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The blood–brain barrier (BBB) is a specialized vascular interface that restricts the entry
of many compounds into brain. This is accomplished through the sealing of vascular
endothelial cells together with tight junction proteins to prevent paracellular diffusion. In
addition, the BBB has a high degree of expression of numerous efflux transporters which
actively extrude compounds back into blood. However, when a metastatic lesion develops
in brain the vasculature is typically compromised with increases in passive permeability
(blood-tumor barrier; BTB). What is not well documented is to what degree active efflux
retains function at the BTB despite the changes observed in passive permeability. In
addition, there have been previous reports documenting both increased and decreased
expression of P-glycoprotein (P-gp) in lesion vasculature. Herein, we simultaneously
administer a passive diffusion marker (14C-AIB) and a tracer subject to P-gp efflux
(rhodamine 123) into a murine preclinical model of brain metastases of breast cancer.
We observed that the metastatic lesions had similar expression (p > 0.05; n = 756–1214
vessels evaluated) at the BBB and the BTB. Moreover, tissue distribution of R123 was
not significantly (p > 0.05) different between normal brain and the metastatic lesion. It
is possible that the similar expression of P-gp on the BBB and the BTB contribute to this
phenomenon. Additionally we observed P-gp expression at the metastatic cancer cells
adjacent to the vasculature which may also contribute to reduced R123 uptake into the
lesion.The data suggest that despite the disrupted integrity of the BTB, efflux mechanisms
appear to be intact, and may be functionally comparable to the normal BBB. The BTB is a
significant hurdle to delivering drugs to brain metastasis.
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INTRODUCTION
The successful treatment of central nervous system (CNS) tumors
and metastases using chemotherapy depends on the ability of
therapeutic concentrations of drug to cross the blood–brain
barrier (BBB). More than 98% of potential CNS active anti-
cancer drugs fail in preclinical work and or clinical trials because
of inadequate BBB penetration (Pardridge, 2007). Clinically
this results in many anticancer agents failing to substantially
reduce tumor burden and or significantly prolong survival
(Deeken and Loscher, 2007).

The microvasculature of the brain is a unique anatomical
structure which serves as a homeostatic and regulatory barrier
between the blood and the brain parenchyma (Hawkins and
Davis, 2005). Specifically, endothelial cells that line the blood
vessels of the brain capillaries are fused together by numerous
tight junction protein complexes, which restrict blood compo-
nents from passively diffusing between the cell margins to gain
entry into brain. The tight junction protein complexes consist of a
number of proteins such as zonula occludins, junctional adhe-
sion molecules, and claudins which function as a unit to seal

the endothelia margins. Further the outside of the brain cap-
illary is surrounded by astrocytic foot processes and pericytes
that also contribute to the restriction of paracellular diffusion
(Abbott et al., 2010).

Further restricting the brain entry of a large number of drugs
and drug classes are efflux transporters at the BBB. Efflux trans-
porters are richly expressed in the brain vasculature and have
been shown to restrict the accumulation of antiepliptics, antide-
pressants, and antipsychotics (Schinkel et al., 1995; Loscher and
Potschka, 2005). Multiple efflux transporters at the BBB act
to actively extrude or prevent drug accumulation into brain,
these include P-glycoprotein (P-gp; ABCB1) (Schinkel et al.,
1996), breast cancer resistant protein (BCRP; ABCG2; Polli et al.,
2009), multidrug resistance associated proteins (MRP; ABCC1-
6; Breedveld et al., 2005), and organic anion transporters (OATs;
Hagenbuch and Meier, 2004).

The net effect of the anatomical and molecular features of the
BBB is that to a large degree it restricts drug movement from
blood into brain. But some drugs are able to penetrate the BBB.
Drug and/or solute permeation across the BBB is mostly limited
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to low molecular weight lipid-soluble molecules. Molecules that
are large (typically >700 Da), protein bound or are hydrophilic
will have difficulty crossing the BBB and accumulating in brain to
a sufficient degree (Lipinski et al., 2001).

