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Sirt-1 is defined as a nuclear protein involved in the molecular mechanisms of inflam-
mation and neurodegeneration through the de-acetylation of many different substrates
even if experimental data in mouse suggest both its cytoplasmatic presence and nucleo-
cytoplasmic shuttling upon oxidative stress. Since the experimental structure of human
Sirt-1 has not yet been reported, we have modeled its 3D structure, highlighted that it is
composed by four different structural regions: N-terminal region, allosteric site, catalytic
core and C-terminal region, and underlined that the two terminal regions have high intrinsic
disorder propensity and numerous putative phosphorylation sites. Many different papers
report experimental studies related to its functional activators because Sirt-1 is implicated
in various diseases and cancers.The aim of this article is (i) to present interactomic studies
based human Sirt-1 to understand its most important functional relationships in the light
of the gene–protein interactions that control major metabolic pathways and (ii) to show by
docking studies how this protein binds some activator molecules in order to evidence struc-
tural determinants, physico-chemical features and those residues involved in the formation
of complexes.
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INTRODUCTION
In complex biological systems the protein–gene interactions oper-
ate under protein–protein or gene–gene interaction maps where
they have specific functional roles (Barabási and Oltvai, 2004). In
this context well-connected hubs are of high functional impor-
tance (Jeong et al., 2001; He and Zhang, 2006). Consequently,
studies based on protein–protein interaction (PPI) networks can
be inferred from centrality statistics of proteins associated with
disease and biological processes associated with genes and pro-
teins. Genes associated with a particular phenotype or function
are not randomly positioned in the PPI network, but tend to

Abbreviations: ADP, adenine diphosphate; AR, androgen receptor; ARNTL, Aryl
hydrocarbon receptor nuclear translocator-like; BRCA1, Breast cancer type 1 suscep-
tibility protein; DLD, dihydrolipoamide dehydrogenase; DYNC1H1, dynein, cyto-
plasmic 1, heavy chain 1; EP300, E1A binding protein p300; FOXOs, forkhead box
protein O; HIC1, hypermethylated in cancer 1; HDAC, histone deacetylase; KAT2,
K (lysine) acetyltransferase 2; KRT1, keratin 1; MCF2L2, MCF.2 cell line derived
transforming sequence-like 2; MYOD1, myogenic differentiation 1; NAD, nicoti-
namide adenine dinucleotide; NCOR1, nuclear receptor co-repressor 1; NEDD8,
neural precursor cell expressed, developmentally down-regulated 8; NFkB, nuclear
factor of kappa light polypeptide gene enhancer in B-cells; NUDC, nuclear dis-
tribution gene C homolog; PARP1, poly (ADP-ribose) polymerase 1; PPARGC1A,
peroxisome proliferator-activated receptor gamma, coactivator 1 alpha; RELA, V-
rel reticuloendotheliosis viral oncogene homolog A; RPS27L, ribosomal protein
S27-like; RRP8, ribosomal RNA processing 8, methyltransferase, homolog; RTN4,
reticulon 4; SLC25A3, solute carrier family 25 (mitochondrial carrier; phosphate
carrier), member 3; SMAD4, SMAD family member 4; SYNCRIP, synaptotagmin
binding, cytoplasmic RNA interacting protein; TP53, tumor protein 53; WRN,
Werner syndrome, RecQ helicase-like.

exhibit high connectivity; they may cluster together and can occur
in central network locations (Goh et al., 2006; Oti and Brunner,
2006). Seven different homologous proteins compose Sirtuin fam-
ily, and in particular Sirt-1 exhibits a high degree of structural
disorder as demonstrated in a recent work of our group (Autiero
et al., 2009). In general it has been already that the protein disorder
plays a crucial role in PPIs and in regulatory processes for under-
standing the phenomenon of interactome (Tompa and Fuxreiter,
2008). Therefore, it is important to focus the attention on Sirtuins
because they are involved in numerous processes and implicated
in different diseases. Importantly the second-degree interaction
maps related to these family present 5786 neighbors with aver-
age number of neighbors equal to 84.22. However some sirtuins
have not yet been well studied and not much information are
known in regard to their interaction with other proteins (data
not shown) in second order interactome. In particular, Sirt-1 is
defined as a nuclear protein even if experimental data suggest
also its cytoplasmatic presence and indicate that it is involved
into nucleo-cytoplasmic shuttling upon oxidative stress (Autiero
et al., 2009). Sirt-1 is a NAD+ dependent histone deacetylates
that play important functional roles in many biological processes
causing various modifications of histone/protein acetylation sta-
tus by several class I and II histone deacetylase (HDAC) inhibitors
(Kyrylenko et al., 2003). In literature it is reported that Sirt-1 regu-
lates gene silencing, cell cycle, DNA-damage repair and life span. In
specific diseased conditions, Sirt-1 regulates or interacts with many
proteins: TP53, NEDD8, SMAD4, DYNC1H1, TUBULIN, NUDC,
DYNACTIN, HDAC4, POLR2H, and BRCA1. For example, Sirt-1
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interacts with TP53 which is a very short lived protein involved in
the acetylation processes and gene activation as consequent target
(Appella and Anderson, 2001). In fact, the inactivation of HIC1
leads to an up-regulation of Sirt-1 which deacetylates and deacti-
vates TP53. This allows the cells to bypass apoptosis and survive
DNA damage (Chen et al., 2005). It is also known that Sirt-1
is involved in inflammatory processes and in neurodegenerative
diseases like Huntington (Pallkes et al., 2008). Moreover, in litera-
ture it is reported that Sirt-1 interacts also with HDAC2, HDAC4,
MEF2, SUMO, and UBIQUITIN and that HDAC4 might function
to integrate sumoylation and deacetylation signals via its interac-
tion with UBC9 and Sirt-1 and that acetylation and sumoylation
occur on the same lysine residue (Zhao et al., 2005). This evi-
dences the reason for which the analysis of the Sirt-1 interactome
is of great interest in order to find the relationships between nodes
(i.e., genes, proteins) and their positions as well as the overall rela-
tionships in the entire system along with structural inferences of
activators associated with it.

Since the 3D structure of Sirt-1 has not yet been obtained
experimentally, we have recently modeled this protein by com-
putational methods and highlighted that it is composed by four
different regions: N-terminal region, allosteric site, catalytic core
and C-terminal region and underlined that the two extended ter-
minal regions of about 250 residues each are highly disordered
(Autiero et al., 2009). Sirt-1 is implicated in numerous diseases
and cancers and many different papers report experimental stud-
ies related to the effects of its activation. In fact, Sirt-1 activation
by natural activators seems to show a wide spectrum of bene-
ficial effects in cardiovascular, metabolic, and neurodegenerative
diseases and, hence, interest is increasing in testing more potent
Sirt-1 activators for the treatment of these aging associated dis-
eases. The natural activator resveratrol has been largely studied
because of its low toxicity in humans and its anti-aging proper-
ties (Orallo, 2006; Harikumar and Agarwal, 2008). In particular,
it is an important constituent of red wine (Zhuang et al., 2003)
that increases the cell survival in several animals by stimulat-
ing the Sirt-1 dependent deacetylation of TP53 (Howitz et al.,
2003). Since natural compounds failed to induce an increased
activity of Sirt-1 (Yang et al., 2007), new activators (SRT1460,
SRT1720, SRT2183) with a good affinity for Sirt-1 have been
synthesized. Recently, a pharmaceutical biotechnology company,
starting from these activators,discovered novel selective Sirt-1 acti-
vators using a high-throughput screening methodology (Smith
et al., 2009; Vu et al., 2009; Yamazaki et al., 2009). In this article
we will report studies on the Sirt-1 interactome and on molec-
ular complexes between Sirt-1 and four different activators, i.e.,
SRT1460, SRT1720, SRT2183, and resveratrol, by molecular dock-
ing (Camins et al., 2010). Since the human sirtuin is proving to
be a multifunctional protein with a large spectrum of biological
activities and partners, the analysis of its interactome is an impor-
tant step to define which biological process is directly or indirectly
controlled by this molecule. This information is preliminary to
understand the structural characteristics of complexes between
sirtuin and those ligands that have been shown to regulate its bio-
logical activity. Starting from this knowledge we can design new
molecules in a targeted way to control specific biological functions
dependent on sirtuin.

MATERIALS AND METHODS
INTERACTOMIC STUDIES
Cytoscape software (Kohl et al., 2011) is used to visualize the net-
work of Sirt-1 family. The experimentally evidenced interactions
of Sirt family proteins were filtered from Bio grid, HPRD, MINT,
and Pathway Interaction Database which are curated from both
high-throughput data sets and individual focused studies along
with interaction published in peer reviewed journals (Watts and
Strogatz, 1998; Stark et al., 2006; Chatr-Aryamontri et al., 2007;
Keshava Prasad et al., 2009; Schaefer et al., 2009). Further more
the manually curated PPI network is obtained from Center for
BioMedical Computing (CBMC) at University of Verona. Cen-
trality statistics of the protein network are vitals for attaining
properties of the network (Assenov et al., 2008; Scardoni et al.,
2009). In particular, we focused most of our attention on central
vertices in complex networks since they might play the role of
organizational hubs. Betweenness centrality (BC; Freeman, 1977;
Joy et al., 2005) and closeness centrality (CC; Wuchty and Stadler,
2003) are based on the calculation of shortest paths. Przulj et al.
showed bottleneck’s importance in protein interaction networks
and their correlation with gene essentiality (Przulj et al., 2004;
Yu et al., 2004). Lin et al. (2008) proposed two characteristic
analysis algorithms: maximum neighborhood component (MNC)
and density of maximum neighborhood component (DMNC) for
exploring essential proteins (Hub proteins) from protein interac-
tion networks (Lin et al., 2008). Most of these different methods
for identifying essential nodes from the network have been stated
in literature (Mason and Verwoerd, 2007). We utilized Maximal
Clique Centrality (MCC), MNC, and DMNC, EPC, and other
centrality based measure are taken into account for exploring the
potential hubs in interaction maps of Sirt-1. Gene ontological data
were mapped to nodes (Proteins) in the network. Gene Ontolog-
ical study of a network infers about biological process, molecular
function, and cellular location of the interactants present in the
interactome. Significant clustering of genes,mapped with proteins,
are layered into Graphs of the Gene Ontology and they are iden-
tified using the GO enrichment analysis plugin BiNGO (Maere
et al., 2005).

