
REVIEW
published: 05 August 2016

doi: 10.3389/fphys.2016.00341

Frontiers in Physiology | www.frontiersin.org 1 August 2016 | Volume 7 | Article 341

Edited by:

Basak E. Uygun,

Massachusetts General Hospital, USA

Reviewed by:

Miriam Wittmann,

University of Leeds, UK

Julie Devalliere,

Massachusetts General

Hospital/Harvard Medical School,

USA

*Correspondence:

Sharon Gerecht

gerecht@jhu.edu

Specialty section:

This article was submitted to

Clinical and Translational Physiology,

a section of the journal

Frontiers in Physiology

Received: 03 June 2016

Accepted: 22 July 2016

Published: 05 August 2016

Citation:

Dickinson LE and Gerecht S (2016)

Engineered Biopolymeric Scaffolds for

Chronic Wound Healing.

Front. Physiol. 7:341.

doi: 10.3389/fphys.2016.00341

Engineered Biopolymeric Scaffolds
for Chronic Wound Healing

Laura E. Dickinson 1 and Sharon Gerecht 2*

1Gemstone Biotherapeutics, Baltimore, MD, USA, 2Department of Chemical and Biomolecular Engineering, Institute for

NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA

Skin regeneration requires the coordinated integration of concomitant biological and

molecular events in the extracellular wound environment during overlapping phases

of inflammation, proliferation, and matrix remodeling. This process is highly efficient

during normal wound healing. However, chronic wounds fail to progress through the

ordered and reparative wound healing process and are unable to heal, requiring

long-term treatment at high costs. There are many advanced skin substitutes, which

mostly comprise bioactive dressings containing mammalian derived matrix components,

and/or human cells, in clinical use. However, it is presently hypothesized that no

treatment significantly outperforms the others. To address this unmet challenge, recent

research has focused on developing innovative acellular biopolymeric scaffolds as

more efficacious wound healing therapies. These biomaterial-based skin substitutes

are precisely engineered and fine-tuned to recapitulate aspects of the wound healing

milieu and target specific events in the wound healing cascade to facilitate complete

skin repair with restored function and tissue integrity. This mini-review will provide a

brief overview of chronic wound healing and current skin substitute treatment strategies

while focusing on recent engineering approaches that regenerate skin using synthetic,

biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including

degradation, biocompatibility, and microstructure, and how they translate to inductive

microenvironments that stimulate cell infiltration and vascularization to enhance chronic

wound healing. As healthcare moves toward precision medicine-based strategies, the

potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable

treatment modalities for chronic wounds will be considered.

Keywords: chronic wounds, biopolymeric scaffolds, skin substitutes, acellular matrices, matrix remodeling, skin

regeneration, inflammatory

INTRODUCTION

In the United States and other developed countries, aging populations coupled with escalating
rates of diabetes, and obesity have significantly contributed to the increased prevalence of chronic
wounds. Chronic wounds fail to progress through the systematic and reparative wound healing
process and instead remain unhealed for >12 weeks (Shultz et al., 2003). Most chronic wounds
can be classified into three major wound types [diabetic foot ulcers (DFUs), leg ulcers and pressure
ulcers] based on their underlying pathogenesis, i.e., diabetes mellitus, venous deficiencies, arterial
perfusion, or unrelieved pressure (local tissue hypoxia) (Mustoe et al., 2006) However, factors such
as advanced age, poor nutrition, and immunosuppression plague the patient demographic suffering
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with non-healing, chronic wounds. These factors cause
additional cellular and systemic stress that further contribute to
wound chronicity and delay healing.