However, the vasculature within a brain tumor is different
from the normal BBB. Previously it has been shown that the
blood-tumor barrier (BTB) vasculature has disrupted integrity
compared to the intact BBB. This disruption can allow small
molecule to accumulate into lesions up to 30–100-fold more than
the accumulation of the molecule in normal brain (Lockman et al.,
2010; Taskar et al., 2012). While the degree of breakdown at the
BTB does correlate with increases in drug uptake it is not clearly
defined whether efflux pumps continue to limit drug uptake into
metastatic lesions (Gallo et al., 2003). It has been previously shown
that the BTB expresses P-gp (Cordon-Cardo et al., 1990); however,
the expression of P-gp may be variable among different tumors
types (Henson et al., 1992). In addition to P-gp expression at
the BTB, many cancers have been shown to express functional
P-gp in vivo which may restrict the cellular accumulation of
chemotherapuetics.

Herein we set out to determine the expression and function of
P-gp in a preclinical model of brain metastases of breast cancer
using quantitative fluorescence microscopy and autoradiography.
We observed that P-gp is expressed at the BTB in brain metastases
at nearly similar levels to the BBB. In addition, P-gp is highly func-
tional in limiting the lesion accumulation of the P-gp substrate,
Rhodamine 123 (R123) despite significant passive permeability
increases.

MATERIALS AND METHODS
CHEMICALS
R123 was purchased from Molecular Probes Invitrogen (Eugene,
OR, USA). Verapamil was purchased from Sigma (St. Louis, MO,
USA). Cyclosporine A was purchased from Tocris Biochemicals
(St. Louis, MO, USA). 14C-labeled aminoisobutyric acid (AIB)
was purchased from American Radiolabelled Chemicals (St. Louis,
MO, USA). All other chemicals used were of analytical grade and
were used as supplied.

ANIMALS
Female NuNu mice (∼24 g; 8 weeks of age) were purchased from
Charles River Laboratories (Kingston, NY, USA) and were used
for all the perfusion experiments done in this study. All studies
were approved by the Animal Care and Use Committee and were
performed in accordance with the NIH Guidelines for the Care
and Use of Laboratory Animals.

IN SITU MOUSE HEART PERFUSION TECHNIQUE
The in situ mouse heart perfusion technique was utilized to eval-
uate brain uptake of R123 (Takasato et al., 1984; Lockman et al.,
2003a) Mice were anesthetized with ketamine/xylazine (100 and
8 mg/kg, respectively) and the heart exposed. Body tempera-
ture was monitored and maintained at 37◦C using a heating pad
attached to a feedback device (YSI Indicating Controller, Yel-
low Springs, OH, USA). Prior to insertion of the cannula, the
right cardiac atrium was cut to prevent venous return. Can-
nulation of the left cardiac ventricle was done using butterfly

syringe (28G) attached to a perfusion apparatus. Perfusion fluid
was pumped into the left cardiac ventricle by a cannula at a
constant rate of 2.5 mL/min (Dagenais et al., 2000) using a
Harvard Model 944 dual channel pump (Harvard Apparatus,
South Natick, MA).

The perfusion fluid consisted of HCO3 buffered physiological
saline, containing 128 mM NaCl, 24 mM NaHCO3, 4.2 mM KCl,
2.4 mM NaH2PO4, 1.5 mM CaCl2, 0.9 mM MgSO4, and 9 mM
glucose (pH ∼7.35; [Na] = 154.4 mM). All solutions were filtered,
oxygenated, warmed to 37◦ C, and adjusted to pH 7.35 prior to
perfusion. To determine initial brain uptake of R123, perfusion
fluid containing R123 (50 μg/mL) was infused into the systemic
circulation for 30–120 s. At the end of each experiment, mice were
sacrificed, and the brain was rapidly removed (<60 s) from the
skull. The brain was flash frozen in isopentane (−65◦C). Concen-
tration of the fluorophore (R123) in brain was determined using
fluorescent microscopy and regional permeability was expressed
by the unidirectional transfer constants, Kin (mL/s/g) derived from
Eq. 1.

