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Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the
brain. For many models of these networks, a striking feature is that their dynamics are
chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in
the neural code? Specifically, how variable are the spike patterns that such a network
produces in response to an input signal? To answer this, we derive a bound for a
general measure of variability—spike-train entropy. This leads to important insights on
the variability of multi-cell spike pattern distributions in large recurrent networks of spiking
neurons responding to fluctuating inputs. The analysis is based on results from random
dynamical systems theory and is complemented by detailed numerical simulations. We
find that the spike pattern entropy is an order of magnitude lower than what would be
extrapolated from single cells. This holds despite the fact that network coupling becomes
vanishingly sparse as network size grows—a phenomenon that depends on “extensive
chaos,” as previously discovered for balanced networks without stimulus drive. Moreover,
we show how spike pattern entropy is controlled by temporal features of the inputs. Our
findings provide insight into how neural networks may encode stimuli in the presence of
inherently chaotic dynamics.
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1. INTRODUCTION
If a time-dependent signal is presented to a network whose
dynamics are chaotic and whose initial conditions cannot be
perfectly controlled, how much variability can one expect in its
responses? Such a scenario is central to questions of stimulus
encoding in the brain.

In this article, we study population level spiking responses in
a neural network model with sparse, random connectivity and
balanced excitation and inhibition. Such models are ubiquitous
in neuroscience, and reproduce the irregular firing that typifies
cortical activity. Moreover their autonomous activity is known
to be chaotic, with extremely strong sensitivity of spike outputs
to tiny changes in a network’s initial conditions (van Vreeswijk
and Sompolinsky, 1998; London et al., 2010; Sun et al., 2010).
Remarkably, in these autonomous systems, the chaos is invariant
to the network scale (i.e., it is extensive): the same spectrum of
Lyapunov exponents recurs regardless of network size, even when
coupling remains localized (Monteforte and Wolf, 2010; Luccioli
et al., 2012). Our goal is to add a stimulus drive, and understand
the implications for the network spike patterns that result—a task
made challenging by the fact that spikes are related to phase space
dynamics in a highly non-linear way.

Intriguingly, when such chaotic networks respond to time-
dependent signals, they produce spiking that is less variable than
one might expect (c.f. Molgedey et al., 1992; Marre et al., 2009;

Rajan et al., 2010). In recent theoretical work, this has been
attributed to low-dimensional chaotic attractors that “project”
only intermittently to produce variable spiking in any given sin-
gle cell (Lajoie et al., 2013). It is unclear how such chaos-induced
“noise” affects neural activity in the brain. However, chaotic
dynamics appears to be a general attribute of many large models
of recurrent networks, a phenomenon that likely constrains bio-
logical network dynamics. Furthermore, stimulus-evoked spike
data similar to that of chaotic models has been experimentally
observed in vivo, where fluctuating sensory stimuli are repeatedly
presented to an animal. Here, cortical neurons produce spikes
with a wide range of variability, with some spikes repeatedly
evoked with millisecond precision (Reinagel and Reid, 2000; Yang
et al., 2008). Information theoretic methods suggest that this type
of “intermittent noise” may permit information to be encoded in
the spike patterns that single neurons produce over time (Reinagel
and Reid, 2000; Tiesinga et al., 2008).

However, the impact of variability on network coding cannot
be understood by extrapolating from single cells alone (Zohary
et al., 1994; Abbott and Dayan, 1999; Averbeck et al., 2006;
Schneidman et al., 2006; Ecker et al., 2011; Hu et al., 2014). Thus,
to eventually understand how network chaos impacts coding, we
need to capture the multicell spike train variability in chaotic
networks—and relate this to well-quantified measurements at the
level of single cells. Direct, sampling-based approaches to this
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problem will fail, due to the combinatorial explosion of spike
patterns that can occur in high-dimensional networks. Another
method is needed.

Studies of variability in recurrent networks typically address
two distinct properties. On one hand, there is the question of
spike-timing variability, often measured by binarized spike pat-
tern entropy and usually studied for single cells or small cell
groups (Strong et al., 1998; Reinagel and Reid, 2000; Schneidman
et al., 2006). On the other hand, recent theoretical work inves-
tigates the dynamical entropy production of entire networks,
quantifying the state space expansion globally (Monteforte and
Wolf, 2010; Luccioli et al., 2012). It is not clear how these two
quantities are related. Here, we extend the work of Lajoie et al.
(2013) to bridge this gap, leveraging random dynamical systems
theory to develop a direct symbolic mapping between phase-space
dynamics and binary spike pattern statistics.

The result is a new bound for the variability of joint spike
pattern distributions in large spiking networks that receive fluc-
tuating input signals. This bound is in terms of spike-response
noise entropy, an information-theoretic quantity that is directly
related to dynamical entropy production. By verifying that the
previous extensivity results of Monteforte and Wolf (2010) and
Luccioli et al. (2012) continue to hold in the presence of stimulus
drive, we show how the bound applies to networks of all sizes, and
only depends on input statistics and single-cell parameters.