Chronic wounds are estimated to affect more than 6.5 million
patients in the United States alone, and the annual healthcare
burden associated with their treatment is estimated to be in
excess of $25 billion (Sen et al., 2009). Not only are chronic
wounds incredibly painful for patients, significantly diminishing
their quality of life, but they also require long-term treatment at
high costs. Despite these high costs, reported recurrence rates
for chronic ulcers remain extremely high, ranging from 23 to
40% for pressure ulcers, 24–57% for most chronic venous ulcers,
and upward of 60% for diabetic ulcers (Werdin et al., 2009).
One reason for their recurrence is because chronic wounds do
not progress through the stages of normal wound healing. Even
with current treatment modalities, chronic wounds are unable to
regenerate tissue of complete functional integrity. The current
standard of care currently focuses on compression, infection
control, debridement, and selecting an appropriate dressing
that maintains a moist wound healing environment. Complete
wound closure is the primary clinical outcome for chronic
wounds, however, successful wound closure does not necessarily
correlate to regenerated tissue of a higher quality, which is
desired because it is more resistant to wound dehiscence and
recurrence.

WOUND HEALING

Classic wound healing is a dynamic yet well-orchestrated
and highly efficient process that requires the interaction of
numerous cell types, soluble mediators, and the extracellular
milieu to proceed linearly through the wound healing cascade:
inflammation, re-epithelialization, angiogenesis, granulation
tissue formation, wound contraction, and tissue maturation
(Singer and Clark, 1999; Blakytny and Jude, 2006). During
inflammation, aggregated platelets release growth factors,
and pro-inflammatory chemokines to recruit neutrophils and
macrophages to the local wound site. These inflammatory cell
types phagocytose debris and bacteria and secrete mediators
to stimulate the chemotaxis of cell types necessary for the
proliferative phase. During the proliferative phase, fibroblasts,
keratinocytes, endothelial and smooth muscle cells migrate
through the wound, and proliferate to re-epithelialize the
denuded surface, synthesize and deposit a provisional
extracellular matrix, form new blood vessels, and contract
the wound size. During the final stage, the newly formed
granulation tissue is remodeled by the activity of matrix
metalloproteinases (MMPs) balanced with tissue inhibitors
of metalloproteinases (TIMPs), which rearranges the loose,
regenerated dermis, and strengthens the repaired tissue (Gurtner
et al., 2008).

Disruption of this normal wound healing cascade results
in the development of non-healing chronic wounds. There is
a perpetual antagonism between pro- and anti-inflammatory
cytokines and an excess of oxygen free radicals and proteases,
which creates a hostile microenvironment, and maintains

chronic wounds in a prolonged state of inflammation that is
unable to progress through later phases of wound healing.
Indeed, chronic wounds display a myriad of cellular, and
molecular abnormalities, many of which are attributed to
dysregulated, and dysfunctional interactions between cellular
constituents and the ECM (Schultz and Wysocki, 2009).

ABERRANT MICROENVIRONMENT OF
CHRONIC WOUNDS

The wound microenvironment presents a myriad of instructive
biochemical cues, cell adhesive sites and molecules within a
structural framework of essential matrix proteins—the ECM.
The ECM provides structural support and tensile strength,
attachment sites for cell surface receptors, and a reservoir for
signaling factors that regulate cell migration, proliferation, and
angiogenesis. The ECM has a complex 3D architecture of fibrous
proteins, polysaccharides and proteoglycans that are secreted
by fibroblast and epidermal cells, and it plays a significant and
dynamic role in wound healing (Badylak, 2002; Tracy et al.,
2016).