QUANTIFICATION OF R123 USING FLUORESCENCE MICROSCOPY
Fluorescence was observed with an Olympus MVX10 stereomi-
croscope (objective: 2×, NA 0.5) with an optical zoom range from
0.63 to 12.6. The excitation and emission of R123 was obtained
using a GFP filter (excitation/band pass filter of 470/40, emis-
sion/band pass filter of 525/50 and dichromatic mirror at 495 nm;
Chroma Technology, Bellow Falls, VT, USA). Tissue sections of
20 μm were obtained at −23◦C using a cryotome (Leica CM3050S,
Leica Microsystems, Buffalo Grove, IL, USA), mounted on charged
glass slides, and kept at −23◦C. Data were analyzed using quan-
titative fluorescence microscopy and all images were obtained
with 15 ms exposures, though a 2.0 objective at 4× magnifi-
cation (Olympus MVX10) with a monochromatic cooled CCD
scientific camera (Retiga 4000R, QImaging, Surrey, BC, Canada).
Slidebook® 5 software (Intelligent Imaging Innovations, Denver,
CO, USA) was utilized to determine sum intensity per gram of
brain which then converted into concentration of dye per gram
of brain using the brain homogenate standards. The voxel by
voxel sum intensity of fluorescence for brain homogenate sam-
ples was obtained with the 2× objective. The optical zoom range
was maintained at 4× for a total optical magnification of 8×.
The sum intensity per gram of brain homogenate was obtained
using a set exposure time of 15 ms with camera gain settings of
615. The total fluorescence intensity signal for each concentra-
tion was then plotted as a function of grams of brain which was
calculated using the area in microns squared multiplied by the
thickness of the brain sample (20 μm) to obtain a total brain vol-
ume that was analyzed. The brain volume (μm3) was multiplied
by the density of brain tissue (1.04 g/cm3) as similarly reported by
(Tengvar et al., 1983) to obtain a weight of brain tissue that was
analyzed.

PREPARATION OF BRAIN STANDARDS
To calculate the concentration of the R123 in brain, standard
curves were generated in rat brain homogenates. Briefly, 100 μL
of standard solution of the dye was added to each of 500 mg of the
brain and homogenized. The homogenized mass was flash frozen
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in isopentane (−80◦C) and sliced into 20 μm sections using a
cryostat −23◦C and mounted onto glass, superfrost slides. The
slices were analyzed using quantitative fluorescence microscopy
and the sum intensity per gram of brain homogenate was plotted
against concentration of the dye.

KINETIC ANALYSIS
Unidirectional uptake transfer constants (K in) were calculated
from the following relationship to the linear portion of the uptake
curve:

Q∗/C∗ = KinT + V0 (1)

where Q* is the quantity of fluorophore (R123) in brain (μg/g)
at the end of perfusion, C* is the perfusion fluid concentration
of fluorophore (μg/mL), T is the perfusion time (s) and V0 is
the extrapolated intercept (T = 0 s; “vascular volume” in mL/g).
After determination of a perfusion time that allowed adequate
amount of fluorescent marker to pass into brain and yet remained
in the linear uptake zone, K in was determined in single time-point
experiments as:

Kin = [Q∗ − V0C∗]/C∗T]
(Takasato et al., 1984; Smith and Takasato, 1986).

ANTIBODY STAINING
Tissues were rehydrated in PBS and then fixed in 4% paraformalde-
hyde (PFA) for P-gp (Abcam, Cambridge, MA), cytokeratin
(Abcam) and CD31 (BD Pharmingen, San Jose, CA), ice-cold
methanol for ABCB1 (Santa Cruz Biotechnology), CD31 (BD
Pharmingen). After three PBS washings (5 min), slides were
blocked with 4% goat serum and 0.2% Triton-X 100 (1 h). After
blocking, primary antibodies were added, followed by overnight
incubation at 4◦C. The next day, the slides were washed and sec-
ondary antibodies and DAPI (1 mg/mL) were added (1 h). Slides
were again washed, DAKO mounting medium was added, and
coverslips were applied.

