therapies
In addition to cytotoxic DNA-interfering agents and cytostatic 
STIs, other classes of anticancer drugs have been developed. 
The most promising are hormones and hormone antagonists 
for breast, prostate, and endocrine tumors. 18F-labeled PET 
tracers for androgen and estrogen receptor imaging have been 
developed and tested in animal models (124, 125); 18F-fluoro-
estradiol (FES) is undergoing clinical trials to monitor early 
treatment response to aromatase inhibitors, such as tamoxifen 
and fulvestrant, in ER+ breast cancer patients (126, 127). 
Finally, the most exciting area in anticancer treatment lies in 
cancer immunotherapy and novel immunomodulatory tar-
geted agents (128). The inhibitors of the programed cell death 
receptor PD-1 and its ligands PDL-1, such as nivolumab and 
pembrolizumab, have recently shown a promising antitumor 
activity in melanoma and lung cancers and, to some degree, 
in triple-negative breast cancers (129–131). The most recent 
report from the phase Ib on pembrolizumab in patients with 
advanced melanoma clearly demonstrated that conventional 
RECIST criteria are not appropriate for the adequate assess-
ment of immune response and might underestimate the benefit 
of the immune checkpoint blockade in 15% of treated patients 
leading to premature cessation of treatment (132). However, the 
metabolic aspects of this activated antitumor immune response 
are still to be elucidated.

COnCLUSiOn

For “classic” chemotherapeutic agents, increased ADC values 
by DWI reflect an early cytotoxic treatment response due to 
decreased tumor cellularity and are an attractive alternative to 
volumetric imaging. For novel STIs, physiological and metabolic 
imaging protocols should be carefully chosen based on a particu-
lar signal transduction pathway involved. For receptor tyrosine 
kinase inhibitors and PI3K/AKT/mTOR inhibition, a specific 
decrease in glycolytic activity has been reported; therefore, 
glucose imaging using hyperpolarized 13C-pyruvate MRSI or 
FDG-PET is most sensitive. Inhibition of the Kennedy pathway 
as monitored by decreased total choline MRSI or 11C-/18F-choline 
PET is a putative marker for the treatment response of Ras/Raf/
MEK/MAPK inhibitors. For antiangiogenic agents (VEGF/
VEGFR2 inhibitors), DCE-MRI is the technique of choice to 
assess decreased perfusion and vascularity.

Introduction of novel targeted STIs, including immune 
checkpoint inhibitors, requires a robust validation of novel 
quantitative imaging end points from PET, MRS, and other 
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supporting imaging platforms that characterize early physi-
ological and metabolic treatment response before a reduction 
in tumor burden can be seen (6). Using medical imaging to dis-
tinguish responders versus non-responders at early time points 
can contribute to improved tailoring of therapy in individual 
cancer patients. The new term, radiogenomics, has recently 
been introduced to link quantitative physiological imaging end 
points with molecular markers of signal transduction pathway 
inhibition (133).
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