We then apply this bound to make two observations about
the spike-pattern variability in chaotic networks. The first is that
the joint variability of spike responses across large networks is at
least an order of magnitude lower than what would be extrap-
olated from measurements of spike-response entropy in single
cells, despite noise correlations that are very low on average.
Second, we show that the spike-response entropy of the network
as a whole is strongly controlled by the tradeoff between the mean
(i.e., DC) and higher-frequency components of the input signals.
Entropy increases monotonically with the mean input strength by

almost an order of magnitude, even as network firing rates remain
constant.

2. MATERIALS AND METHODS
2.1. MODEL
To develop these results, we use large random networks of
N Quadratic Integrate-and-Fire (QIF) model neurons, as in
Monteforte and Wolf (2010) and Lajoie et al. (2013). This sin-
gle neuron model captures the normal form dynamics of Type
I neurons, as found in cortex (Ermentrout, 1996). Moreover, we
make use of a smooth change of coordinates that maps QIF hybrid
dynamics to a phase variable on the unit circle (see Ermentrout,
1996 and appendix of Lajoie et al., 2013). This cell model is
known as the “θ-neuron” and eliminates the need for artifi-
cial reset after a spike. This results in smooth dynamics with
dimensionless units, a feature which will prove crucial for anal-
ysis (see Figure 1A). For reference, in a QIF model neuron with
a time constant τ = 10 ms, one time-unit in the θ-coordinates
corresponds to about 125 ms.

The state of each cell in the network is represented by a phase
variable θi(t) ∈ [0, 1] (i = 1, . . . , N) where 0 and 1 are identified
(i.e., S1) and a spike is said to occur when θi = 1 ∼ 0. In addition
to internal dynamics which depend on coupling between neurons,
the network receives a temporally structured input signal I(t), as
described below.

The dynamics of the ith cell in the network are given by the
equation

dθi = [F(θi) + Z(θi)
N∑

j = 1

aijg(θj) + ε2

2
Z(θi)Z′(θi)]dt . . .

+ Z(θi) [ηdt + εdWi,t]︸ ︷︷ ︸
Ii(t)dt

(1)

where F(θi) = 1 + cos (2πθi), Z(θi) = 1 − cos (2πθi) and

A B

C

FIGURE 1 | (Color online) (A) Sketch of equivalent dynamics between
Quadratic-Integrate-and-Fire and the θ -neuron. (B) Cartoon
representation of a network driven by a quenched collection of

inputs I(t) = {Ii (t)}i = 1,...,N . (C) Example of a single θ -neuron θi in
response to a (quenched) input Ii (t) (η = −0.5, ε = 0.5). Red dots
mark spike times.

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 123 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lajoie et al. Structured chaos in balanced networks

g(θj) =
{

d
(

b2 − [(
θi + 1

2

)
mod 1 − 1

2

]2
)3

; θi ∈ [−b, b]
0 ; else

is a smooth coupling function with small support around θj =
1 ∼ 0, mimicking the rapid rise and fall of a synaptic current
(b = 1/20, d = 35/32). The ε2 term comes from an Ito correction
(Lindner et al., 2003).

The network’s input I = {Ii}N
i = 1, represented by the last term

in (1), models a temporal stimulus. It is a collection of N indepen-
dent signals Ii(t) = η + εdWi,t/dt driving each neuron respec-
tively, where the dWi,t/dt are quenched realizations of white
noise—that is, scaled increments of the independent Wiener
processes Wi,t (see Figure 1B). Note that the input’s mean η con-
trols the network’s “excitability” and can take negative values
(Ermentrout, 1996) while ε ≥ 0 controls the amplitude of input
fluctuations. Both parameters are constant across all cells. We
begin by investigating network (1) in the excitable regime with
parameters η = −0.5 and ε = 0.5. Figure 1C shows an example
trajectory of an isolated neuron θi in this regime, driven only by
its input Ii(t). Model (1) has been analyzed previously for uncou-
pled neurons (Ritt, 2003; Lin et al., 2009a), and for a series of
gradually more complex networks in Lin et al. (2009a,b); Lajoie
et al. (2013) (cf. Monteforte and Wolf, 2010).

We assign 20% of the N neurons to be inhibitory and 80%
to be excitatory, meaning that outgoing weights of neuron j are
either aij ≤ 0 or aij ≥ 0 respectively. The coupling matrix A =
{aij}i,j = 1,...,N is chosen randomly with mean in-degree κ such that
each neuron receives on average κ incoming connections from

independently chosen neurons, from each excitatory/inhibitory
population. Here, |aij| ∼ O(1/

√
κ) when non-zero, in accor-

dance with classical balanced state coupling (van Vreeswijk and
Sompolinsky, 1998). Throughout, we set κ = 20 (|aij| � 0.2) but
find that as long as κ 	 N, our findings are qualitatively robust
to the choice of κ . Two consequences of this connectivity will be
important below. First, as the mean in-degree κ is the same for all
neurons, the spiking statistics of single cells are fairly stereotyp-
ical on average across the network. This is evident in the spike
rasters of Figure 2A. Second, the magnitude of inputs to sin-
gle cells remains similar as network size N grows, because κ is
fixed.