MOLECULAR DOCKING STUDIES
Most cellular processes are carried out by PPIs. Predicting the 3D
structures of protein–protein complexes by docking, it can shed
light on their functional mechanisms and roles in cell. Docking can
assist in predicting PPIs, in understanding signaling pathways and
in evaluating the affinity of complexes (Andrusier et al., 2008).
In this work, docking studies were done both to get structural
models of those Sirt-1 complexes suggested by the interactome
analysis and to understand the structural determinants underly-
ing the interaction of Sirt-1 with small molecules that have the
function of effectors. Automated docking is widely used for mod-
eling biomolecular complexes in structure/function analysis and
in molecular design. There are several effective methods available,
incorporating different parameters such as algorithm and scoring
function to provide reasonably good predictions. AutoDock4 is
resulted a very useful tool for predicting the complexes conforma-
tion and the related binding energies of ligands with proteins. The
basic algorithm used for conformational searching in AutoDock4
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is Lamarckian genetic algorithm (LGA; Morris et al., 1998). This
algorithm works on the basis of the stepwise generation selec-
tion. In fact, during the docking simulation a test population of
docking conformation is created and in subsequent stepwise gen-
erations these individual conformations are selected for the next
generation and in this way the best conformation is obtained.
LGA has an additional feature called “Lamarckian” that allows to
the individual conformation of searching the local conformation
space, of finding the local minima and, then, of passing this to
next generation. In particular, AutoDock4 uses a semi empiri-
cal free energy force field to predict binding free energy of small
molecules and macromolecules, presents other traditional features
such as Simulated Annealing and genetic algorithm and uses a
force field that refers to the form and parameters of mathemat-
ical function used to describe the potential energy of a system
of particles and leads to calculate the intermolecular energies for
predicting free energy of binding. AutoDock 4 is composed by
two software packages, i.e., AutoDock and AutoGrid, and consists
of Rigid Docking and Flexible Docking modules. Rigid Docking
(called also Grid-based approach) allows the ligand to have a large
and a fixed conformational space around protein. In this approach
the target macromolecule is embedded in the grid, the interaction
energy between the probe and the target is computed and stored

in this grid and is used as input for docking simulation. In this
case, the relative orientation of molecules interacting with each
other are allowed to change whereas the internal geometry of the
target molecule is kept fixed. On the other hand, Flexible Docking
module includes the side chain flexibility. In fact, in this approach
a specific part of the target molecule is made flexible and, during
the docking time, these flexible parts are treated explicitly allowing
rotations of bond angles around torsion degrees of freedom.

The most important part in docking is the selection of the cor-
rect active binding site. In certain cases the binding site area on the
surface of the protein is found with the help of specific software
but the selection is also addressed on the basis of prior knowl-
edge of the protein. Before setting up the docking run, ligands
and receptor or target molecule were prepared by adding charges,
torsions, and hydrogen atoms by specific tools. This preparation
is important to mimic the “in vivo” conditions of molecular inter-
action (see Figure A1 in Appendix). After the preparation of
parameter and map files, AutoDock suite was launched for the
process of docking that generates as output a log file (DLG) con-
taining all the information of docked complexes (see Figure A2
in Appendix). The description of AutoDock procedure used to
simulate the complexes between Sirt-1 and the four activators is
shown in Figure 1. The first docking methods or rigid docking

FIGURE 1 |The description of the AutoDock protocol used to simulate the complexes between Sirt-1 and its four activators.
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treated proteins as rigid bodies (means the internal geometry of
the molecule are kept fixed) in order to reduce the search space for
optimal structure of complexes (Wodak and Janin, 1978; Halperin
et al., 2002). However ignoring flexibility could prevent docking
algorithms from recovering native associations (Andrusier et al.,
2008) and specially in the case of unordered proteins or highly
flexible proteins one cannot ignore the importance of flexible
docking. Moreover, flexibility in docking should be taken into
account if docked structures were determined by homology mod-
eling (Marti-Renom et al., 2000) or if loop conformations were
modeled (Soto et al., 2008) and this scenario implies in our case
the presence of two unordered loops/regions, i.e., N-terminus and
C-terminus (Autiero et al., 2009). The benefit of rigid docking
procedure is relatively low in computational time and is less com-
plex (Andrusier et al., 2008) but we cannot ignore the structural
characteristic of Sirt-1. Therefore we have used this peculiar pro-
tocol that use steps of rigid docking followed by steps of flexible
docking to generate near native models of complexes made with
flexible Sirt-1 protein.

RESULTS
CENTRALITY STATISTICS OF FIRST ORDER INTERACTION OF Sirt-1
Sirt family first order interaction maps, obtained concerning
experimental data reported in protein databases (see Methods
section), have 228 nodes and 3769 edges (interactions). The extrac-
tion of first order interaction map of Sirt-1 has 136 nodes and 1503
edges with Sirt-1 as a central node of the network (Figure 2). A
statistic analysis of first order interaction map of Sirt-1 was per-
formed. In particular, given undirected networks, the clustering
coefficient Cn of a node n is defined as Cn = 2en/[kn(kn − 1)],
where kn is the number of neighbors of n and en is the num-
ber of connected pairs between all neighbors of n (Barabási and
Oltvai, 2004). In directed networks, the definition is slightly differ-
ent: Cn = en/[kn(kn − 1)]. The evaluation of the average clustering
coefficient distribution gives the average of the clustering coeffi-
cients for all nodes n with k neighbors and identifies a modular
organization of networks. The clustering coefficient Cn for undi-
rected network of the Sirt-1 interaction map is 0.717. The mean
shortest path length between any two proteins is 1.836 (Figure 3A).

FIGURE 2 | SIRT family interaction maps containing 136 nodes and 1503 edges. Black lines are interactions and nodes (proteins) are represented by Circles.
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FIGURE 3 | Analysis of first order interactome for Sirt-1 composed

by 136 nodes and 1504 edges. The shortest path length distribution
(A) indicates that the network possesses small-world property. The
node degree distribution (B) shows a scale free network property. (C)

Average clustering coefficient of Sirt-1 network showing constant
decrease (D) topological coefficient giving insights on the measure of
extent to which a protein in the network shares interaction partners
with other proteins.

The top 30 best-connected nodes obtained by average path length,
as calculated by Centiscape (see Table 1), have relatively lesser
average path length in respect to TP53 Interactome (Dartnell
et al., 2005). The node distribution degree of Sirt-1 interactome
gives information of the protein interactions with the k other
proteins (Figure 3B). In details, it tends to decrease slowly com-
plying with the power law y = axb where “a” is 4.971 and “b” is
−0.232 with a correlation coefficient of 0.113. This value indicates
a scale free network (Barabási and Oltvai, 2004) and in general
these are very robust against failure, such as removal of arbitrary
network elements. This evaluation suggests that the Sirt-1 inter-
action map is assortative and has a low value of vertices. In this
network the average number of interacting partners was evalu-
ated and it resulted equal to 22.10. Moreover, since Jeong et al.
(2001) showed that a protein acting as hub is more important

than those sparsely connected with a small number of interactions
(Jeong et al., 2001), we calculated the putative hub proteins present
in our network by using different algorithms like MCC, DMNC,
MNC and Edge Percolated component and different centrality
based measures. In Table 2 are reported the top 10 hub proteins
obtained by these analysis but only five of them (SLC25A3, Sirt-
1, JUN, MCF2L2, and EP300) were selected as hub by all used
different algorithms.

Parameters related to topological aspects of Sirt-1 neighbors are
acquired by calculating the average clustering coefficient of pro-
teins that shows tendency to form clusters or groups (Barabási and
Oltvai, 2004). Sirt-1 network has a constant decrease in clustering
coefficients due to the higher number of interaction of each pro-
tein (Figure 3C). This suggests that it is a small-world network
having hierarchical modularity. Ravasz et al. (2002) showed that
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Table 1 |Top 30 neighbors based on smallest average path length.

Average path length Proteins

1 SIRT-1

1.64 YBX1

1.66 HSP90AB1, HSPA5, EEF1A1

1.68 RPS3

1.69 HDAC2, HSPA1L

1.71 RUVBL2, RPL23, WDR77

1.73 SLC25A6, SLC25A3, DNAJA2

1.74 TP53, XRCC6,TAF9, SYNCRIP,TRRAP, SLC25A5

1.76 KAT2A, SLC25A5

1.77 EP300, DYNC1H1, SND1, RPS27L, TADA 3,

SART3, AASDHPPT, EIF2C1, RPL38, DDOST

In particular, Sirt-1 is having the least Avg path length of 1 as it is central node of

the network. Average path length denotes average number of steps along the

shortest paths for all possible pairs of network nodes.