RESULTS
To determine if P-gp expression is present in the vasculature
of brain metastases, we analyzed the brains of tumor bearing
mice using immunofluorescence staining for both P-gp and the
vascular marker CD31 to quantify the amount of colocaliza-
tion (Figure 1). There was significant expression of P-gp at
the BBB and BTB (Figure 1B). Overall there was no difference
between the fluorescent intensity of P-gp staining in the CD-31
defined regions in tumor vasculature (22.9 + 0.4 A.U.; n = 756
vessels) and in the normal brain vasculature (22.6 + 0.3 A.U.;
n = 1214). In addition, there was positive P-gp staining that did
not co-localize to the vasculature, but surrounded metastasis cells
suggesting that P-gp may also be present on the metastatic cancer
cells.

We measured P-gp function by the time dependent accumula-
tion of the fluorescence P-gp substrate R123 according to previous
methodology (Mittapalli et al., 2013). Using fluorescent brain
standards we determined the blood to brain unidirectional trans-
fer coefficient (K in) of R123 in normal brain and in metastatic
lesions by calculating the concentration of R123 divided by the
concentration in the perfusate and plotted this over time (30–120 s;
Figure 2A). We then applied a previously calculated correction
to the vascular volume by perfusion of non-permeable [14C]-
sucrose and measuring its vascular space (0.015 ± 0.002 mL/g). We
observed that the uptake of R123 was linear within the perfusion
time with a K in of 0.12 ± 0.03 μL/s/g. To determine if we could
inhibit P-gp mediated efflux of R123, we added P-gp inhibitors
verapamil and cyclosporine A (Choi and Li, 2005; Breedveld et al.,
2006; Baumert and Hilgeroth, 2009) at various concentrations
to the R123 perfusate in separate experiments (Figure 2A).
Upon co-perfusion of R123 and each inhibitor, there was an
increase in R123 permeability; Cyclosporin A (2.4 ± 0.5 μL/s/g);
and Verapamil (2.2 ± 0.2 μL/s/g)] indicating that R123
uptake into brain is limited by the efflux function of P-gp at
the BBB.

We then plotted R123’s LogD (octanol/water coefficient;
pH = 7.4) and observed K in in comparison to known passive

FIGURE 1 | (A) Representative images of the co-localized expression of P-gp
(red) in a capillary in normal brain (top row) and a blood vessel in a 231Br brain
metastasis (bottom row) are shown. Endothelial nuclei as well as the nuclei of
the 231Br lesions are shown in blue (DAPI). Blood vessels (CD-31 expression)

in both sections are shown in green (Alexa Fluor 488). P-gp expression is
shown in red (Alexa Fluor 594). (B) The bar graph shows the relative P-gp
expression per vessel as defined by CD31 stained regions. Mean + SEM;
BTB; n = 756 vessels and BBB n = 1214 vessels).
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FIGURE 2 | (A) The K in of R123 in the presence of the known P-gp inhibitors,
cyclosporin A and verapamil, increases brain distribution (as reported by the
K in) by >10-fold. All data represent mean ± S.E.M for total brain; n = 3–5 for
all groups. Statistics: one-way ANOVA; Dunnett’s. (B) The relationship
between LogD (octanol/water coefficient; pH = 7.4) and observed K in is used

to profile a molecule or drug’s mechanism of distribution into brain.
Compounds that are known to cross the BBB via passive diffusion are plotted
using gray squares and those subject to efflux are plotted with gray triangles.
R123 (open circle) falls below ∼3 log units the line of identity for passive
permeability indicating it may be subject to efflux.

permeability compounds (Begley, 1996) and efflux substrates
(Summerfield et al., 2007; Figure 2B). Molecules and drugs that
passively diffuse into brain exhibit a linear relationship between
their LogD (octanol/water coefficient) and their observed Log
K in while molecules which are subject to efflux will exhibit
observed Log K in values well below the value predicted by its
LogD (Figure 2B). R123 has a LogD of 1.51 (Forster et al.,
2012) and Log K in of −3.93 (calculated from observed K in;
Figure 2A) which places R123 several orders of magnitude
below a passively diffusing molecule’s profile which supports
the evidence of R213’s restriction from brain via an efflux
transporter.