Classic wound healing is a cascade of overlapping events
through bidirectional interaction between various cell types and
the ECM. For instance, fibroblasts synthesize and secrete collagen
and ECM components, which in turn concomitantly regulates
fibroblast function, such as migration, collagen synthesis,
and myofibroblast differentiation (Bainbridge, 2013). Chronic
wounds exhibit a host of aberrant cellular and biochemical
elements that contributes to their state of persistent inflammation
and significantly impairs healing. Fibroblasts from chronic
wounds are phenotypically different from those in acute wounds;
they are senescent and exhibit diminished migration, reduced
proliferation, and decreased collagen synthesis (Lerman et al.,
2003). Coupled with inhibited ECM deposition is elevated
protease activity, including upregulated and amplified activity
of MMPs, collagenase, elastase, and serine proteases (Vaalamo
et al., 1996; McCarty and Percival, 2013). The excess of proteases
degrade fibrillar collagen I to non-bioactive gelatin, cleave
signaling sequences from proteins, and inactivate growth factors
(Eming et al., 2007). Indeed, fluid from chronic wounds, but
not acute wounds, has been found to rapidly degrade platelet
derived growth factor (PDGF), transforming growth factor
(TGF-β1), and angiogenic vascular endothelial growth factor
(VEGF) (Lauer et al., 2000). The excessive degradation of the
ECM, proteins and growth factors deprives cells of attachment
sites and vital signals, subsequently disrupting the progression of
wound healing (Shultz et al., 2012).

Keratinocytes are also dysfunctional in chronic wounds. In
normal wound repair, keratinocytes migrate as a cell sheet
over the granulation tissue, and differentiate to re-epithelialize
the skin via integrin mediated binding interactions with ECM
molecules (Santoro and Gaudino, 2005). However, in chronic
wounds, although keratinocytes are hyperproliferative, they are
unable to migrate and close the wound (Pastar et al., 2008).
This poor migratory ability is concomitantly attributed to altered
integrin expression (Hakkinen et al., 2004) and the degraded
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ECM components. Instead, keratinocytes at the non-healing
edges of chronic wounds continuously proliferate, forming a
thick, hyperkeratotic layer. Contributing to poor epithelialization
is the overall excessive inflammatory tissue microenvironment,
which inhibits the migration of fibroblasts and the synthesis
of new ECM, and the loss of epidermal stem cell (ESC)
populations. ESC populations reside in distinct compartments
or niches that regulate their self-renewal and lineage fate
(Braun and Prowse, 2006); in response to tissue injury, the
ESCs proliferate, differentiate, and migrate to re-epithelialize the
wounded area (Cha and Falanga, 2007). However, in chronic
venous ulcers, it has been shown that there is a loss of SC
niche signaling and subsequent deregulation and depletion of
ESCs that possibly contributes to the hyperpoliferative epidermis
of a non-healing venous ulcer wound edge (Stojadinovic et al.,
2014).

Although far from an exhaustive summary, the discussion
above emphasizes the biological complexity of chronic wounds.
Indeed, the impairment of the ECM in chronic wounds
has long been identified as a key target for wound healing
strategies. Within the last 20 years, substantial emphasis has
been directed toward the development of bioengineered skin
substitutes, such as living skin equivalents, acellular matrices,
and polymeric scaffolds, that recapitulate multiple features of
the native ECM that are so necessary in regulating the wound
healing cascade (Rennert et al., 2013). Several bioengineered
scaffolds that are FDA approved and commercially available
will be discussed in this review. All of the wound healing
skin substitutes discussed in this mini-review provide an ECM,
whether natural or synthetic, that supports the infiltration of
cells, tissue regeneration, and ultimately wound closure. These
skin substitutes are designed to provide a bio-inductive and
vulnerary environment by modulating the proteolytic climate
and/or supplementing the wound bed with exogenous, bioactive
factors that stimulate innate tissue repair mechanisms. However,
to date, there have been limited head-to-head comparative
clinical studies evaluating the performance of the plethora
of advanced wound care products, which are required to
guide clinical practice and payer determinations (Valle et al.,
2014).

BIOENGINEERED SKIN SUBSTITUTES

The optimal bioengineered scaffold for skin regeneration of
chronic wounds should (1) be non-immunogenic; (2) modulate
proteolytic activity to reset the wound to an acute state;
(3) provide a bio-resorbable scaffold that facilitates cellular
migration and promotes cellular proliferation and matrix
deposition; (4) recruit angiogenic and fibroblast cell types to
synthesize granulation tissue; and (5) absorb and neutralize free
radicals (Gould, 2015). In the following sections, we will describe
the various types of bioengineered skin substitutes, including
those that contain natural ECM components harvested from
human tissue or animal sources and synthesized, ECM-mimetic
biopolymeric scaffolds. All scaffolds detailed in this review are
listed in Table 1.