AASDHPT, aminoadipate-semialdehyde dehydrogenase-phosphopantetheinyl

transferase; DDOST, dolichyl-diphosphooligosaccharide – protein glycosyltrans-

ferase; DNAJA2, DnaJ (Hsp40) homolog, subfamily A, member 2, DYNC1H1,

dynein, cytoplasmic 1, heavy chain 1; EEF1a1, eukaryotic translation elongation

factor 1 alpha 1; EIF2C1; eukaryotic translation initiation factor 2C, 1; EP300;

E1A binding protein p300; HDAC2, histone deacetylase 2; HSPA1L, heat shock

70 kDa protein 1-like; HSPA5, heat shock 70 kDa protein 5; HSP90AB1, heat

shock protein 90 kDa alpha (cytosolic) class B member 1; KAT2A, K(lysine)

acetyltransferase 2A; RPL38, ribosomal protein L38; RPS27L, Ribosomal

protein S27-like; RPS3, ribosomal protein S3; RUVBL2, RuvB-like 2; RPL23,

ribosomal protein L23; SART1, squamous cell carcinoma antigen recognized by

T cells 3; SLC25A3, solute carrier family 25 (mitochondrial carrier; phosphate

carrier), member 3; SLC25A5, solute carrier family 25 (mitochondrial carrier;

adenine nucleotide translocator), member 5; SLC25A6, solute carrier family 25

(mitochondrial carrier; adenine nucleotide translocator) member 6; SND, staphy-

lococcal nuclease and tudor domain containing 1; SYNCRIP, synaptotagmin

binding, cytoplasmic RNA interacting protein; TADA3, transcriptional adaptor 3;

TAF9, RNA polymerase II; TATA, box binding protein (TBP)-associated factor;

TP53, tumor protein 53; TRRAP, transformation/transcription domain-associated

protein; WDR77, WD repeat domain 77; XRCC6, X-ray repair complementing

defective repair in Chinese hamster cells 6; YBX1, Y box binding protein 1.

highly connected regions connect sparsely connected nodes. In
fact they classified networks into two modular organizations: local
clustering and global networks. Local networks are considered to
have functionality similar to biological processes whereas global
connectivity is related to hub proteins present in the network
connecting high-end nodes (higher order communication points
between protein complexes; Han et al., 2004). Sirt-1 network is
showing a tendency to connected global networks.

The decrease of the topological coefficient with the number
of interacting partners gives information regarding interaction of
proteins with common neighbor (Figure 3D). This shows that
hub proteins (except SLC25 protein family) share fewer common
neighbors then sparsely connected nodes and it also proves that
the early inference of modular organization of Sirt-1 network is
correct. A stressed node in the network is Sirt-1 having the high-
est number of distribution degrees (see supplementary material
for details in Table A1 in Appendix). BC has been evaluated as

the amount of traffic that a vertex or edge has to handle in a
network. In Sirt-1 interactome, the number of nodes has a high
degree of BC and this is reported in (see supplementary material
for details in Table A1 in Appendix). It has been shown that high
degree of connectivity correlates well with pleiotropic effects (Tyler
et al., 2009). This indicates also that the most part of Proteins in
Sirt 1 interactome map are involved in many different biological
processes with different cellular localizations, more precisely AR,
RELA, and SYNCRIP are present in nucleus as well as cytoplasm
whereas SLC25A5 is in inner mitochondrial membrane as well as
cytoplasm. Sirt 1 is found to interact with proteins involved in
numerous pathways like Foxo Signaling, Regulation of Androgen
receptor activity (Table A3 in Appendix).

GENE ONTOLOGICAL STUDIES OF Sirt-1
GO studies on the hub proteins inferred from our analysis suggest
that they are involved in important biological processes related to
gene regulation, Metabolism and proton co-transport (Table A2
in Appendix). In details, SLC25A3 is responsible for the inor-
ganic phosphate transport into the mitochondrial matrix, either
by proton co-transport or in exchange for hydroxyl ions (k, Entrez
Gene description), while JUN interacts directly with specific target
DNA sequences to regulate gene expression. The centrality analy-
sis based on hub proteins showed SLC25A3, JUN, Sirt-1, RUVBL2,
and MCF2L2 as important proteins of the network. Other Meth-
ods based on MCC, DMNC, MNC, and EPC evidenced the same
proteins as hub nodes along with EP300, YBX1, RPL38, AR, and
Sirt-2.

Genes associated with proteins and found significant in the
interactome were analyzed by the BiNGO package in Cytoscape.
Sirt-1 first order interacting partners are involved into numerous
biological processes. Sirt-1 interactome is significantly involved
Metabolism modulation related processes (Figure 4). Sirt-2 in
chromatin silencing at rDNA, RPS27L, and RTN4 in regulating
anti-apoptotic phenomena.

Certain processes, like chromatin remodeling and modifica-
tion, involve many important proteins of the network like KAT2B,
NCOR1, HDAC6, RRP8, HDAC2, and KAT2A. Moreover, TP53,
Sirt-2, PPARGC1, CPS1, and JUN are responsible for the processes
related to the response to starvation whereas the response to stress
is regulated by NCOR1, MYOD1, KRT1, SIRT2, HDAC2, RPS3,
RELA, FOXO1, HDAC6, and other proteins involved in ncRNA
metabolic processes and in negative regulation of signaling path-
ways. In particular, the important processes like DNA binding
activity transcription factor regulation and DNA repair are shown
to have an involvement with proteins like Sirt-1, Sirt-2, TP53,
PPARGC1A,JUN,EP300,HDAC2,HDAC6,KAT2A,Kat 2B,RELA,
RB1, WRN, XRCC5, and XRCC6 (Figure A3 in Appendix).

In particular, the sirtuin network shows that Sirt-2, HDAC6,
HDAC2, Sirt-1, PPARGc1A, TRRAP are implicated in histone
modification and histone deacetylation whereas SUV39H1 and
DICER1 are involved in gene silencing phenomenon.

The proteins in Sirt 1 interaction maps showed also differ-
ent cellular localization and molecular function (Figure 4 and
Table A4 in Appendix). In details, Sirt family, ARNTL, WRN,
EP300, SYNCRIP, JUN, RPS3 are proteins showing pleiotropicity
in biological as well as in the cellular localization in the GO analysis
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Table 2 |The 10 hub proteins present in Sirt-1 first order interaction maps obtained by different algorithms and centrality measures.

MCC DMNC MNC EPC Degree Bottleneck Betweenness Stress Closeness

SIRT1 RPL38 RPL38 JUN JUN JUN JUN JUN SLC25A5

YBX1 RELA SIRT-1 SIRT-1 SIRT-1 SIRT-1 SIRT-1 SIRT-1 TADA2B

SIRT2 SLC25A3 SLC25A3 RELA RUVBL2 RUVBL2 RUVBL2 RUVBL2 HSF1

JUN MCF2L2 SIRT2 SLC25A3 SLC25A3 KPNA3 KPNA3 KPNA3 HNF4A

SLC25A13 AR MCF2L2 SIRT2 SIRT2 MCF2L2 MCF2L2 MCF2L2 TADA3

RUVbl2 SIRT6 AR RPS3 MCF2L2 CNOT10 CNOT10 CNOT10 HIST1H2BC

EP300 SYNCRIP SIRT6 SIRT6 DYNC1H1 WRN WRN WRN EIF2C1

HDAC2 EP300 SYNCRIP EP300 SLC25A13 RPS27L RPS27L RPS27L CMYA5

SIRT6 YBX1 EP300 YBX1 YBX1 SIRT4 SIRT4 SIRT4 NAT10

SLC25A3 HDAC2 YBX1 SIRT3 HDAC2 HDAC2 HDAC2 HDAC2 ARNTL

AR, androgen receptor; CMYA, cardiomyopathy associated 5; CNOT10, CCR4-not transcription complex subunit 10; DMNC, density of maximum neighborhood com-

ponent; EIF2C1, eukaryotic translation initiation factor 2C, 1; EPC, edge percolated component; HIST1H2BC, histone cluster 1, H2bc 2; HNF4A, hepatocyte nuclear

factor 4 alpha; HSF1, heat shock transcription factor; KPNA3, karyopherin alpha 3 (importin alpha 4); MCC, Maximal Clique Centrality; MCF2L2, MCF.2 cell line derived

transforming sequence-like; MNC, Maximum Neighborhood Component; NAT10, N-acetyltransferase 10; RELA, V-rel reticuloendotheliosis viral oncogene homolog

A; RPS27L, ribosomal protein S27-like, RecQ helicase-like;TADA2b, transcriptional adaptor 2B, ribosomal protein L38;TADA3, transcriptional adaptor 3; WRN, Werner

syndrome.

FIGURE 4 |The significant GO ontological data related to molecular function with the GO nodes are listed in circles connected by black arrows to the

GO nodes. These yellow and orange color nodes correspond to the statistically significant nodes.

maps. In fact, Sirt-1 interacts with cytoplasmic, nuclear, extracellu-
lar and mitochondrial proteins as found with a significant p value,
i.e., p < 0.05 to p > 0.0000005 that measures the statistical signif-
icance of the different essentialities of proteins implicated in the
biological processes. RELA and JUN show interactions with mito-
chondrial proteins, Sirt-1 interacts with other cellular proteins in
activating DNA repair and stress protection mechanisms.

SECOND ORDER INTERACTION OF Sirt-1
The Sirt-1 second-degree interaction map is composed of 4691
nodes. These nodes correspond to different partners interacting by
221595 edges (Interactions). The second order network of Sirt-1
is scale free and small-world network interacting with numer-
ous proteins implicated in transcription and metabolism related
processes. Sirt 1 has a high degree of interactions in second order
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interaction maps as it is having interactions with high number of
proteins like PARP1 (inhibits Sirt activity) and NAMPT (regulates
NAD+ levels; Yang et al., 2006). Analyzing centrality statistics and
pattern of rearrangement of interacting nodes in Second order
interactome of Sirt-1 will provide further insights on the variabil-
ity in functionality, cellular localization, and pleiotropicity nature
of the SIRT interaction map.