We emphasize that the collection I is a multi-dimensional sig-
nal and not stochastic noise. We study the solutions of (1) arising
from distinct initial conditions (IC) but receiving the same input
I. In contrast to a standard stochastic differential equation, this
interpretation of system (1) is defined as a random dynamical
system (RDS) (Kunita, 1990). As we will see below, RDS the-
ory addresses questions of ensemble dynamics when a quenched
“realization” of a stochastic process drives an underlying dynam-
ical system. This framework enables us to ask questions about
stimulus-response variability of a chaotic network due to any per-
turbation. For example, one might ask: What is the impact of
deleting or adding a spike from some neuron(s) on the future
spiking output of the network (c.f. London et al., 2010)? This
scenario is equivalent to comparing the response from the net-
work initialized at a given state to its response resulting from a
second perturbed state, where the coordinates of some neurons
are set to be at or away from their spiking phase. Our approach is a

A B

C

FIGURE 2 | (Color online) (A) Top: Raster plot of spike output for 100
randomly selected neurons on a single trial (dots are spikes). Bottom:
Illustration of binary SKL-word. (B) Raster plot of one randomly selected cell’s
spike output on 2000 trials where only network initial conditions change.
(C) Single cell H1L

noise estimates for different choices of “surrogate” noise

(round markers); see text. From top to bottom: homogeneous poisson (blue),
inhomogeneous poisson (red), network interactions (black). The bottom curve
is a computation of 1

2 H2L
noise from a cell pair (diamond markers). Abscissa

scale is 1/L to better visualize extrapolation of extensive regime to L → ∞
(left square marker). For all panels: η = −0.5, ε = 0.5, N = 500.
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generalization of this formulation as we consider large ensembles
of initial states, and study the differences between resulting tra-
jectories in response to a fixed input. This will enable us to
quantify the statistics of variability in network responses due to
chaos.

2.2. SPIKE-RESPONSE NOISE ENTROPY AND DIRECT ESTIMATES
To quantify spike pattern variability, we treat spike trains as binary
time series. We discretize time in bins of width �t small enough
so that for a given cell, each bin contains at most a single spike.
Throughout, we use time bins of width �t = 0.05 time-units;
we found that moderately different resolutions did not signifi-
cantly affect our results. Let us define finite binary words for K
neurons over L time bins starting at time tl = l�t for some inte-
ger l: SKL(tl) = {Sk

l , . . . , Sk
l + L − 1}k = k1,...,kK with Sk

j ∈ {0, 1} (see
Figure 2A).

The variability of the evoked spike response SKL(tl) is captured
by the spike-response noise entropy

HKL
noise(I, tl) = −1

L�t

∑
SKL

P(SKL(tl)|I) log2 P(SKL(tl)|I) (2)

where P(SKL(tl)|I) denotes probability of observing word SKL(tl)
conditioned on input I, given a random initial state of the net-
work. This quantity may also be referred to as conditional response
entropy. It is normalized to have units of bits per time-unit
(bits/tu), as opposed to bits per time-bin, and thus represents an
entropy rate in continuous time. Since the inputs I and network
dynamics are statistically stationary processes (Lajoie et al., 2013),
it follows that the expected noise entropy rate of KL words con-
ditioned on any I from the same input distribution—controlled
by the parameters η and ε—can be obtained from a long time
average on any single I∗ (see e.g., Rieke et al., 1996; Strong et al.,
1998):

HKL
noise =

∫
I

P(I)HKL
noise(I, tl) = lim

T → ∞
1

T

T − 1∑
l = 0

HKL
noise(I∗, tl). (3)

As demonstrated in Strong et al. (1998) and reviewed below, (3)
can be used to estimate the true entropy rate of K-neuron groups
considered when L → ∞. As we will see, this is only practical for
small K—we will need other tools to understand this quantity for
entire networks (K = N). Nevertheless, we begin by applying a
direct sampling approach.

To estimate the probability terms in (2), we simulate net-
work (1) in response to a randomly chosen, quenched I(t) for
10, 000 time units and 2000 “trials,” distinguished by different
ICs. Here, we wish to choose ICs from a distribution that best
describes random network states, while being agnostic about its
past. As discussed in Lajoie et al. (2013), we assume that sys-
tem (1) possesses an ergodic stationary probability measure μ(θ),
which is the steady state solution of the Fokker-Planck equation
associated with (1). Thus, μ is the probability measure describ-
ing how likely we are to find the network in a particular state
at any moment in time, given the history of any input I with
identical statistics. We emphasize that μ serves only as an ini-
tial distribution, and that ensembles of “trial” trajectories as

described above will have a very different distribution, as they are
conditioned on a fixed input I. (See Lin et al., 2009a,b; Lajoie et al.,
2013 for more details about this distinction).

To sample from μ, we first select seed ICs uniformly over the
state space, and evolve each of these for a “burn” period of 50
time units, for which different inputs are presented. The result-
ing endpoints of these trajectories represent a new IC ensemble
that approximates μ. From then on, all ICs are integrated using
the same input I and we use this solution ensemble to study
variability of spike-responses.

From these simulated network trajectories, we first discard the
first 100 time-units to eliminate transient effects. We then extract
the binary spike output of neurons across all trials (see Figure 2B
for a single, network-embedded neuron example). Normalized
cross-trial counts of SKL words in consecutive, non-overlapping
L-windows serve as estimates of the probabilities P(SKL(tl)|I) in
Equation (2).

