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Over the last 30 years, studies of aberrant DNA methylation in hematologic malig-
nancies have been dominated by the primary focus of understanding promoter 
hypermethylation. These efforts not only resulted in a better understanding of the 
basis of epigenetic silencing of tumor suppressor genes but also resulted in approval 
of hypomethylating agents for the treatment of several malignancies, such as 
myelodysplastic syndrome and acute myeloid leukemia. Recent advances in global 
methylation profiling coupled with the use of mouse models suggest that aberrant 
promoter hypomethylation is also a frequent event in hematologic malignancies, 
particularly in chronic lymphocytic leukemia (CLL). Promoter hypomethylation affects 
gene expression and, therefore, may play an important role in disease pathogenesis. 
Here, we review recent findings and discuss the potential involvement of aberrant 
promoter hypomethylation in CLL.

Keywords: mouse models of cancer, chronic lymphocytic leukemia, DnA methyltransferases, hypomethylation, 
hematologic neoplasms, DnA methylation, leukemia, promoter methylation

inTRODUCTiOn

Cytosine methylation of DNA is an epigenetic modification affecting gene transcription and the 
integrity of the mammalian genome. The three catalytically active DNA methyltransferases in mam-
malian cells are DNMT1, DNMT3A, and DNMT3B. These enzymes are responsible for establish-
ment and maintenance of DNA methylation during normal development and during mitotic cell 
division. Promoter methylation typically results in transcriptional repression of genes and plays a 
role in various normal physiologic processes, such as differentiation and hematopoiesis (1, 2).

One of the main observations that contributed to an interest in studying this phenomenon came 
from studies that discovered that in virtually all types of cancer aberrantly increased methylation 
in gene promoters was associated with transcriptional inhibition (3). As a result, aberrant promoter 
hypermethylation resulting in silencing of tumor suppressor genes in cancer has been a major topic 
of numerous studies over the past 30  years. Such efforts not only resulted in identification of a 
number of epigenetically repressed tumor suppressor genes in hematologic malignancies, such as 
VHL, p16, and MLH1 (3), but also provided a conceptual approach to the treatment of cancer. 
Therefore, use of hypomethylating agents can be a valuable approach in anticancer therapy as 
reversal of DNA methylation may lead to reactivation of tumor suppressor genes and antagonize 
aberrant tumor proliferation and survival. Epigenetic studies in hematologic malignancies have 
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consequently resulted in the approval of hypomethylating agents 
for the treatment of several malignancies, including myelodys-
plastic syndrome (MDS) and acute myeloid leukemia (AML). 
Numerous efforts are undergoing to refine hypomethylating 
agents and to test their efficacy in combination with other drugs 
targeting epigenetic changes.

The recent emergence of new high-resolution methylation 
profiling techniques, such as whole-genome bisulfite sequenc-
ing (WGBS), have revealed that the methylome of cancer cells 
frequently contains promoters that are hypomethylated relative 
to their normal cellular counterparts. Such aberrant hypometh-
ylation is frequently accompanied by increased gene expression 
at differentially methylated loci. Whether or not such deregulated 
expression contributes to the initiation and progression of hema-
tologic malignancies is currently unresolved and is actively under 
investigation.

Here, we will first review data obtained in mouse studies 
focusing on DNA methyltransferase loss of function in various 
hematologic malignancies. We will then discuss recent findings 
that strongly support the idea that aberrant promoter hypometh-
ylation accompanied by gene re-expression may contribute to 
the development of chronic lymphocytic leukemia (CLL) in a 
causative manner.

ROLe OF DnA MeTHYLTRAnSFeRASeS 
in MOUSe nORMAL AnD MALiGnAnT 
HeMATOPOieSiS

Two activities for DNA methyltransferases are important in 
regard to genome-wide methylation patterns: de novo and main-
tenance. Early studies suggested that Dnmt3a and Dnmt3b are 
de novo enzymes capable of recognizing unmethylated DNA and 
catalyze the addition of a methyl group to cytosine (4). By con-
trast, Dnmt1 plays a role in maintenance of methylation profiles 
by recognizing methylated DNA and adding a methyl mark to 
the newly produced DNA strand during replication (5). The role 
of Dnmts in generating and maintaining methylation profiles in 
cancer is, however, less clear. In regard to gene promoters, from 
the most simplistic conceptual point of view, de novo methylation 
activity could be considered oncogenic because aberrant activity 
can generate new methylation marks in promoter sequences and 
inactivate genes with tumor suppressor functions. By contrast, 
maintenance methylation activity could be considered to be 
tumor suppressive because it can safeguard the integrity of the 
methylome and prevent inappropriate gene activation. However, 
a number of studies in which Dnmts were genetically inactivated 
have painted a rather different picture.