MOLECULAR DOCKING STUDIES
Dai et al. (2010) suggested that Sirtuin activating compounds
(STACS) interact directly with Sirt-1 activating the deacetylation
through an allosteric mechanism. This mechanism requires the
presence of an allosteric site on the protein; therefore, we have used
for modeling the same structural site on which we have recently
found that binds AROS, the allosteric effector of Sirt-1 known as
endogenous activator (Autiero et al., 2009). So we acquired from
the structural model of the complex AROS–SIRT1, obtained after
docking and molecular dynamics, the putative residues of inter-
action (see Table 3). Hence, our docking studies have focused on
the interactions between the allosteric site found on the native
modeled structure of Sirt-1 and STACs like SRT1720, SRT2183,
SRT1460, and resveratrol (Figure A4 in Appendix). The best dock-
ing results were obtained by implementing flexible docking in
AutoDock4. In particular, the reason for the selection of this site
depends from the fact that many experimental data have sug-
gested that the modulation of the catalytic activity of Sirt-1 is
exerted through the adjustment implemented by the allosteric site.
Recent works also show that the interaction of Sirt-1 with small
effectors has a functional relevance for its activation (Zhao et al.,
2004; Milne et al., 2007; Bemis et al., 2009). However, the modeled
structure of Sirt-1 shows that the allosteric site selected as bind-
ing area for activators is near to N-terminal region predicted as
unordered (Autiero et al., 2009).

We have also focused our attention on the disordered residues
flanking the allosteric site (see Table 3) considering them as flexi-
ble during the process of docking. This structural region is close to
the highly disordered N-terminal segment and involved into the
regulation of the enzyme activity (Tanno et al., 2007; Ford et al.,
2008; Sasaki et al., 2008).

The grid-based approach was implemented defining a rigid box
(of dimension 4.14 × 19.56 × −24.21 Angstroms) on the surface
of the protein and around the residues of the allosteric site (see
Table 3 and Figure A6 in Appendix) to specify the docking area
for the activators. Parametric details of the grid parameters such
as “number of spacing,” “number of grid points,” and “center grid
box” in all three directions are given in Figure A5 in Appendix.

FIGURE 5 | Side view of four activators docked on the active site. All
the four activators are shown in “stick” confirmation with different colors:
SRT1460 in yellow, SRT2183 in blue, resveratrol magenta and SRT1720 in
red). The active site residues are shown in “surface” confirmation whereas
Sirt-1 by cartoon. The active site region with the docked activators is
highlighted in a white box.

Figures 5 and 6 and Figure A7 in Appendix show the best
docking models computed for all the four activators against Sirt-1.
The complexes present negative values of the binding free energy,
which indicates that the models between Sirt-1 and its activators
are reliable. Their analysis in terms of interaction residues con-
firms that the binding region is conserved with the involvement of
charged and aromatic residues which suggests complexes stabilized
by electrostatic and stacking interactions. Moreover, the complex
between Sirt-1 and resveratrol resulted not so stable in respect to
the complexes of the other three ligands. This can be inferred from

Table 3 | Sirt-1 residues resulted at the interaction interface with AROS (Autiero et al., 2009) and used during the docking studies.

Sirt-1 residues interacting with AROS MET1; ALA2; ASP3; LEU7; GLU161; ASP166; SER169; HIS170; ALA171; SER172; SER173; SER174;

ASP175; TRP176; PRO184; TYR185; PHE187; VAL188; HIS191; LEU192; ILE194; GLY195; THR196;

ASP197; THR219; TRP221; GLN222; ILE223; TRP624; ARG627VAL628

Sirt-1 residues of the allosteric site considered

flexible during the docking studies

HIS170; ALA171; SER172; SER173; SER174; ASP175;TRP176; PRO184;TYR185; PHE187;VAL188;

HIS191; LEU192

Residues common in the interaction surface are indicated in bold. The smaller number of residues involved in the interaction is due to the different molecular sizes

of AROS and small activators.
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the absence of H-bonds and relatively lesser number of charged
interaction residues (Table 4). However, the EC1.5 values related
to the Sirt-1 activity, and reported in the literature, supports the
observation that the resveratrol is a less potent activator (Milne
et al., 2007; Bemis et al., 2009). A remarkable observation that
supports our models is that the experimental EC1.5 values are lin-
early correlated with the binding energy values found by AutoDock
for the Sirt-1 complexes with the four activators. In fact, a correla-
tion coefficient of 0.73 demonstrates the good agreement between
functional data and computational results.

DISCUSSION
Human Sirt-1 is an unordered protein (IDP) and may there-
fore adopt types of order (and conformations) that are not easily

FIGURE 6 | Interaction regions in four complexes. All the four activators
are shown in the line/bond conformation with different colors and the
residues (reported inTable 4), which are interacting with their respective
activators, are shown in the CPK conformation.

recognized by current secondary or tertiary structure prediction
algorithm, which primarily recognize higher order assemblies sta-
ble in the time. Even the classic experimental structural techniques
often fail in studying structural aspects of these proteins. Sirt-1 is a
Hub protein because of its numerous partners and for its structural
characteristic. Structural features that affect the ability of hubs in
PPI networks to recognize and bind multiple partners are numer-
ous. In this article we primarily focused on the role of intrinsic
disorder in the Sirt-1 structure. However, a study in progress in
our laboratory focuses on the charged residues on the surfaces of
this protein and on the role of phosphorylations. Preliminary data
support the idea that it has highly charged surfaces as compared to
large, disorder containing hubs indicating its possible involvement
in promiscuous binding (Patil and Nakamura, 2006).

Our interactomic analysis showed for the first time how much is
vast the number of physiological partners of this hub protein. Sirt-
1 is an interesting case because we are just beginning to understand
some of the mechanisms that lead to multi-specificity in the bind-
ing of hub proteins. In particular, a huge number of articles have
been published on the clinical, biological and, functional aspects
of human sirtuins but we know only general details about their
structures and molecular mechanisms which govern the functional
behavior of these proteins.

The aim of this study was to evaluate and integrate functional
and structural features by computational methods to predict the
involvement of the human Sirt-1, the most studied of sirtuins,
into the basic molecular mechanism describing the complex regu-
lation of this protein. Since in vitro or in vivo experiments is time
consuming and expensive; in silico prediction can provide func-
tional candidates and help narrow down the experimental efforts.
Moreover, we have also analyzed multiple large-scale experimen-
tal data sets describing the metabolic involvement of the Sirt-1 to
understand the basic mechanism underlying the function of this
hub protein. We have examined objective criteria that could infer
organizations of the Sirt-1 network and the structural determi-
nants featuring the interaction between Sirt-1 and some biological
activators which are reported in the literature as potent modula-
tors of the metabolic activities of sirtuin 1 (Milne et al., 2007; Dai
et al., 2010). At the same time, we can make suggestions about the
structural mechanisms underlying the interaction of small mol-
ecule activators on which there is currently much disagreement
(Pacholec et al., 2010). This knowledge may also be used to direct
the design of new and more specific sirtuin activators.

Table 4 | Interaction details of four complexes compared to experimental data reported in literature.

Name of

activators

Number of

interacting

residues

Name of interacting residues Number and

residue name

of H-bond

Energy

score

(Kcal/mol)

EC1.5

value

SRT1460 13 D166, R167, S169, H170, A171, S172, S173, S174, D175,

W176, P184, Y185, V188

1 H-BOND (S173) −5.62 0.36

SRT1720 9 D163, D166, S172, S173, S174, D175, W176, P177, Y185 1 H-BOND (D175) −4.98 0.16

SRT2183 10 D166, R167, H170, A171, S172, S173, S174, D175, Y185, V188 1 H-BOND (S173) −2.18 2.9

RESVERATROL 8 S173, S174, W176, P180, R181, P184, Y185, V188 NO H-BOND −1.48 36.2

The charged residues are underlined but those aromatic are shown in bold.
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Sirt-1 interactomic study holds the key for understanding asso-
ciations and interactions between various proteins to develop
knowledgeable insights of highly diverse and complex biologi-
cal systems, which are interwoven into each other. On the basis
of the experimental data (see Materials and Methods) at disposal
on various public databases, we have performed an interactomic
analysis and found 136 direct partners interacting with Sirt-1 that
are involved in the important pathways discussed above. Several
proteins are biologically active in metabolic processes whereas
several others proteins perform gene regulatory functions. Scale
freeness of the Sirt-1 interaction map is exhibited by a trend
shown by many proteins with logarithmically decreased connec-
tivity and Sirt-1 interactome shows small-world property with
smaller diameter and high connectivity (Figure 3). These proper-
ties make a network more robust to perturbations like mutations
and viral infections. However, these parameters imply that the
pleiotropicity nature or the complex associations of the proteins
governing different biological processes are found implicated in
many pathways. In particular, some proteins that connect more
nodes in different pathways are, for example, the hub nodes like
JUN, HDAC2, RELA, and SLC25A3. Promislow (2004) showed
that the pleiotropicity is linked to higher connectivity of nodes,
especially, in senescence. However, there is a significant amount
of inferences on possible associations between Sirt-1 and caloric
restriction and senescence. Probably, we could suggest that the
pleiotropic nature of the proteins interacting with Sirt-1 may
address the senescence through the involvement of multiple fac-
tors possibly related to stress and mitochondrial proteins or the
processes associated with mitochondria. This derives from the
fact that with aging there is the progression of many diseases
like Parkinson, Huntington and Alzheimer that depend on mito-
chondrial dysfunction. In Sirt-1 interactome the mitochondrial
sirtuins, i.e., Sirt-3, Sirt-4, and Sirt-5, interact with proteins impli-
cated in different metabolic processes (Figure A8 in Appendix)
and the deregulation of these proteins by any factor can lead
to chronic metabolic disorders. Moreover, the direct interaction
provides some insights about the involvement of Sirt-1 in can-
cer as this protein is also found to be acetylating TP53. In our
studies of the Sirt-1 interactome, this protein and some hub pro-
teins like JUN, RELA, and EP300 show to have interactions with
many different proteins involved in some processes and in dif-
ferent cellular localizations. Further, Sirt-1 interaction map or
other protein interaction networks often demonstrate static pic-
ture of bulk amount of complex dynamic interactions. To get
perspective on modulation of Sirt-1, there will be necessary stud-
ies on dynamics interactions considering the interaction levels in
strength, chronology in PPI maps and rate order reaction in case of
metabolic processes. It would be very interesting to know the affin-
ity values for the NAD moiety in Sirt family and PARP’s (second
order interacting partner) of human Sirt-1 (Kolthur-Seetharam
et al., 2006; Bai et al., 2011). Sirt-1 network analysis confined
with GO studies showed agreement to the observations of Bai
et al. (2011). Moreover, Sirtuin genes are found to be controlling
the organism’s health in the times of adversity like in diseased
conditions. CR is one of the phenomenon’s that switch on the
Sirt-1 genes for regulatory functionality and controlling the meta-
bolic pathways. Therefore, hyper activation of the sirtuin genes

might be one of the possible contributory causes for healthier
life.