3. RESULTS
3.1. SINGLE-CELL VARIABILITY
We begin by computing noise entropy in the spike responses
of single cells in the network. Using the estimation techniques
described above, we compare the effect of chaos to that of com-
monly used independent noise models on noise entropy. This
complements similar analysis in Lajoie et al. (2013), which used a
different metric of spike reliability from trial to trial.

We start by randomly selecting a cell in our network and
extract its binary spike output across many simulated trials (see
Figure 2B). Using this data, we estimate H1L

noise for word lengths
up to L = 20 and plot the results in Figure 2C as a function of
1/L. A system with finite autocorrelation timescales is expected to
produce entropy rates that behave extensively as L becomes suf-
ficiently large. This is readily apparent in the linear decreasing
trend in H1L

noise as L grows, until a point where the estimate quickly
drops due to insufficient sampling. Following Strong et al. (1998),
we use the point of least fractional change in slope to extrapolate
this extensive trend and obtain an estimate for limL → ∞ H1L

noise
(intersection with ordinates in Figure 2C). We verified that tak-
ing larger sample sizes—with L up to 30 and ensembles of up to
10, 000 trials– did not significantly affect our estimates.

Our estimate of limL → ∞ H1L
noise is 1.12 bits/tu. We note that a

“purely random,” homogeneous poisson spike train with the same
firing rate (0.8 spikes/tu) would have noise entropy H1L

noise of 3.67
bits/tu. Thus, while chaotic dynamics produce variable spiking in
single cells, the resulting noise entropy is much less than that of a
totally random response, a fact also evident from the spike rasters
in Figure 2B.

Part of the reason for this difference is simply the presence
of the stimulus; inputs from other cells in the chaotic networks
also play a role. To isolate the network effect, we repeat the
sampling process above by simulating our chosen cell in iso-
lation, keeping the input Ii intact but replacing the incoming
spike trains it receives from upstream cells by two surrogate
ensembles meant to isolate distinct statistical features of network
activity. (i) Homogeneous poisson surrogates: independent, pois-
son distributed spike trains with rate matching the mean firing
rate of corresponding upstream cells. (ii) Inhomogeneous poisson

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 123 | 4

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Lajoie et al. Structured chaos in balanced networks

surrogates: produced by independently drawing a binary random
variable in each �t-bin, according to the time-dependent prob-
ability given by the normalized spike count of the corresponding
network train across all original trials. For each new simulated
trial, we draw independent surrogates. Figure 2C shows a 66%
increase in noise entropy rate for the homogeneous surrogates,
and about 30% for the inhomogeneous case.

Overall, we have shown that single, stimulus-driven cells in
chaotic networks produce spike-response entropy significantly
lower than that expected for single, stimulus-driven cells receiv-
ing poisson background inputs, as in many statistical models. We
next seek to characterize spike entropy in the joint responses of
multiple cells.

3.2. MULTI-CELL VARIABILITY
Our network is connected—albeit sparsely (κ 	 N)—and it is
not clear in advance how coupling interactions will impact the
entropy rate of groups of cells. As a first step, we repeat the noise
entropy estimate described above for a randomly selected pair
of connected cells up to L = 10, and extrapolate limL → ∞ H2L

noise
from this data. The black lines in Figure 2C show H2L

noise/2, nor-
malized to units of bits per time-unit per neuron for comparison
with H1L

noise. Due to combinatorial explosion of possible spike pat-
terns as more neurons are considered, we were unable to compute
such estimates for K greater than 2. Nevertheless, it appears from
the K = 2 case shown that interactions between neurons conspire
to lower response noise entropy per neuron, if only by a small
margin.

However, this margin could easily be missed. For a given
neuron pair (i, j), consider the difference between the sum of

independent cell entropy rates and their joint pair rate: δij =
limL → ∞

[
H1L

noise(i) + H1L
noise(j) − H2L

noise(i, j)
]
. From 45 random

pairs of neurons, we obtain the average 〈δij〉 = 0.012 bits/tu. This
implies a relative difference of the order of O(10−2) when esti-
mating the entropy rate of pairs of cells using their marginal,
single-cell response distributions. We will see later these small dif-
ferences compound significantly when considering the network as
a whole (cf. Schneidman et al., 2006).

To quantify the extent of these interactions over space and
time, we compute the Pearson correlation coefficient cij(tl)
between the spiking probability of two cells i and j in time bin
tl. That is, we measure the cells’ instantaneous noise correlation.
Figure 3A shows a typical histogram of cij(tl) across all neuron
pairs of a network with N = 500 for a fixed tl, where pairs with
zero spiking probability were discarded. We can see that at a fixed
moment, correlations are weak and most cells are uncorrelated.
Moreover, these correlations are not static: a high correlation
between two cells in one time bin does not guarantee that they will
be correlated in another. This is illustrated by Figure 3B, show-
ing a histogram of cij(tl) across 10000 time-units between two
randomly chosen connected cells.