Living Skin Equivalents: Human-Derived
Technologies
Living skin equivalents comprise scaffolds, either natural, or
synthetic, seeded with allogenic fibroblasts, and/or keratinocytes.
There are several iterations of products that have been
developed using this approach, which essentially provide cellular,
and structural components for wound healing. Apligraf R©

(Organogenesis, Inc.) is composed of a bovine type I collagen
matrix seeded with neonatal fibroblasts to produce a neodermal
layer. Human neonatal epidermal keratinocytes are subsequently
added on top of this dermal component as a monolayer to
approximate the epidermis and form a differentiated stratum
corneum (Zaulyanov and Kirsner, 2007). This results in a
metabolically active bilayered skin substitute providing both
a dermal and epidermal layer with living cells. Although the
fibroblasts and keratinocytes in Apligraf do not persist beyond
6 weeks in patients (Hu et al., 2006), they are thought to be
responsible for stimulating differentiation and proliferation via
secretion of essential cytokines and growth factors (Falanga et al.,
2002). Apligraf was the first allogeneic cell-based product to
be approved by the FDA in 1998 for the treatment of DFUs
and venous leg ulcers. Large multicenter randomized clinical
trials demonstrated a significantly higher rate of wound closure
compared with conventional standard of care (Veves et al., 2001;
Edmonds and European and Australian Apligraf Diabetic Foot
Ulcer Study Group, 2009).

Dermagraft R© (Organogenesis, Inc.) was approved by the FDA
in 2001 for the treatment of non-healing DFUs. Although it also
contains neonatal dermal fibroblasts, it differs from Apligraf in
that the fibroblasts are cultured onto a bioresorbable polyglactin
mesh scaffold; polyglactin is a standard suture material. The
metabolically active fibroblasts proliferate within the interstices
of the synthetic scaffold, secreting collagens, growth factors,
cytokines, proteoglycans, and other key regulatory molecules,
to create a 3-D bioactive matrix, which is then cryopreserved
for storage (Naughton et al., 1997). When applied to DFUs,
Dermagraft significantly increased the rate of wound closure
compared to the control (Marston et al., 2003).

Another biologically active human skin allograft is
TheraSkin R© (Soluble Systems), which is harvested within
24 h post-mortem and cryogenically processed to preserve
the viable fibroblasts, keratinocytes, and fully developed ECM
sequestered with essential growth factors and cytokines. It has
been reported that Theraskin, which was found to be effective in
the treatment of DFUs and venous stasis ulcers (Landsman et al.,
2011), contains a greater quantity of the key collagens critical
to wound healing compared to Apligraf (DiDomenico et al.,
2011). This may be attributed to the manufacturing process of
Apligraf in which a bovine collagen substrate is used to culture
neonatal cells that deposit the ECM in vitro. The application of
a living human dermal skin substitute delivers a smorgasbord
of vital key regulatory proteins and cytokines that stimulate
angiogenesis, fibroblast migration, and keratinocyte proliferation
to accelerate wound healing. However, there is an absence of
head-to-head studies that compare the clinical and cost efficacy
advanced wound care products to inform clinical practice and
payer determination. Indeed this stems also from the variety of
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TABLE 1 | Summary of scaffolds for chronic wound healing.