Since Sirt-1 became an interesting and promising target for its
importance in life span and for its role in various diseases (Camins
et al., 2010), the exploration of its pharmacological aspects has
been the topic of key research in last decade. In particular, the
attention has been focused on the role of certain small activa-
tor molecules that affect the activity of Sirt-1. In literature there
are some articles on the interaction between Sirt-1 and activators
(Milne et al., 2007; Dai et al., 2010; Huber et al., 2010; Pacholec
et al., 2010). In particular, Milne et al. (2007) showed that three
synthetic activators, namely SRT1460, SRT1720, and SRT2183, are
Sirt-1 activators better than the natural resveratrol because EC val-
ues of these three synthetic activators are lower than the natural
ones. Moreover, these compounds were reported to bind the Sirt-1
enzyme – peptide substrate complex at an allosteric site. There-
fore, these Authors suggested the possibility of developing a new
therapeutic approach using both caloric restriction and the direct
activation of Sirt-1 using these activators. In 2010, in contrast to
Milne et al. (2007), other Authors (Huber et al., 2010; Pacholec
et al., 2010) have evaluated the same Sirt-1 activators (SRT1460,
SRT1720, SRT2183, and resveratrol) by employing biochemical
assays containing native substrates such as the p53-derived pep-
tide lacking the fluorophore as well as purified full-length protein
p53 or acetyl-CoA synthetase 1. In these experiments the four
activators did not lead to apparent activation of Sirt-1 with native
peptide or full-length protein substrates, whereas they activated
Sirt-1 with peptide substrate containing a covalently attached flu-
orophore. In particular, Huber et al. (2010) showed that SRT1720
and SRT2183 effectively decreased acetylated p53 in cells treated
with DNA damaging agents but did so in cells that lack Sirt-1.
Also Pacholec et al. (2010) evidenced that SRT1720, SRT2183,
SRT1460, and resveratrol exhibited multiple off-target activities
against receptors, enzymes, transporters, and ion channels. There-
fore, they concluded that these four molecules were not direct
activators of Sirt-1 and required a fluorophore (named TAMRA)
for activating Sirt-1 (Pacholec et al., 2010). Recently, in contrast
to Pacholec et al. (2010) and Huber et al. (2010) but in agree-
ment with Milne et al. (2007), Dai et al. (2010) have demonstrated
that there are many Sirtuin activating compounds (STACs) that
produce biological effects consistent with direct Sirt-1 activation.
In this study they evaluated again the three STACs (SRT1720,
SRT2183, and SRT1460) and showed that they can accelerate the
Sirt-1 catalyzed deacetylation of specific unlabeled peptides com-
posed only of natural amino acids in contrast with those Authors
which stated that fluorophores were required for Sirt-1 deacetyla-
tion. Therefore, they suggested that these three molecules interact
directly with Sirt-1 and activate Sirt-1-catalyzed deacetylation
through an allosteric mechanism demonstrating that the com-
plex between STACs and specific fluorophores was not necessary
for SIRT1 activation (Dai et al., 2010). As one can see the con-
troversy essentially arises because of the lack of details on both
structural and functional activity of Sirt-1. Moreover, in our opin-
ion, authors do not take into account that disordered regions allow
binding to multiple partners modulating their function. To achieve
this capacity, these regions are able to interact with numerous
and various enzymes that operate post-translational modifications
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of which the kinases are certainly the most studied. They phos-
phorylate sites that are found almost always in disordered zones
modifying in this way both the ability to interact that the function.
Therefore, the presence of specific kinases in the various cellular
districts, where intrinsically disordered proteins have to be post-
translationally modified, is fundamental for the activity of these
proteins. In other words, if Sirt-1 with its long disordered termi-
nal arms is controlled by its phosphorylation state (Autiero et al.,
2009), its activity for the recognition of protein partners at any
one time will be directly dependent on the activity of the kinases
and phosphatases that act on it in a specific cellular district. In this
regard, it is worth of note that we have found more than 90 puta-
tive sites on the human Sirt-1 arms specific for about 40 different
human kinases (manuscript in preparation). All the above suggests
that in vitro testing of one of these proteins should have in the assay
also the kinase necessary for the specific recognition of partners
or, at least, a sirtuin already post-translationally modified for the
specific substrate. Only reasoning on this basis it will be possi-
ble to properly test and compare the functional activity of these
proteins. However, often the experimentalists act with the tradi-
tional structure centric view characteristic of globular enzymes
that cannot be applied to IDPs because their activity in respect of
a substrate is strongly dependent on those post-translational mod-
ifications required to correctly recognize that substrate. It seems
evident that a computational approach in these cases is useful for
understanding and directing studies in solution. This has led to
the lack of conclusive data particularly on small molecule activa-
tors due to the not easy comparability of the results of in vitro
and in vivo experiments. We think that the field has been over-
focused mainly with functional studies performed without taking
account at structural level of the different structural behavior of
the intrinsically disordered proteins and of the necessary recog-
nition specificity determined by the presence of the numerous
kinases. Moreover, conflicts at physiological level are probably due
to animal models that are not genetically appropriate. The issue
of longevity is extremely complicated because the aging involves
many genes and the small molecules like polyphenols have gained
attention because they can enter cellular machinery and exert epi-
genetic changes in hundreds of genes; therefore, higher standards
for genetic analysis are required and it is important to assess if
the longevity is due to a direct binding to Sirt-1 or to other phys-
iological effects sirtuin independent. Therefore, in this work we
have modeled by flexible docking studies the complexes between
Sirt-1 and the four activators (SRT1460, SRT1720, SRT2183, and
resveratrol) reported by Milne et al. (2007). Given that we recently
modeled the interaction between AROS and the allosteric site of
Sirt-1 (Autiero et al., 2009), Milne et al. (2007) and Dai et al. (2010)
showed that these molecules can interact directly with Sirt-1 and
activate it through an allosteric mechanism, therefore, we have
decided to simulate these interactions. In particular, flexible dock-
ing study was chosen because of the highly flexible and unordered
nature of Sirt-1 protein, that is composed of four different regions
(Autiero et al., 2009), of which the two terminal domains are
resulted highly unordered. In particular, the area selected for
binding of these activators is a flexible loop joining N-terminal
and allosteric site. In this particular scenario it is important to
concern flexible binding area, as it will add more authenticity

to the docking results. In fact, flexible docking environment can
mimic the “in vivo” conditions of molecular interaction such as
change in certain bond angles or bond lengths take place when
two molecules tend to interact. In this work 13 residues present
in the allosteric site were chosen to be flexible. In details, these
13 residues selected from the selective binding site area com-
prise four hydrophilic (SER172, SER173, SER174, TYR185), three
hydrophobic (ALA171, VAL188, LEU192), one negatively charged
(ASP175), two positively charged (HIS170,HIS191),and three aro-
matic residues. The significance of aromatic residues and charged
residues in the area of active site is very important because they are
involved in putative stacking and electrostatic interactions, respec-
tively. Moreover our results evidence that aromatic residues form
H-bonds that is important for the structural compactness and sta-
bility of the docked complexes. The comparison between flexible
docking results and the experimental data indicates that the well
known natural activator, resveratrol, does not show good binding
affinity for Sirt-1 respect to other synthetic activators (SRT1460,
SRT1720, SRT2183). In fact, resveratrol has lower affinity than its
synthetic counterparts as shown from binding free energy values
(expressed in Kcal/mol) and the lack of H-Bond formation with
Sirt-1. Figure A9 in Appendix shows the correlation between the
energy values found for the four tested small molecules and the
values of EC, experimentally determined (see Table 4). As one can
see, while for synthetic molecules there is a correlation coefficient
of 0.97 which indicates a good agreement between our structural
data of direct binding and physiological data, the resveratrol is
the only molecule that does not correlate with the others due to
its poor correlation coefficient. This suggests that the biological
activity does not depend on a direct binding. Thus, our docking
model resveratrol–sirtuin-1 clearly shows that resveratrol is a poor
allosteric modulator. Its binding energy is lower than that of the
other modulators (see Table 4).