To determine BTB passive permeability and whether P-gp
influences R123 uptake into brain metastases of breast cancer,
tumor-bearing mice were injected with 14C-AIB (passive per-
meability tracer) which was allowed to circulate for 10 min
before a 2 min R123 perfusion, which was followed by sacrifice
(Figure 3). Autoradiography analysis of the brains revealed ele-
vated permeability to 14C-AIB (∼4.9-fold increase). The passive
permeability marker tracer’s uptake did not correlate (r2 = 0.17
for AIB) with metastases size (Figure 3A). R123 uptake, how-
ever, was not different from that of normal brain on average
(∼0.98-fold change) in metastatic lesions and had no correlation
(r2 = 0.033) to metastasis size (Figure 3B). R123 permeabil-
ity did not correlate passive permeability changes as measured
by 14C-AIB (r2 = 0.0008) (Figure 3C) accumulation suggesting
that R123 remains restricted from the brain parenchyma via
P-gp mediated efflux. The observed R123 K in value for normal
brain (BDT; brain distant to tumor) regions of metastases bear-
ing mice (K in = 0.11 ± 0.06 × 10−1μL/s/g) (Figures 4A–C) was
consistent with previous K in measurements in tumor-free mice
(Figure 1B). And, the K in of R123 in the BTB (within metas-
tases) was 0.12 ± 0.003 μL/s/g which was not different than that
of normal brain (p > 0.05).

DISCUSSION AND CONCLUSION
In the current study, we present data suggesting P-gp retains its
efflux function at the BTB despite a disruption in the integrity
of the BBB induced by the presence of a metastatic lesion. Of
notable methodology, to the best of our knowledge we are the
first to combine quantitative fluorescence microscopy to measure
R123 P-gp mediated efflux and quantitative autoradiography to
measure changes in BTB passive permeability (14C-AIB) in the
same brain slice. This method is able to directly shed light on two
independent processes occurring at the BTB.

The utilization of R123 to evaluate P-gp function is well estab-
lished (Hegmann et al., 1992). However, there is less evidence
regarding R123’s affinity and efflux transport to other trans-
porters that contribute to drug restriction to brain. R123 has
been reported to be subject to transport by BCRP (Doyle et al.,
1998), and OCT 1 & 2 (Jouan et al., 2012), and MRP2 (Munic
et al., 2011). Though studies using specific transporter inhibitors
at correct concentrations show P-gp primarily transports R123
and restricts accumulation into brain (Wang et al., 1995). More-
over, the magnitude of R123 efflux by P-gp is greater than that
of BCRP and MRP1 (Chopra, 2004) and therefore should rep-
resent the major pathway of active efflux transport at the BBB
and BTB.

Due to the difficulty in performing the in situ brain perfu-
sion in mice, we modified the in situ brain perfusion to a cardiac
perfusion method in female Nu/Nu mice bearing brain metastases
of breast cancer to characterize P-gp function in vivo. This method
has similar advantages to the in situ brain perfusion method in
that we may control aspects of the perfusion to determine both
influx and efflux kinetics, transporter inhibition coefficients, and
BTB or BBB permeability (Smith and Allen, 2003). This con-
trol helps determine accurate apparent permeability coefficients
(Lockman et al., 2005a), the degree to what a substrate is efflux
back into blood (Lockman et al., 2003b), inhibition constants for
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FIGURE 3 |The BTB is variably compromised for compounds entering via

passive diffusion but retains P-gp mediated efflux. The passive
permeability marker 14C-AIB fold change in brain metastases did not correlate
(r2 = 0.167) with metastasis size (mm2) (A). R123 fold change in brain
metastases did not correlate (r2 = 0.033) with metastasis size (B). There was

no observed relationship (r2 = 0.0009) between the fold increase in brain
metastases of 14C-AIB (passive permeability marker) and R123 (P-gp
substrate) (C). One representative brain slice showing metastases location
(D, cresyl violet), R123 fluorescence distribution (E, fluorescence
microscopy), and 14C-AIB brain uptake (F, quantitative autoradiography).