We emphasize that this weak and highly dynamic correlation
structure might easily be dismissed as negligible experimentally.
If one would choose a single pair of cells and measure the tempo-
ral average of cij(tl) over 500 time units, one obtains an average
of the order of 10−5 (over 4950 cell pairs tested), and standard
deviation of the order of 10−2 (across the 4950 cell pairs.) In
other words, each individual cell pair appears to be almost com-
pletely uncorrelated–at least on average. Below, we will show that
the weak, transient dependencies that are in fact present among

A B

C D

FIGURE 3 | (Color online) (A) Typical histogram of noise correlation
coefficient cij (tl ) between all neuron pairs for a fixed time. Inset shows
cij (tl ) for the first 5000 pairs. (B) Histogram of noise correlation
coefficient cij (tl ) between two connected cells across 10, 000 tu. Inset
shows cij (tl ) for 100 tu. (C) Network-wide noise entropy estimates in
bits/tu as a function of N. Slope 〈H1〉 averaged over 20 random cells

in a network with N = 500. Shaded area shows two standard errors of
the mean. Markers show direct samples from single cells for various
network sizes (ie NH1). HKS : square markers shows estimates from
Lyapunov spectra for a range of N; black line is a linear fit. (D) Plot of
first 10% of Lyap spectrum for N = 500, 1000, and 2000. For all
panels: η = −0.5, ε = 0.5.
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neurons nevertheless have a very strong impact on network-wide
noise entropy.

To summarize, measures of entropy and correlations indicate
that there are noticeable but weak dependencies in the spik-
ing activity of connected pairs of cells. Scaling up from such
dependencies to accurately describe the joint activity of an entire
network is a notoriously difficult problem. We take an approach
based on RDS in what follows. This approach will quantify the
entropy HNL

noise of the network as whole, as networks size N
grows.

3.3. A BENCHMARK FOR NETWORK ENTROPY
To benchmark HNL

noise for different network sizes, we first describe
the joint network entropy that would be naively predicted by
direct extrapolation from single cells. In other words, this is the
estimate one would obtain by ignoring statistical interactions
between neurons. As the entropy of a multivariate distribution
is always smaller or equal to the sum of the marginal distribu-
tions’ entropies, it follows that if 〈H1〉 denotes the average of
limL → ∞ H1L

noise over all neurons, then N〈H1〉 ≥ limL → ∞ HNL
noise.

We estimate 〈H1〉 by sampling limL → ∞ H1L
noise from randomly

chosen neurons in a network with N = 500 using the same tech-
nique as in Figure 2C. As the mean in-degree κ for incoming
connections to each neuron is constant, we found that using an
ensemble of 20 neurons randomly sampled from the full network,
gave a good estimate for 〈H1〉.

Unlike cell pairs, spiking statistics of single neurons are
expected to be unchanged by network size N with fixed in-degree
κ . We therefore use 〈H1〉 to extrapolate the extensive upper bound
on network noise entropy N〈H1〉 as a function of network size
N. Figure 3C shows this estimate, where the shaded area around
the line denotes the extrapolation of two standard errors of the
mean of 〈H1〉 estimated in a network with N = 500. We verified
by spot checks that single cell activity in networks of different sizes
agree with this extrapolation (see markers in Figure 3C). Next,
we leverage dynamical properties of our network to estimate
how much reduction in entropy can be expected from the joint
activity of entire networks in comparison to this naive extensive
bound.

3.4. DYNAMICAL ENTROPY PRODUCTION
In what follows, we use symbolic dynamics to map between the
phase space of our network and the set of binary spike trains.
Consider trajectories θ(t) = (θ1(t), . . . , θN (t)) of model (1),
evolving on the N-dimensional torus T

N . Recall that a spike
from cell i occurs when θi(t) = 1, and will lead to Si

l = 1 in
the corresponding time bin. Notice that the phase response
curve Z(θi) modulates the effect of any input on neuron i–
whether that input comes from the signal Ii(t) or from network
activity—and that it vanishes at θi(t) = 1. This implies that
a neuron becomes insensitive to any inputs when it is about
to spike. Indeed, the Taylor expansion of neuron i’s dynam-
ics about θi = 1 is constant up to quadratic order: dθi =
[2 + O((θi − 1)2)]dt + O((θi − 1)2)dWi,t . Based on this obser-
vation we make the approximation that for �t small enough,
neuron i spikes in the time bin [t, t + �t] if and only if θi(t) ∈
[1 − 2�t, 1) (see next section for verification).

Thus, equipped, consider the following partition of the state
space T

N : 
∗ = {γ0, γ1}N , built of Cartesian products of inter-
vals γ0 = [0, 1 − 2�t) and γ1 = [1 − 2�t, 1) across all θi’s. At
any time tl = l�t, the 
∗-address of θ(tl) determines the bina-
rized spiking state of the network in time bin [tl, tl + �t]: θi(tl) ∈
γ0 ⇒ Si

l = 0 and θi(tl) ∈ γ1 ⇒ Si
l = 1. In order to describe L-

long spike trains in terms of 
∗-addresses, we must understand
how solutions θ(t) evolve with respect to 
∗. To this end, con-
sider the discretized dynamics given by the transition maps �t;I
that send T

N onto itself according to the flow of (1) from t to
t + �t. If θ(t) is a solution of (1), then �t;I(θ(t)) = θ(t + �t)
where �t refers to the resolution of our binary spike trains SNL.
Note that the maps �t;I depend on both t and I, are generally
smooth with smooth inverses (diffeomorphisms) (Kunita, 1990),
and together form a discrete RDS. For detailed geometric proper-
ties of the RDS defined by system (1), we refer the reader to Lajoie
et al. (2013).