On the basis of these results we can highlight that the use of a
flexible docking in the case of intrinsically unordered and highly
flexible proteins such as Sirt-1 is able to successfully simulate pro-
tein complexes since our docking data are in agreement with the
functional data. This is the first example, to our knowledge, that a
docking between a flexible and disordered protein and ligands is
not only able to simulate the experimental data but also to clearly
discriminate between different hypothesis. However recently it
has also been reported that ligand-receptor docking studies of
CXCR4 (Kufareva et al., 2011) failed to correctly predict the lig-
and binding sites despite the availability of template GPCR crystal
structures. We observe that in the X-ray structure of CXCR4 (PDB:
3ODU) is missing the N-terminus of about 50 residues. This point
as we will discuss later is important. Each chemokine receptor
has an extracellular N-terminal region, seven helical transmem-
brane domains with three intracellular and three extracellular
hydrophilic loops, and an intracellular C-terminal region. The
first and second extracellular loops are linked together by disulfide
bonding between two conserved cysteine residues. The N-terminal
region of a chemokine receptor is structurally important because it
is crucial for ligand specificity whereas the intracellular C-terminal
region couples G-proteins and this mechanism is implicated for
receptor signaling transduction. In a study in progress in our lab
(manuscript in preparation) we have found diffuse presence of
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disorder in the family of the human chemokine membrane recep-
tors. N and C terminal arms possess structural characteristics
such that they can be considered intrinsically disordered with a
high structural flexibility and the presence of numerous charged
patches and phosphorylation sites. Without any consideration of
these important structural aspects of CXCR4 (not resolved by X-
ray), we think that dockings failed because evidently the structural
features of N-terminus play a crucial role in the binding of those
ligands and most of all the flexibility also plays a structural role
which must carefully taken into account in docking as we have
done with Sirt-1.

To better validate our docking results, we have compared
the complexes between Sirt-1 and the four activators (SRT1460,
SRT1720, SRT2183, and resveratrol) obtained by AutoDock4, a
very useful tool for predicting the complexes conformation (Mor-
ris et al., 1998, 2009), with those performed by Glide, a program
that uses a different protocol indicated as “flexible” (Halgren et al.,

2004). The best complexes generated by this last program in terms
of energetic values showed that (i) the four molecules bind the
same allosteric site predicted for AROS with good affinity and use
about 90% of interactions evidenced by AutoDock4 but with the
same number and type of H-bonds and (ii) the correlation coeffi-
cient between energy score by AutoDock4 and Glide programs is
0.91 (Figure A9 in Appendix).

These results have evidenced the good accuracy of our com-
plexes between Sirt-1 and four molecules even if the certainty of
the result can be obtained only by experimental studies. Hence,
further studies will be performed to validate experimentally our
computational results by biochemistry assays.
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APPENDIX

FIGURE A1 | Description of the usage of AutoGrid Suite in the

AutoDock4 software package, that generates map files specifying the

area over the surface of protein for ligand binding on the basis of

information provided in GPF files, i.e., Grid Parameter file.

FIGURE A2 | Description of the usage of AutoDock Suite in the

AutoDock4 software package, that generates the final docking log file

containing information about the final docked complex.
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FIGURE A3 | Nodes in magenta represents the proteins involved in DNA binding Activity whereas proteins involved inTranscription regulating activity

in GO studies are represented in purple.

FIGURE A4 | Chemical structures of four activators which are used in

molecular docking studies against Sirt-1 (Pacholec et al., 2010).
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FIGURE A5 | Details of the grid parameters such as “number of spacing,” “number of grid points,” and “center grid box,” in all three directions.

FIGURE A6 | Representation of the grid box created on the surface of

Sirt-1 around the allosteric site. In details, Sirt-1 is reported in yellow
cartoon conformation and the area of active site in the cpk conformation.
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FIGURE A7 | Different view of active site (represented in the surface conformation by Pymol) of four directions. Concerning a clockwise direction, the
first view shows the front view (A), the second shows the top view (B), the third shows the side view (C), and the fourth shows the rear side view of active
site residues (D).

FIGURE A8 |Yellow colored nodes are showing the interaction of mitochondrial sirtuins (Sirt-2, Sirt-3 and Sirt-4).

www.frontiersin.org March 2012 | Volume 3 | Article 40 | 17

http://www.frontiersin.org
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Sharma et al. Insights on Sirt-1

AA

B

FIGURE A9 | Correlation between energy scores by AutoDock4 and the values of EC1.5, experimentally determined (A) between energy scores by

AutoDock4 and Glide programs (B).

Frontiers in Pharmacology | Experimental Pharmacology and Drug Discovery March 2012 | Volume 3 | Article 40 | 18

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery
http://www.frontiersin.org/Experimental_Pharmacology_and_Drug_Discovery/archive


Sharma et al. Insights on Sirt-1

Table A1 |The interacting partners and the centrality values associated with Sirt1 direct interacting partners.

ID Eccentricity Radiality Node degree Stress Closeness betweenness Centroid

HIST1H4F 0.5 1.007407407 1 0 0.003717472 0 −134

DIAPH3 0.5 1.155555556 21 0 0.004016064 0 −114

CTTN 0.5 1.192592593 26 260 0.004098361 61.65401265 −109

USP22 0.5 1.2 27 0 0.004115226 0 −108

YBX1 0.5 1.355555556 48 1150 0.004504505 236.8117886 −87

HSF1 0.5 1.051851852 7 20 0.003802281 3.261976912 −128

PER2 0.5 1.022222222 3 0 0.003745318 0 −132

ATG7 0.5 1.044444444 6 14 0.003787879 4.981818182 −129

USP9Y 0.5 1.162962963 22 30 0.004032258 3.382936508 −113

RLN3 0.5 1.007407407 1 0 0.003717472 0 −134

CITED4 0.5 1.014814815 2 0 0.003731343 0 −133

HNRNPUL1 0.5 1.207407407 28 44 0.004132231 5.115295815 −107

HOXB1 0.5 1.014814815 2 0 0.003731343 0 −133

NUDT21 0.5 1.02962963 4 2 0.003759398 0.4 −131

C1QBP 0.5 1.155555556 21 90 0.004016064 15.56143024 −114

ATP1A1 0.5 1.2 27 0 0.004115226 0 −108

HDAC2 0.5 1.303703704 41 880 0.004366812 241.4581972 −94

JUN 0.5 1.155555556 21 244 0.004016064 60.87072927 −114

ZBTB7A 0.5 1.051851852 7 14 0.003802281 2.370707071 −128

E2F1 0.5 1.081481481 11 44 0.003861004 7.796897547 −124

TADA3 0.5 1.22962963 31 186 0.0041841 46.44718615 −104

POFUT2 0.5 1.2 27 0 0.004115226 0 −108

NR1H2 0.5 1.037037037 5 6 0.003773585 1.233333333 −130

SIRT5 0.5 1.051851852 7 8 0.003802281 1.752380952 −128

GSK3B 0.5 1.140740741 19 212 0.003984064 51.19381729 −116

SIRT2 0.5 1.111111111 15 146 0.003921569 58.07142857 −120

CCDC101 0.5 1.207407407 28 34 0.004132231 3.075757576 −107

HES1 0.5 1.014814815 2 0 0.003731343 0 −133

SIRT3 0.5 1.088888889 12 70 0.003875969 23.90622711 −123

SYNCRIP 0.5 1.259259259 35 444 0.004255319 70.4048396 −100

PAPOLA 0.5 1.037037037 5 8 0.003773585 1.819047619 −130

DNAJA2 0.5 1.266666667 36 324 0.004273504 34.0688319 −99

HSPA1L 0.5 1.303703704 41 756 0.004366812 129.3411642 −94

CLOCK 0.5 1.051851852 7 18 0.003802281 6.071428571 −128

HSP90AB1 0.5 1.340740741 46 910 0.004464286 139.8057991 −89

ARHGAP29 0.5 1.155555556 21 0 0.004016064 0 −114

NAT10 0.5 1.155555556 21 0 0.004016064 0 −114

TMEM33 0.5 1.207407407 28 20 0.004132231 1.061319967 −107

CHCHD2 0.5 1.155555556 21 0 0.004016064 0 −114

TRRAP 0.5 1.251851852 34 364 0.004237288 122.354329 −101

DOT1L 0.5 1.007407407 1 0 0.003717472 0 −134

ELL3 0.5 1.155555556 21 0 0.004016064 0 −114

FHL2 0.5 1.118518519 16 110 0.003937008 27.81993562 −119

KLHL23 0.5 1.2 27 0 0.004115226 0 −108

HEY2 0.5 1.022222222 3 2 0.003745318 1 −132

SIRT7 0.5 1.044444444 6 0 0.003787879 0 −129

AASDHPPT 0.5 1.222222222 30 156 0.004166667 65.43333333 −105

AR 0.5 1.148148148 20 218 0.004 49.62665945 −115

FAM48A 0.5 1.207407407 28 50 0.004132231 14.68571429 −107

MYOD1 0.5 1.088888889 12 76 0.003875969 17.44062049 −123

NEDD8 0.5 1.044444444 6 12 0.003787879 4.244444444 −129

(Continued)
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Table A1 | Continued