FIGURE 4 | (A) No difference (p > 0. 05; student t -test, n = 3–5) was seen
between R123 blood to brain transfer constant K in between values
measured in normal brain (K in = 0.11 + 0.01 μL/s/g) and metastases
(K in = 0.12 ± 0.02 μL/s/g). Representative R123 fluorescence images in
normal brain (B) and within a metastasis (C) (scale bar = 100 μm).

transporters (Lockman et al., 2001) and a direct measurement of
BBB and BTB integrity (Lockman et al., 2003a, 2004, 2005b)

Using the cardiac perfusion method, R123 accumulated in
brain linearly over 2 min of perfusion time. Our observed blood to
brain transfer constant (K in) was ∼10-fold less than what would be
the calculated K in based on values of similar molecules in terms of
their octanol/water coefficient and molecular weight. The lower
observed K in, is typically seen when the compound is actively
extruded by the BBB back into blood (Begley, 1996). Further con-
firmation that R123 is extruded by an efflux mechanism at the BBB
was suggested by the significantly increased uptake of R123 from

blood to brain after the addition of verapamil or cyclosporine A
to the perfusate (Mittapalli et al., 2013).

Of importance to this study, the simultaneous administration
of a passive permeability marker and a tracer subject to P-gp
mediated efflux allowed us to measure BTB integrity and func-
tional efflux. Both parameters have been shown to significantly
impact drug uptake into metastases (Lockman et al., 2010) but
have not been simultaneously measured directly in metastatic
lesions. Our initial hypothesis prior to the experiment was that
since we have seen increased permeability at the BTB in metas-
tases (Lockman et al., 2010), we would also see a similar increase
in R123 distribution into the lesion. However we did not observe
R123 accumulation within metastases.

There are two possible explanations that may provide insight
to the lack of increased R123 permeability in the lesion. First,
it is known that P-gp is expressed in the vasculature of human
brain tumors and metastases (Guo et al., 2010). Although, P-gp
expression at the BTB has been shown to be variable among differ-
ent types of tumors within the CNS (Cordon-Cardo et al., 1990;
Toth et al., 1996; Tews et al., 2000) as well as different between
separate intracranial metastases (Demeule et al., 2001; Lockman
et al., 2010). We observed some variability of P-gp expression in
the vessels of our metastases, but overall P-gp expression was
not significantly different in the over 2,000 vessels we analyzed
between the BTB and the BBB. Accordingly, this may be a reason
why there was little overall difference in tissue accumulation of
R123 between the two tissue types. Another possible explanation
is that we observed tumor cells directly adjacent or proximal to
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the vasculature also express P-gp, which may also contribute to
the restriction of R123 in the lesions. Overall, the pattern of dis-
tribution for each tracer suggests that the BTB is disrupted yet its
efflux transport mechanisms are intact and can limit brain and or
tumor uptake of P-gp substrates.

This work does have translational value to human drug distri-
bution to brain. The expression of BCRP at human BBB is ∼2
fold higher as compared to the expression levels at mouse BBB.
The P-gp expression is 3 fold higher at mouse BBB as compared to
the expression levels at human BBB. So BCRP still plays a major
role at human BBB (Hoshi et al., 2013) suggesting P-gp plays a
major functional role in the human BBB. While some studies
have supported little efflux contribution for various anti-cancer
drug to brain (Agarwal et al., 2011), others have demonstrated P-
gp at the BBB and BTB restricts the uptake of many anti-cancer
agents; such as paclitaxel, docetaxel, vemurafenib, erlotinib, axi-
tinib, and tamoxifen (Gallo et al., 2003; Kemper et al., 2004; Wang
et al., 2010; Iusuf et al., 2011; Poller et al., 2011; Mittapalli et al.,
2012; Taskar et al., 2012; Agarwal et al., 2013). Attempts to modify
P-gp using inhibitors have shown promise in preclinical settings
(Kemper et al., 2004; Mittapalli et al., 2012; Agarwal et al., 2013).

Although we, and others, have observed variably elevated accu-
mulations of small molecules across the BTB in brain metastases,
the data herein provide evidence that P-gp retains much of its
residual function. Thus, BTB function in this preclinical model
may be viewed as only partially compromised and retains signifi-
cant ability to impede uptake of therapeutic compounds. Given the
large list of drugs, particularly anticancer agents such as paclitaxel
and doxorubicin, which are subject to P-gp mediated efflux, the
clinical impact of this retained function suggests the BTB remains a
significant barrier in delivering chemotherapeutics into metastatic
lesions.
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