For what follows, it is convenient to reverse time and study
spike trains and trajectories starting in the distant past leading up
to t = 0. This representation is statistically equivalent to forward
time since our network has stationary dynamics (Lajoie et al.,
2013). Consider now the l-step inverse map: �−l

0;I . For any set A in

the partition 
∗, its pre-image �−l
0;I(A) refers to all points in T

N

at time −l�t that will be mapped to A, and consequently have the
same spiking state at t = 0. Similarly, if both A0 and A1 are sets
in 
∗, the intersection �−l

0;I(A0)
⋂

�−l+1
0;I (A1) describes all points

that will be mapped to A1 at t = −�t and A0 at t = 0. It follows
that any subset of the form B = ⋂L

l=0 �−l
0;I(Al) where Al ∈ 
∗

captures all past network states at time t = ( − L)�t leading to
identical spiking sequences {Si−L, . . . , Si−1, Si

0}i = 1,...,N , when the
same I is presented. Moreover, it is easy to show that the col-
lections of all possible sets constructed as B, named the join of
pre-images of 
∗ and denoted ∨L

l = 0�
−l
0;I


∗, is itself a partition

of T
N .

It follows that this new partition offers a one-to-one corre-
spondence between its member sets and the space of all SNL spike
trains. Note that many sets in this partition will be empty since
not all spike sequences are accessible by the network. In fact, the
number of non-empty sets remaining in ∨L − 1

l = 0 �−l
0;I


∗ as L →
∞ represents the number of allowed infinite spike sequences.
Furthermore, for a given SNL and its associated set B(SNL) ∈
∨L − 1

l = 0 �−l
0;I


∗, the probability of observing spike pattern SNL

can be stated as an initial state probability in the distant past:
P(SNL|I) = P(θ( − L�t) ∈ B(SNL)).

As discussed above and in Lajoie et al. (2013), we assume that
our RDS possesses an ergodic stationary probability measure μ.
Recall that we assume random ICs forming our distinct trials are
drawn from μ. It follows that limL → ∞ P(SNL|I) = μ(B(SNL)).
Thus, if we let

hμ(�t;I, 
∗) = lim
L → ∞ − 1

L

∑
B ∈ ∨L

l = 0�
−l
0;I
∗

μ(B) ln μ(B), (4)

it follows that

lim
L → ∞ HNL

noise = �t

ln 2
hμ(�t;I, 
∗). (5)
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For any dynamical system, the expression (4) measures the
amount of uncertainty produced by chaotic dynamics if we can
only observe the system with the precision given by the partition

∗. This concept is generalized by the Kolmogorov-Sinai entropy
hμ, also called dynamical or metric entropy (Ruelle, 1989; Greven
et al., 2003), defined by

hμ = sup



hμ(�t;I, 
) (6)

where the supremum is taken over all finite partitions 
. This
quantity is related to the Lyapunov spectrum λ1 ≥ λ2 ≥ · · · ≥
λN of a dynamical system which measures rates of exponential
divergence or convergence between trajectories. Lyapunov expo-
nents λi are expected to be well defined for our RDS in the sense
that they rely on system parameters such as coupling strength
and the mean and variance of inputs, but not on specific realiza-
tions of the inputs I(t) (Kifer, 1986). The authors of Ledrappier
and Young (1988) showed that although the join of a partition

 depends on I, hμ does not and that under some ergodicity
assumptions, the following entropy formula holds:

hμ =
∑
λi > 0

λi. (7)

If λi are the Lyapunov exponents of the original system (1)
computed over time-units instead of �t time-steps, we get
from (4), (5), (6), and (7) the following upper bound for noise
entropy rate :

HKS ≡ 1

ln 2

∑
λi > 0

λi ≥ lim
L→∞ HNL

noise (8)

which has units of bits per time-unit.
To evaluate this bound, we numerically compute the expo-

nents λi of system (1) and find that, as originally observed
in Monteforte and Wolf (2010) and Luccioli et al. (2012) for
autonomous networks, our driven system has a size invariant
Lyapunov spectrum (see Figure 3D), which is insensitive to par-
ticular choices of random coupling matrix A (see Supplementary
Material for details). This leads to a spatially extensive behavior of
the bound HKS, as shown in Figure 3C.

Intriguingly, HKS is much smaller than estimates from 〈H1〉.
This reveals a central result for our driven chaotic networks: joint
spike patterns are (at least) an order of magnitude less variable than
what would be predicted by observing the spike train statistics of sin-
gle cells, despite averaged noise correlations across neurons that are
very low.