The most studied Dnmt in mouse hematopoiesis is Dnmt3a. 
Interest in studying the role of Dnmt3a in normal hematopoiesis 
was fueled by findings that in a number of hematologic malignan-
cies of myeloid and T-cell origin Dnmt3a was mutated primarily 
in the catalytic domain, suggesting that methyltransferase activ-
ity is critical to prevent tumor development (6). Subsequently, 
several research groups have used mice to conditionally inacti-
vate Dnmt3a in hematopoietic stem cells and early progenitors 
(HSPCs) by the Mx1-Cre transgene. Original reports suggested 

that inactivation of Dnmt3a results in a differentiation block 
and accumulation of progenitor cells; however, this phenotype 
was mainly observed upon serial bone marrow transplantation 
(7). The first report demonstrating that Dnmt3a plays a tumor 
suppressive role in the prevention of hematologic malignancy 
was published by Peters et al. (8), which showed that conditional 
inactivation of Dnmt3a in HSPCs using EμSRα-tTA;Teto-
Cre;Dnmt3afl/fl;Rosa26 LOXPEGFP/EGFP quadruple transgenic 
mice (designated as Dnmt3aΔ/Δ mice) results unexpectedly in 
the development of a CLL-like disease after 1 year’s time. This 
finding was surprising in view of a lack of genetic alterations 
in the DNMT3A locus in B-cell malignancies. Since this time, 
other groups have reported that Dnmt3a loss in HSPCs results 
in myriad types of malignancies, such as myeloproliferative dis-
orders, AML, T-cell acute lymphoblastic leukemia (T-ALL), and 
B-cell acute lymphoblastic leukemia (B-ALL) (9, 10). Differences 
in phenotypes observed upon loss of Dnmt3a could stem from 
the different genetic background of mice used in these studies 
(Table 1) or the different properties of transgenes used to condi-
tionally delete Dnmt3a alleles.

In addition, Dnmt3a loss can collaborate with gain of function 
mutant c-kitD814V to induce B-ALL, T-ALL, and mastocytosis with 
myeloid blasts (17), and with KrasG12D/+ to promote progression 
of juvenile and chronic myelomonocytic leukemia (CMML) 
(19). However, under some circumstances Dnmt3a has acted 
as an oncogene by promoting the development of hematologic 
malignancies. For example, upregulation of Dnmt3a promoted 
AML/ETO-induced leukemia through de novo hypermethyla-
tion (23) and a methylation-independent repressor function of 
Dnmt3a enhanced T-cell lymphomagenesis (24). Despite these 
last two examples, the overwhelming body of work in the field 
suggests that Dnmt3a acts as a tumor suppressor in various types 
of hematologic malignancies.

Due to the lack of genetic alterations in Dnmt3b in human 
malignancies, the role of this enzyme has been less well studied 
in mouse hematopoiesis. Loss of Dnmt3b does not appear to 
affect normal hematopoiesis but still has both overlapping and 
specific functions in HSPCs (21, 25). However, Dnmt3b has been 
shown to behave as a tumor suppressor gene in mouse models of 
Myc-induced T- and B-cell lymphomas (21, 22). Loss of Dnmt3b 
also accelerated development of CLL in Dnmt3aΔ/Δ mice and also 
promoted the development of T-cell lymphomas (8).

Taken together, these data clearly show that Dnmt3a and 
Dnmt3b possess tumor suppressor functions in the prevention 
of the vast majority of hematologic malignancies (Table 1). These 
data further demonstrate that tumor development is accom-
panied by loss of methylation in promoter regions, suggesting 
that Dnmt3a and Dnmt3b may have a role in cancer-specific 
maintenance methylation of specific loci (Table  1). Given the 
large magnitude of promoter hypomethylation observed in vari-
ous mouse hematologic malignancies (8, 9, 18, 26), it is possible 
that loss of Dnmt3a and Dnmt3b maintenance activity drives 
tumorigenesis due to the inappropriate expression of genes 
normally silenced.

In contrast to most studies on Dnmt3a and Dnmt3b, decreased 
levels of the bona fide maintenance enzyme Dnmt1 suppressed 
MYC-induced T-cell lymphomagenesis (14) (Table  1). In 
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TAbLe 1 | Summary of studies performed in mouse models in which Dnmts were ablated in hematopoietic cells.