ID Eccentricity Radiality Node degree Stress Closeness betweenness Centroid

HIC1 0.5 1.007407407 1 0 0.003717472 0 −134

WDR77 0.5 1.281481481 38 372 0.004310345 34.81392157 −97

ATXN7L3B 0.5 1.2 27 0 0.004115226 0 −108

RPL23 0.5 1.288888889 39 468 0.004329004 53.71204567 −96

USP27X 0.5 1.2 27 0 0.004115226 0 −108

NR1H3 0.5 1.02962963 4 6 0.003759398 1.4 −131

CNOT10 0.5 1.2 27 0 0.004115226 0 −108

HIST1H2BC 0.5 1.2 27 174 0.004115226 22.27959818 −108

EP300 0.5 1.222222222 30 666 0.004166667 228.5605339 −105

RPS27L 0.5 1.22962963 31 116 0.0041841 11.38406389 −104

DEDD 0.5 1.2 27 0 0.004115226 0 −108

EIF2C1 0.5 1.222222222 30 90 0.004166667 7.877714563 −105

RPS3 0.5 1.318518519 43 708 0.004405286 93.02002658 −92

PPARGC1A 0.5 1.051851852 7 24 0.003802281 5.652380952 −128

SND1 0.5 1.22962963 31 208 0.0041841 93.26666667 −104

CMYA5 0.5 1.162962963 22 34 0.004032258 6.219047619 −113

SART3 0.5 1.222222222 30 98 0.004166667 15.94178383 −105

SIRT1 1 2 135 15352 0.007407407 10940.83505 81

HSPD1 0.5 1.4 54 1384 0.00462963 242.3024192 −81

TAF5L 0.5 1.207407407 28 34 0.004132231 3.075757576 −107

NCOR2 0.5 1.111111111 15 120 0.003921569 32.02236652 −120

SSR1 0.5 1.2 27 0 0.004115226 0 −108

EEF1A1 0.5 1.340740741 46 916 0.004464286 144.4425679 −89

HIST3H3 0.5 1.059259259 8 28 0.003816794 9.085714286 −127

MCF2L2 0.5 1.155555556 21 0 0.004016064 0 −114

SIRT4 0.5 1.059259259 8 20 0.003816794 6.285714286 −127

MAPK14 0.5 1.155555556 21 270 0.004016064 75.87614053 −114

CN0T1 0.5 1.214814815 29 102 0.004149378 38.86666667 −106

PREPL 0.5 1.2 27 0 0.004115226 0 −108

PDCD1 0.5 1.2 27 0 0.004115226 0 −108

FOXOl 0.5 1.037037037 5 6 0.003773585 1 −130

HIST1H1B 0.5 1.037037037 5 8 0.003773585 2.566666667 −130

TAF6L 0.5 1.207407407 28 34 0.004132231 3.075757576 −107

ATG5 0.5 1.022222222 3 2 0.003745318 1 −132

KAT5 0.5 1.066666667 9 32 0.003831418 5.803174603 −126

ATXN7L2 0.5 1.2 27 0 0.004115226 0 −108

PRMT5 0.5 1.318518519 43 708 0.004405286 131.1924652 −92

DICER1 0.5 1.214814815 29 78 0.004149378 9.36469364 −106

HNF4A 0.5 1.066666667 9 28 0.003831418 6.469047619 −126

ACSS2 0.5 1.014814815 2 0 0.003731343 0 −133

DDOST 0.5 1.222222222 30 66 0.004166667 3.923840779 −105

FOX03 0.5 1.066666667 9 46 0.003831418 14.66753247 −126

TP53 0.5 1.259259259 35 852 0.004255319 247.7405667 −100

SLC25A13 0.5 1.237037037 32 200 0.004201681 58.17817533 −103

NCOA2 0.5 1.066666667 9 28 0.003831418 5.857142857 −126

MAPK8 0.5 1.074074074 10 24 0.003846154 4.271428571 −125

RBI 0.5 1.118518519 16 122 0.003937008 27.02950938 −119

SLC25A5 0.5 1.251851852 34 262 0.004237288 39.46214475 −101

IP09 0.5 1.214814815 29 64 0.004149378 10.93376623 −106

MEF2C 0.5 1.051851852 7 14 0.003802281 1.934199134 −128

TARBP2 0.5 1.2 27 0 0.004115226 0 −108

NCOR1 0.5 1.103703704 14 110 0.00390625 33.77150072 −121
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Table A1 | Continued

ID Eccentricity Radiality Node degree Stress Closeness betweenness Centroid

WRN 0.5 1.17037037 23 50 0.004048583 5.246184371 −112

SIRT6 0.5 1.059259259 8 18 0.003816794 4.004761905 −127

SUPT3H 0.5 1.207407407 28 34 0.004132231 3.075757576 −107

KIF7 0.5 1.2 27 0 0.004115226 0 −108

SLC25A6 0.5 1.266666667 36 340 0.004273504 62.29482874 −99

TADA1 0.5 1.207407407 28 34 0.004132231 3.075757576 −107

RUVBL2 0.5 1.288888889 39 500 0.004329004 92.11672012 −96

SUV39H1 0.5 1.051851852 7 18 0.003802281 5.785714286 −128

KAT2B 0.5 1.2 27 472 0.004115226 157.352381 −108

ATXN7L3 0.5 1.2 27 0 0.004115226 0 −108

NFE2 0.5 1.02962963 4 4 0.003759398 0.7 −131

RPL38 0.5 1.222222222 30 64 0.004166667 3.657072047 −105

XRCC6 0.5 1.259259259 35 626 0.004255319 162.0582313 −100

KPNA2 0.5 1.2 27 196 0.004115226 30.50607726 −108

ACACA 0.5 1.185185185 25 120 0.004081633 29.98435813 −110

HIST4H4 0.5 1.037037037 5 8 0.003773585 2.333333333 −130

EIF2B4 0.5 1.2 27 0 0.004115226 0 −108

KPNA3 0.5 1.185185185 25 136 0.004081633 30.1805203 −110

ENY2 0.5 1.2 27 0 0.004115226 0 −108

DYNC1H1 0.5 1.222222222 30 248 0.004166667 39.60332249 −105

RARB 0.5 1.014814815 2 0 0.003731343 0 −133

HIST2H2AB 0.5 1.214814815 29 194 0.004149378 18.36998916 −106

SLC25A3 0.5 1.266666667 36 300 0.004273504 25.33091014 −99

KAT2A 0.5 1.237037037 32 246 0.004201681 72.24401154 −103

HIST1H4A 0.5 1.140740741 19 120 0.003984064 39.88333333 −116

SUPT7L 0.5 1.207407407 28 34 0.004132231 3.075757576 −107

MAP1LC3B 0.5 1.022222222 3 2 0.003745318 1 −132

RELA 0.5 1.162962963 22 282 0.004032258 72.94258519 −113

RRP8 0.5 1.022222222 3 2 0.003745318 0.4 −132

TADA2B 0.5 1.2 27 0 0.004115226 0 −108

ARNTL 0.5 1.037037037 5 4 0.003773585 1.333333333 −130

TAF9 0.5 1.259259259 35 434 0.004255319 159.8090909 −100

HSPA5 0.5 1.340740741 46 986 0.004464286 135.950784 −89
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Table A2 | Biological processes associated with interacting proteins in the Sirt 1 interaction maps with significant p-value.

GO-ID p-Value Description Genes

6333 2.81 E − 07 Chromatin assembly or disassembly HIST1H2BC|SIRT4|SIRT6|SIRT1|SIRT2|S

16763 1.39E − 06 Transferase activity, transferring pentosyl SIRT4|SIRT6|SIRT1|SIRT3

16575 1.54E − 06 Histone deacetylation HDAC2|SIRT1|SIRT2

6355 2.05E − 06 Regulation of transcription, DNA-dependent AR|RELA|SIRT4|SIRT6|ARNTL|SIRT1|YB)

31323 2.28E − 06 Regulation of cellular metabolism AR|EIF2C1|RELA|SIRT4|SIRT6|ARNTL|SI

6476 2.45E − 06 Protein amino acid deacetylation HDAC2|SIRT1|SIRT2

32774 2.83E − 06 RNA biosynthesis AR|RELA|SIRT4|SIRT6|ARNTL|SIRT1|YB)

17136 3.21 E − 06 NAD-dependent histone deacetylase activity SIRT1|SIRT2

6259 3.67E − 06 DNA metabolism HIST1H2BC|HDAC2|SIRT4|RUVBL2|SIRT

45449 4.65E − 06 Regulation of transcription AR|RELA|SIRT4|SIRT6|ARNTL|SIRT1|YB)

16070 5.39E − 06 RNA metabolism AR|RELA|SIRT4|SYNCRIP|SIRT6|ARNTL|

6996 6.66E − 06 Organelle organization and biogenesis HIST1H2BC|HDAC2|SIRT4|RUVBL2|SIRT

6139 8.88E − 06 Nucleobase, nucleoside, nucleotide and rHIST1H2BC|AR|RELA|SIRT4|SYNCRIP|SI

3950 9.44E − 06 NAD+ ADP-ribosyltransferase activity SIRT4|SIRT1|SIRT3

5667 1.70E − 05 Transcription factor complex EP300|HDAC2|JUN|RELA|RUVBL2

45892 1.84E − 05 Negative regulation of transcription, DNA SIRT4|SIRT6|SIRT1|SIRT2|SIRT3

16570 2.87E − 05 Histone modification HDAC2|SIRT1|SIRT2

43170 4.14E − 05 Macromolecule metabolism HIST1H2BC|AR|EIF2C1|RELA|SIRT4|SYN

3700 5.96E − 05 Transcription factor activity AR|EP300|HDAC2|HNF4A|HSF1|JUN|REL

123 1.15E − 04 Histone acetyltransferase complex EP300|RUVBL2

30528 1.86E − 04 Transcription regulator activity AR|EP300|HDAC2|HNF4A|HSF1|JUN|REL

19538 3.16E − 04 Protein metabolism HIST1H2BC|EIF2C1|RELA|SIRT4|RPS27L

5488 3.41 E − 04 Binding EIF2C1|SYNCRIP|RPS27L|RPL38|YBX1|F

43283 3.81 E − 04 Biopolymer metabolism HIST1H2BC|AR|RELA|SIRT4|SYNCRIP|SI

16932 9.70E − 04 Transferase activity, transferring glycosyl SIRT4|SIRT6|SIRT1|SIRT3