3.5. RELATIONSHIP BETWEEN STATE SPACE PARTITIONING AND
SPIKING PATTERNS

The derivation of the HKS bound (8) relies on the simple assump-
tion that neuron i will spike within �t time-units if and only
if θi(t) ∈ γ1 = [1 − 2�t, 1]. As discussed above, this assumption
holds in the limit of small �t. We found that for simulated tra-
jectories of 1000 time-units from network (1), only about 0.01%
of all spikes violated the spiking assumption for �t = 0.05. This

number dropped to zero for �t = 0.01. Such values are evidence
that errors in relating spike train entropy estimates to entropy
production in state space will be slight. In the present section, we
verify this in detail.

To do so, we compare the spiking statistics and entropy esti-
mates for the main model (1) with those for an analogous dynam-
ical system, for which our partition-based spiking assumption
holds exactly, by design. Consider the piecewise model analogous
to system (1):

dθi = [F̃(θi) + Z̃(θi)
N∑

j = 1

aijg(θj) + ε2

2
Z̃(θi)Z̃′(θi)]dt . . .

+ Z̃(θi) [ηdt + εdWi,t]︸ ︷︷ ︸
Ii(t)

(9)

in which we replace the functions F and Z by the following
piecewise-defined terms:

F̃(θi) =
{

1 + cos (2πθi) ; θi ∈ [0, 1 − 2�t)
2 ; θi ∈ [1 − 2�t, 1)

Z̃(θi) =
{

1 − cos (2πθi) ; θi ∈ [0, 1 − 2�t)
0 ; θi ∈ [1 − 2�t, 1).

It is easy to see that the partition-based spiking assumption holds
exactly for the network defined by (9). However, notice that for
�t > 0, both F̃ and Z̃ are discontinuous functions of S1 and that
as a result, the Jacobian of (9) is ill-defined. Nevertheless, for prac-
tical purposes, we can simulate system (9) and approximate its
Lyapunov spectrum, since there is only one discontinuity point
per neuron and the probability of a finite-duration, discretized
trajectory landing on such points is nil.

The purpose of model (9) is to assess the differences aris-
ing between the dynamics of our full (“normal”) model, given
by Equation (1), and the alternate (“piecewise”) model above
for which the spiking assumption is exact. We fix �t = 0.05 as
in the main text and begin by comparing single cell dynam-
ics for the “normal” and “piecewise” models. Figure 4 shows a
simulated single cell trajectory from each model, with identical
input Ii and identical incoming spike trains (extracted from a
separate network simulation). This setup mimics the activity a
single cell would receive when embedded in a network. Notice
that apart from small discrepancies that sometimes arise between
spike times, the two trajectories agree almost perfectly. When dif-
ferences do arise, they are quite small. From a simulation yielding
about 3000 spikes from both models, most corresponding spikes
from the normal and piecewise models were indistinguishably
close, down to the numerical solver’s time-step. The maximal
difference was about 0.02 time-units, smaller than a �t time-bin.

Figure 4B shows the first 60 Lyapunov exponents of a net-
work with size N = 500, simulated with both the normal (1)
and piecewise (9) models. Since Lyapunov exponents depend on
the Jacobian of a system, we expected the piecewise model to
yield smaller exponents: its derivative is zero on the intervals [1 −
2�t, 1). Nevertheless, this discrepancy is minimal and amounts
to a difference of about 0.002 bits per neuron per time-unit in the
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A B

C

FIGURE 4 | (A) Comparison of trajectories for single cells, for models (1) and (9); initial conditions and inputs are fixed. (B) First 60 Lyapunov exponents of
models (1) and (9). (C) Empirical noise entropy bounds NH1 and HKS for models (1) and (9). For all panels, η = −0.5, ε = 0.5, �t = 0.05. For (B,C), N = 500, κ = 20.

slope of the HKS estimates shown in Figure 4C. Finally, we empir-
ically estimate the noise entropy bound 〈H1〉, as described in the
main text, for the piecewise model (9). Its value differed from the
normal model estimate by about 0.01 bits per neuron per time-
unit, well below the standard error of the mean of estimates from
both models, as can be seen in Figure 4C.

In light of these tests, we are confident that the main result
of the paper—a computable bound on spike-train noise entropy
that is much lower than what would be extrapolated from single
cells—is a robust phenomenon for networks of the type mod-
eled by (1), rather than a consequence of a (seemingly tiny)
approximation error.

3.6. NOISE ENTROPY PRODUCTION AS A FUNCTION OF INPUT
STATISTICS

Previous studies showed that the level of sensitivity emerging
from chaotic network dynamics can be controlled by carefully
chosen inputs (see Molgedey et al., 1992; Rajan et al., 2010 for dif-
ferent contexts). We verify if this is the case for our network. We
first identify a range of input statistics—the mean η and fluctua-
tion amplitude ε—that are comparable in that they all produce
the same firing rate as for the “standard” parameter set used
above (η = −0.5, ε = 0.5). These parameters lie along the level
curve in Figure 5A. Note that the curve is parameterized so that η

grows while ε decreases; thus, as we travel along it, we gradually
shift the dynamics from the excitable, fluctuation-driven regime
(η < 0) to an oscillatory, mean-driven one (η > 0). In particu-
lar, the last point evaluated corresponds to a purely autonomous
regime (ε = 0) where the input I has no fluctuating component.