Transgenic model background Phenotype OnC/
TS

Promoter 
hypomethylation

Reference

Mx1-Cre; Dnmt1fl/fl Unknown Bone marrow failure N/A Unknown Bröske et al. (11)
Dnmt1chip/− Unknown T-cell lymphoma TS Unknown Gaudet et al. (12)
Dnmt1chip/−; retroviral Myc-Bcl2 Unknown Myeloid and T-lymphoid leukemia. 

Defects in B-cell development
N/A Unknown Bröske et al. (11)

MLL-AF9; Mx1-Cre; Dnmt1fl/+ C57Bl/6 AML ONC Unknown Trowbridge et al. (13)
EμSRα-tTA; Teto-Cre; Teto-MYC; Dnmt1fl/fl; Rosa26 
LOXPEGFP/EGFP

FVB/N T-cell lymphoma ONC Yes Peters et al. (14)

Mx1-Cre; Dnmt3afl/fl C57Bl/6 HSC expansion and impaired 
differentiation

N/A Yes Challen et al. (7)

Mx1-Cre; Dnmt3afl/fl; Dnmt3bfl/fl C57Bl/6 HSC expansion and impaired 
differentiation

N/A Yes Challen et al. (15)

EμSRα-tTA; Teto-Cre; Dnmt3afl/fl; Rosa26 LOXPEGFP/EGFP FVB/N CLL, PTCL TS Yes Peters et al. (8)
EμSRα-tTA; Teto-Cre; Teto-MYC; Dnmt3afl/fl; Rosa26 
LOXPEGFP/EGFP

FVB/N T-cell lymphoma ONC Yes Haney et al. (16)

Mx1-Cre; Dnmt3afl/fl C57Bl/6 MDS, AML TS Unknown Celik et al. (17)
Mx1-Cre; Dnmt3afl/fl C57Bl/6 MDS, AML, PMF, CMML,  

T-ALL, B-ALL, ETP
TS Yes Mayle et al. (9)

Mx1-Cre; Dnmt3afl/fl C57Bl/6 MDS/MPN TS Yes Guryanova et al. (18)
Mx1-Cre; Dnmt3afl/fl; KrasLSL G12D/+ C57Bl/6 AML TS Unknown Chang et al. (19)
Flt3+/ITD; Mx1-Cre; Dnmt3afl/fl C57Bl/6 AML TS Yes Meyer et al. (20)
EμSRα-tTA; Teto-Cre; Teto-MYC; Dnmt3bfl/fl; Rosa26 
LOXPEGFP/EGFP

FVB/N T-cell lymphoma TS Yes Hlady et al. (21)

EμSRα-tTA; Teto-Cre; Dnmt3bfl/fl; Rosa26 LOXPEGFP/EGFP FVB/N No phenotype N/A Unknown Hlady et al. (21)
Eμ-Myc;Dnmt3b+/− Unknown B-cell lymphoma TS Unknown Vasanthakumar et al. 

(22)
Mx1-Cre;Dnmt3bfl/fl C57Bl/6 No phenotype N/A Unknown Challen et al. (15)

Unknown indicates that data were not currently available. ONC and TS stand for oncogene and tumor suppressor, respectively.
CLL, chronic lymphocytic leukemia; PTCL, peripheral T-cell lymphoma; HSC, hematopoietic stem cell; MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; T-ALL, T-cell 
acute lymphoblastic leukemia; B-ALL, B-cell acute lymphoblastic leukemia; CMML, chronic myelomonocytic leukemia; PMF, primary myelofibrosis; ETP, early thymic progenitor acute 
lymphoblastic leukemia.
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addition, Dnmt1 is critical for tumor maintenance in AML 
induced by MLL-AF9 overexpression or in B-cell leukemia 
induced by combined overexpression of Myc and Bcl2 (13, 27). 
However, there is also evidence that Dnmt1 can play a tumor sup-
pressor role in prevention of T-cell lymphomas. Dnmt1chip/− mice 
that carry a hypomorphic allele (Dnmt1chip) almost exclusively 
(91%) develop T-cell lymphomas (12). Thus, Dnmt1 seems to 
possess an oncogenic function by promoting cellular survival of 
both normal and tumor cells (Table 1).

Although evidence that aberrant promoter hypomethylation 
contributes to the development of hematologic malignancies 
is very limited at this point, we will discuss CLL as a disease in 
which deregulated methylation may matter the most for its initia-
tion and progression.