6950 1.12E − 03 Response to stress AR|EP300|HNF4A|HSF1|RELA|RUVBL2|S

3678 1.44E − 03 DNA helicase activity RUVBL2|WRN

15320 1.82E − 03 Phosphate carrier activity SLC25A3

31509 1.82E − 03 Telomeric heterochromatin formation SIRT2

31509 1.82E − 03 Telomeric heterochromatin formation SIRT2

183 1.82E − 03 Chromatin silencing at rDNA SIRT2

35026 1.82E − 03 Leading edge cell differentiation JUN

6348 1.82E − 03 Chromatin silencing at telomere SIRT2

7517 2.76E − 03 Muscle development EP300|SIRT1|SIRT2

8080 2.77E − 03 N -acetyltransferase activity EP300|NAT10

16282 3.43E − 03 Eukaryotic 43S preinitiation complex EIF2C1|RPS3

16410 3.58E − 03 N -acyltransferase activity EP300|NAT10

3707 3.58E − 03 Steroid hormone receptor activity AR|HNF4A

15207 3.64E − 03 Adenine transporter activity SLC25A5

42903 3.64E − 03 Tubulin deacetylase activity SIRT2

10224 3.64E − 03 Response to UV-B RELA

4882 3.64E − 03 Androgen receptor activity AR

15810 3.64E − 03 Aspartate transport SLC25A13

5496 4.02E − 03 Steroid binding AR|HNF4A

4879 4.02E − 03 Ligand-dependent nuclear receptor activity AR|HNF4A

45137 4.02E − 03 Development of primary sexual characteristics AR|SIRT1

8406 4.02E − 03 Gonad development AR|SIRT1

8134 5.18E − 03 Transcription factor binding EP300|HDAC2|RELA|SIRT2

40009 5.45E − 03 Regulation of growth rate WRN

5345 5.45E − 03 Purine transporter activity SLC25A5

4032 5.45E − 03 Aldehyde reductase activity AR

48511 6.78E − 03 Rhythmic process ARNTL|SIRT1

(Continued)
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Table A2 | Biological processes associated with interacting proteins in the Sirt 1 interaction maps with significant p-value.

GO-ID p-Value Description Genes

5497 7.26E − 03 Androgen binding AR

6980 7.26E − 03 Redox signal response SIRT2

40007 8.18E − 03 Growth AR|RUVBL2|WRN

15205 9.07E − 03 Nucleobase transporter activity SLC25A5

42301 9.07E − 03 Phosphate binding RELA

45120 9.07E − 03 Pronucleus HSF1

5850 9.07E − 03 Eukaryotic translation initiation factor 2 complex EIF2C1

30850 9.07E − 03 Prostate gland development AR

19899 9.08E − 03 Enzyme binding HDAC2|RELA|SIRT2

35267 1.09E − 02 NuA4 histone acetyltransferase complex RUVBL2

35035 1.09E − 02 Histone acetyltransferase binding SIRT2

45084 1.09E − 02 Positive regulation of interleukin-12 biosynthesis RELA

1889 1.09E − 02 Liver development RELA

42177 1.09E − 02 Negative regulation of protein catabolism RELA

9887 1.10E − 02 Organ morphogenesis AR|EP300|RELA|SIRT1

6310 1.11E − 02 DNA recombination RUVBL2|WRN

45935 1.12E − 02 Positive regulation of nucleobase, nucleoside, nucleotide aI EP300|JUN|RELA

3702 1.17E − 02 RNA polymerase II transcription factor activity HNF4A|JUN|RELA

5313 1.27E − 02 l-Glutamate transporter activity SLC25A13

8143 1.27E − 02 Poly(A) binding SYNCRIP

43189 1.27E − 02 H4/H2A histone acetyltransferase complex RUVBL2

43565 1.29E − 02 Sequence-specific DNA binding AR|HNF4A|HSF1|JUN

8270 1.36E − 02 Zinc ion binding AR|EP300|HNF4A|SIRT4|SIRT6|RPS

32615 1.45E − 02 Interleukin-12 production RELA

15172 1.45E − 02 Acidic amino acid transporter activity SLC25A13

8139 1.45E − 02 Nuclear localization sequence binding KPNA3

45075 1.45E − 02 Regulation of interleukin-12 biosynthesis RELA

51059 1.45E − 02 NF-kappaB binding RELA

5868 1.45E − 02 Cytoplasmic dynein complex DYNC1H1

8026 1.45E − 02 ATP-dependent helicase activity RUVBL2|WRN
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Table A3 | Interacting protein partner of Sirt-1 involved in various pathways.

Pathways (in human) Interacting proteins in Sirt-1 interactome

E2F transcription factor network E2F1

FoxO family signaling FOX03A, FOXOl

HIF-2 alpha transcription factor Network HIF2A, ARNT

Regulation of Androgen receptor activity AR, NCOA1

Regulation of retinoblastoma protein RB1

P73 transcription factor network P300, P73

Signaling events mediated by HDAC class III P300, HISTH1B, FOX04, PGC1A, MEF2D, HDAC4, TP53, MYOD, PCAF, FHL2, BAX, XRCC6

Table A4 | Cellular localization of the Sirt-1 interacting proteins by GO studies.

GO-ID p-Value Cellular component Genes

5677 1.81E − 12 Chromatin silencing complex SIRT4|SIRT6|SIRT1|SIRT2|SIRT3

44451 1.10E − 09 Nucleoplasm part HDAC2|EP300|JUN|RELA|SIRT4|RUVBL2|SIRT6|SIRT

16585 5.30E − 09 Chromatin remodeling complex SIRT4|SIRT6|SIRT1|SIRT2|SIRT3

5654 6.05E − 09 Nucleoplasm HDAC2|EP300|JUN|RELA|SIRT4|RUVBL2|SIRT6|SIRT

44428 8.71E − 08 Nuclear part HDAC2|EP300|JUN|RELA|SIRT4|SYNCRIP|RUVBL2|SI

31981 9.86E − 08 Nuclear lumen HDAC2|EP300|JUN|RELA|SIRT4|RUVBL2|SIRT6|SIRT

43234 1.54E − 07 Protein complex EIF2C1|RELA|SIRT4|SYNCRIP|RPS27L|SIRT6|RPL38|S

44422 1.66E − 07 Organelle part SLC25A5|RELA|SIRT4|SYNCRIP|SIRT6|RPL38|SIRT1|S

44446 1.66E − 07 Intracellular organelle part SLC25A5|RELA|SIRT4|SYNCRIP|SIRT6|RPL38|SIRT1|S

43233 6.77E − 07 Organelle lumen HDAC2|EP300|JUN|RELA|SIRT4|RUVBL2|SIRT6|SIRT

31974 6.77E − 07 Membrane-enclosed lumen HDAC2|EP300|JUN|RELA|SIRT4|RUVBL2|SIRT6|SIRT

43229 6.11E − 06 Intracellular organelle SYNCRIP|RPS27L|RPL38|YBX1|RPS3|HSF1|SLC25A3|

43226 6.13E − 06 Organelle SYNCRIP|RPS27L|RPL38|YBX1|RPS3|HSF1|SLC25A3|

5622 1.55E − 05 Intracellular EIF2C1|SYNCRIP|RPS27L|RPL38|YBX1|RPS3|MCF2L2

44424 1.95E − 05 Intracellular part EIF2C1|SYNCRIP|RPS27L|RPL38|YBX1|RPS3|HSF1|SL

5634 2.98E − 05 Nucleus HISTlH2BC|AR|RELA|SIRT4|SYNCRIP|SIRT6|WRN|Af

5667 3.71E − 05 Transcription factor complex HDAC2|EP300|JUN|RELA|RUVBL2

123 1.59E − 04 Histone acetyltransferase complex EP300|RUVBL2

43231 2.31E − 04 Intracellular membrane-bound organelle HIST1H2BC|AR|SLC25A5|RELA|SIRT4|SYNCRIP|SIRTE

43227 2.39E − 04 Membrane-bound organelle HIST1H2BC|AR|SLC25A5|RELA|SIRT4|SYNCRIP|SIRTE

16282 4.74E − 03 Eukaryotic 43S preinitiation complex EIF2C1|RPS3

31967 8.64E − 03 Organelle envelope SLC25A13|SLC25A5|SLC25A3|KPN A3

31975 8.96E − 03 Envelope SLC25A13|SLC25A5|SLC25A3|KPN A3

5743 9.48E − 03 Mitochondrial inner membrane SLC25A13|SLC25A5|SLC25A3

5850 1.07E − 02 Eukaryotic translation initiation factor 2 complex EIF2C1

45120 1.07E − 02 Pronucleus HSF1

19866 1.13E − 02 Organelle inner membrane SLC25A13|SLC25A5|SLC25A3

5830 1.15E − 02 Cytosolic ribosome (sensu Eukaryota) RPL38|RPS3

35267 1.28E − 02 NuA4 histone acetyltransferase complex RUVBL2

5737 1.45E − 02 Cytoplasm AR|EIF2C1|SLC25A5|RELA|SYNCRIP|RPS27L|RPL38|S

43189 1.50E − 02 H4/H2A histone acetyltransferase complex RUVBL2

31966 1.50E − 02 Mitochondrial membrane SLC25A13|SLC25A5|SLC25A3

5868 1.71E − 02 Cytoplasmic dynein complex DYNC1H1

5740 1.87E − 02 Mitochondrial envelope SLC25A13|SLC25A5|SLC25A3

Excel sheets with more the details can be found on these links.

• Complete details about the Biological processes of Sirt1 and its interacting partners as analyzed by GO studies: http://bit.ly/s0XBTz
• Details regarding HUB proteins, Average path length and biological processes and cellular localization associated with Sirtlhub nodes

at bit.ly/hubproteinsofSIRT1Network
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