Figure 5B shows the first 200 Lyapunov exponents of a
network with N = 500 along this level curve, and panel (c)
gives the corresponding HKS values. A clear trend emerges:
HKS increases monotonically as the system transitions from
fluctuation- to mean-driven regimes, by almost an order of mag-
nitude. Moreover, Figure 5D shows that, for the two extremes
of the level curve, network noise entropy continues to be much
smaller than that predicted from single cells, and that single-
cell noise entropy appears to follow the same trends as HKS. We

conclude that spike pattern variability emerging from chaos is not
a fixed property of a network, but can be strongly modulated by the
mean and variance of network inputs.

4. DISCUSSION
Biological neural networks may operate in a chaotic regime, with
irregular activity driven by a balance of fluctuating excitatory
and inhibitory interactions. This network chaos is under vigor-
ous study, fueled in part by possible roles for chaos in generating
“target” spatiotemporal patterns (Sussillo and Abbott, 2009) and
in enabling useful temporal processing of inputs (Buonomano
and Maass, 2009; Laje and Buonomano, 2013). Here, we address a
complementary question: How much variability (or “noise”) will
chaotic dynamics add to network responses?

We compute bounds on network spike-response entropy that
give novel answers. In particular, we show that the noise entropy
of multi-cell spike responses is at least an order of magnitude
lower than would be naively extrapolated from from single-cell
measurements, under the assumption that spike variability is
independent from cell to cell. The direction of the comparison
between noise entropy of single cell and multi-cell spike responses
agrees with intuition provided by the shape of the Lyapunov spec-
trum, which indicates time-dependent chaotic attractors of lower
dimension than phase space. Thus, the phase space dynamics of
each neuron are not independent. What we quantify explicitly is
the order-of-magnitude size of the effect, as it is manifested in the
binary spiking outputs of the system—a fact which might seem
especially striking given that pairs of spike trains appear to be very
weakly correlated on average.

If one considers the level of noise entropy as an indicator
of potential information contained in spike patterns, we show
that balanced networks may be able to encode inputs stimuli
using spike timing if these inputs contain strong enough temporal
structure. This mechanism takes root in the complex noise-
interactions that chaos induces between neurons. The extensive
nature of this phenomenon suggests that this mechanism is scal-
able with network size. Moreover, the strong dependence of
entropy on the input signal’s mean and variance indicate that
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A B

C D

FIGURE 5 | (Color online) (A) Heat map of excitatory population mean
firing rate for a range of input amplitude ε and input mean η. Line is
the contour curve for fixed firing rate of 0.820 spikes/tu ± 0.003,
parameterized by numerical interpolation. Arrow shows direction of
parametrization. Markers: square: η = −1, ε = 0.69, star: η = −0.5,
ε = 0.5, circle: η = 0.07, ε = 0. (B) Lyapunov spectra along contour

curve from (A). (C) HKS bounds evaluated along contour curve from
(A). (D) Network noise entropy bounds N〈H1〉 and HKS for square and
circle marker parameters in (A). Slope 〈H1〉 averaged over 20 random
cells. Shaded area shows two standard errors of the mean. Both 〈H1〉
and HKS extrapolated from a network with N = 500, as are quantities
from all other panels.

a network can operate in different “regimes” modulating the
repeatability of spike patterns. This is in addition to known
advantages of balanced networks, such as efficiently tracking
changes in common, mean inputs with firing rates (van Vreeswijk
and Sompolinsky, 1998)—which may encode coarser statistics
about inputs at the population level.

To formalize these notions, future work could seek to compute
the mutual information between an input ensemble and a sys-
tem’s response. In order to estimate this quantity, one needs to
compute the total entropy (Rieke et al., 1996) of spike patterns—
in addition to the noise entropy computed in this paper– which
captures how many distinct spike outputs can be produced by the
network, for any input I. This quantity can be thought of as noise
entropy marginalized over the set of possible inputs. Estimating
the total entropy in large networks is a difficult problem since it
depends on the evolution of ensembles of trajectories driven by
ensembles of inputs. In other words, one needs to capture the
entropy of trajectories when system (1) is treated as a stochas-
tic differential equation rather than a RDS, a distinction that
introduces a variety of challenges.

Our results complement prior work on the behavior of sparse,
balanced networks in the large N limit. Seminal results use mean-
field approaches (e.g., van Vreeswijk and Sompolinsky, 1998),
deriving successful estimates of population activity statistics such
as the mean and the variance of firing rates. In this approach,
self consistent equations are derived for representative single cells
based on the assumption that, when N is sufficiently large and
k/N is sufficiently small, the inputs to each neuron in the network
can be approximated by independent gaussian noise. In contrast,

we derive estimates for the impact of correlations among these
individual cells. Interestingly, in both the classical and the present
work, noise entropy scales extensively with N; here, the predicted
rate of scaling would be lower, as even weak correlations between
cells combine to create statistical dependencies—especially when
network activity is conditioned on an input.

Finally, we expect that the HKS bound can be adapted to other
neuron models, provided a state space partition linking dynamics
to spike patterns can be derived. This could prove to be a powerful
tool to investigate stimulus encoding as a function of many net-
work attributes, such as spike-generating dynamics, connectivity,
learning rules and input correlations.
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