PROMOTeR HYPOMeTHYLATiOn in 
HUMAn CLL

Chronic lymphocytic leukemia/small lymphocytic lymphoma 
(CLL/SLL) is an indolent low-grade lymphoproliferation of 
mature B-cells (28) and is the most common hematological 
malignancy in adults. The clinical course of CLL is highly 
variable, yet the majority of patients will progresses to a life-
threatening condition requiring therapeutic intervention. Except 
for allogenic hematopoietic bone marrow transplantation, cur-
rent treatments approved for CLL are not curative. An average of 

45 somatic mutations is present in human CLL, with most genes 
mutated in <5% of cases (29). About one-third of cases did not 
have recurrent mutations, suggesting a high degree of genetic 
heterogeneity and no clear mutational drivers of CLL. Regarding 
the epigenetics of CLL, it is interesting to note that Dnmt3a and 
Dnmt3b were identified in the top 1% of underexpressed genes 
in human CLL (8, 30). Consistent with a role in disease initia-
tion, global DNA hypomethylation and shortened telomeres were 
found to be significantly associated in early stage CLL tumors 
(Binet A) from untreated patients (31). Recent genome-wide 
methylation profiling revealed that the large-scale hypomethyla-
tion observed in CLL was not only limited to gene-bodies but also 
affected gene promoters (32). In fact, promoter hypomethylation 
was more than 10 times more frequent an event than promoter 
hypermethylation in both IGHV-unmutated (U-CLL, a more 
aggressive form of CLL) and IGHV-mutated CLL (M-CLL, a less 
aggressive form of CLL). U-CLL tumors contained greater than 
four times more hypomethylated promoters than M-CLL tumors, 
consistent with a possible role for promoter hypomethylation in 
disease progression. Additional studies using lower resolution 
methylation profiling also identified promoter hypomethylation 
in CLL, although it was less pronounced than promoter hyper-
methylation (33).

Altogether, these data provide evidence for extensive pro-
moter hypomethylation in human CLL that may be involved in 
the pathogenesis of the disease.
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AbeRRAnT PROMOTeR 
HYPOMeTHYLATiOn in MOUSe CLL

A body of work using two mouse models has recently provided 
strong evidence that aberrant hypomethylation promotes CLL 
development. Transgenic Eμ-TCL1 is one of the first mouse 
models of CLL that was generated by using overexpression of 
the TCL1 gene in mouse B cells (34). TCL1 protein acts as a 
coactivator of AKT serine–threonine kinase by transporting it 
to the nucleus that promotes cellular survival (35). An interest 
in understanding of TCL1 comes from findings that the gene 
is overexpressed in a number of human T-cell malignancies, 
including mature leukemias, T-cell prolymphocytic leukemia, 
and B-cell malignancies, such as Burkitt’s lymphoma (BL) and 
CLL (36, 37), suggesting its possible causative involvement 
in tumorigenesis. Indeed, Eμ-TCL1 mice developed CLL by 
18  months of age that was characterized by splenomegaly and 
expansion of CD5+, IgM+ B1 cells in various organs, including the 
spleen, liver, and blood. The link to hypomethylation came from 
a recent study in which the authors reported that TCL1 binds to 
Dnmt3a and Dnmt3b and inhibits their activities (38). This raised 
the possibility that biochemical inhibition of Dnmts could be 
one activity though which TCL1 exerts its tumorigenic potential. 
Consistent with such idea, DNA methylation profiling revealed 
that pre-tumor B cells from Eμ-TCL1 mice showed a large degree 
of DNA hypomethylation. Although it had not been functionally 
proven at the time of this initial finding, independent studies 
have since demonstrated that either bi-allelic or mono-allelic 
loss of Dnmt3a in Dnmt3aΔ/Δ and Dnmt3a+/− mice is sufficient to 
induce CLL, indicating that Dnmt3a is a haploinsufficient tumor 
suppressor (8, 26). Importantly, both Dnmt3aΔ/Δ and Dnmt3a+/− 
CLL samples showed large-scale promoter hypomethylation 
strongly suggesting that aberrant promoter hypomethylation 
may play a role in disease development (26). Although loss of 
promoter hypermethylation does not necessarily result in gene 
re-expression and, in fact, such correlation in this study was only 
10%, this still represented a large number (129) of inappropriately 
upregulated genes. By contrast, while promoter hypermethyla-
tion was detected in 118 genes it correlated with gene silencing of 
only one gene. Thus, deregulated changes in gene expression are 
more attributable to aberrant hypomethylation than hypermeth-
ylation. Such results potentially could be explained by another 
important observation that in mouse B-1a cells – the normal 
cellular counterpart of CLL in mice – two-third of promoters 
were >50% methylated (26). Such a baseline level of promoter 
methylation provides for the opportunity to lose rather than gain 
promoter methylation during tumor development, especially 
when methylation maintenance activity is compromised.

AbeRRAnTLY HYPOMeTHYLATeD GeneS 
wiTH POTenTiAL ReLevAnCe TO 
HUMAn CLL

One of the clearest examples demonstrating that aberrant pro-
moter hypomethylation plays a role in oncogenic transformation 
is the case of the TCL1 gene itself. Whereas in T-cell malignancies, 

an increased expression of TCL1 was linked to reciprocal trans-
locations at chromosome segment 14q32.1, such genetic lesions 
were not observed in B-cell malignancies. Instead, promoter 
hypomethylation appears to induce overexpression of TCL1 in 
human CLL (36). Given that TCL1 overexpression results in 
the development of CLL in Eμ-TCL1 mice (34) this represents 
a clear demonstration of causative involvement of promoter 
hypomethylation in CLL development. Another example is the 
anomalous expression of the lipoprotein lipase (LPL) gene found 
to be expressed in human U-CLL, but not in M-CLL. Expression 
in U-CLL is dependent on a differentially hypomethylated LPL 
gene promoter, compared with M-CLL, and the presence of tumor 
micro-environmental signals to promote transcription (39). This 
finding implicates promoter hypomethylation as a facilitator of 
CLL and micro-environmental cross-talk.

A limited analysis of gene expression data revealed several 
genes that are upregulated in both Eμ-TCL1 and Dnmt3aΔ/Δ CLL. 
This is consistent with the idea that Dnmt3a is biochemically 
inhibited in Eμ-TCL1 mice, which affects promoter methylation 
and this contributes to the development of CLL. Genes commonly 
upregulated between the two models include Zbtb32, Slc7a7, 
Pstpip2, Pon3, Il5ra, and 1810046K07Rik (C11orf53). Interestingly, 
these genes are among the top 25 most overexpressed genes in 
the Eμ-TCL1 mouse model of CLL (40). Methylation status of 
their promoters in the Eμ-TCL1 model has not yet been carefully 
evaluated, but these genes have been shown to be aberrantly 
hypomethylated in Dnmt3aΔ/Δ CLL. The functions of these genes 
in CLL development have not been evaluated to date. Therefore, 
we discuss here data for one protein coding gene – Zbtb32 – and 
one gene encoding a non-coding RNA – Pvt1– that support their 
potential role in CLL.

Zbtb32 is a Zinc Finger and BTB Domain Containing 32 
gene that was originally identified as a transcriptional repressor 
protein that interacts with several proteins including the Fanconi 
anemia group C protein and PLZF (41). Recently, Zbtb32 was 
identified as a gene whose increased expression predicts whether 
healthy individuals without disease will develop CLL later in life 
(42). This raises the possibility that overexpression of ZBTB32 
may causatively contribute to CLL development.

The Pvt1 gene locus is a target of frequent tumorigenic trans-
locations and retroviral insertions that result in overexpression 
of a long non-coding RNA that encodes several microRNAs that 
are overexpressed in hematological malignancies of B- and T-cell 
origin. For example, miR-1206 is overexpressed in human BLs, 
whereas miR-1204 is overexpressed in retrovirally induced T-cell 
lymphomas (43–45). Thus, aberrant hypomethylation of a single 
promoter may upregulate several micro RNAs possibly contribut-
ing to tumorigenesis.

FUTURe DiReCTiOnS

Given the large number of genes identified to be hypometh-
ylated and overexpressed in mouse and human CLL, there 
is a clear potential that some of these genes are oncogenic 
drivers of CLL development. While convincing evidence for 
involvement of such genes in the pathogenesis of the disease is 
quite limited, a large body of data accumulated in recent years 
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clearly points to such a possibility. A conceptual justification 
for such efforts is not limited to just an understanding of basic 
mechanisms governing cellular transformation but might also 
have direct implication for targeted therapies. Frequently, 
oncogenes that initiate tumor development are also impor-
tant for maintenance of tumor phenotype. Therefore, their 
targeting may prove to be useful in anti-neoplastic therapy. 
Consequently, major efforts will likely be undertaken in a 
future to identify proto- oncogenes silenced in normal cells 
by promoter methylation that become de-methylated during 
tumor initiation/ progression and functionally contributing to 
cellular transformation. Such efforts will likely not be limited to 
CLL only but will include other types of hematologic malignan-
cies and potentially solid tumors.
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