Product Composition Properties/Mechanism of action FDA

LIVING SKIN SUBSTITUTES

Apligraf® Bovine type I collagen seeded with human neonatal

fibroblasts and keratinocytes

Metabolically active cells secrete cytokines and growth

factors to stimulate differentiation and proliferation

PMA (1998)

Dermagraft® Human neonatal fibroblasts seeded on bioabsorbable

polyglactin scaffold—cryopreserved

Metabolically active fibroblasts secrete collagen, matrix

proteins, growth factors and cytokines

PMA (2001)

TheraSkin® Cryopreserved skin allograft harvested from cadavers Biologically active scaffold providing cellular and extracellular

components

Natural barrier to infection

HCT/Ps

ACELLULAR NATURALLY DERIVED POLYMERIC SCAFFOLDS

Oasis® Minimally processed ECM derived from porcine

small-intestine submucosa

Provides structural matrix and delivers growth factors to

stimulate angiogenesis and cell migration

510K (1998)

GraftJacket® Processed (crosslinked and cryopreserved) human

dermal matrix

Fenestrated acellular matrix that acts as a foundation for

revascularization and cellular repopulation

Reduces inflammation

HCT/Ps

DermACELL® Decellularized human dermis allograft Unique anionic detergent and endonuclease-based process

to decellularize tissue

Scaffold supports cell ingrowth

HCT/Ps

EpiFix® Dehydrated allograft: amnion and chorion membranes

derived from donated human placenta

Composed of a single layer of epithelial cells, a basement

membrane and an avascular connective tissue matrix

Retains soluble biological molecules and growth factors that

stimulate human dermal fibroblast proliferation and the

migration of human mesenchymal stem cells

HCT/Ps

IntegraTM Cross-linked bovine collagen and chondroitin 6-sulfate

with a silicone membrane

Biodegradable matrix provides a scaffold for cellular invasion

and capillary growth

PMA (1996)

510K (2002)

PromogranTM Freeze-dried composite of 55% collagen and 45%

oxidized regenerated cellulose

Composite matrix absorbs wound exudate to form a

biodegradable gel

Provides a scaffold for cellular migration

510K (2002)

TegagenTM,

AlgisiteTM,

Algi-Fiber, etc.

Dressings of calcium alginate fibers Form gelatinous mass upon contact with wound exudate

Extremely absorbent (10×)

Controls mild hemorrhages

510 K

BIOPOLYMERIC SCAFFOLDS

Talymed® Shortened fibers of N-acetyl glucosamine isolated from

microalgae

Material interacts with fibroblasts and endothelial cells to

stimulate cell migration

510K (2010)

Hyalomatrix® Non-woven pad of benzyl ester of hyaluronic acid and

a semipermeable silicone membrane

Biodegradable scaffold for cellular invasion and capillary

growth. Contains a semipermeable silicone membrane to

prevent water loss

510K (2007)

Dextran Crosslinked modified dextran and PEG diacrylate Biodegradable matrix fills wound defect and provides a

scaffold for cellular infiltration

N/A

Pre-market approval (PMA); Human cells, tissues, or cellular-based products (HCT/Ps).

chronic wound types with various etiologies—there is no single
wound care product to treat and manage all wound types. Most
comparative studies are either retrospective analyses or funded
by the company. In a retrospective study evaluating the efficacy
of EpiFix compared to Apligraf in treating DFUs, it was reported
that patients treated with EpiFix required more applications
compared to patients treated with Apligraf, and that the median
time to wound closure using Apligraf was 13.3 weeks compared
to 26 weeks for EpiFix (Kirsner et al., 2015b). However, in a
prospective study, 97% of lower extremity diabetic ulcers healed
when treated with EpiFix compared to only 73% of wounds
treated with Apligraf, suggesting that patients treated with
EpiFix experienced a shorter time to wound closure (Zelen et al.,
2016). The median graft cost was $8,918 (range $1,486–19,323)
per healed wound for the Apligraf group and $1517 (range
$434–25,710) per healed wound in the EpiFix group (Zelen
et al., 2016). In a separate retrospective analysis, treatment using
the bilayered living cell construct Apligraf reduced the median

time to wound closure of venous leg ulcers by 44% compared to
treatment using a naturally derived, acellular porcine dressing
(Oasis R©; to be discussed below) (Kirsner et al., 2015b).

Acellular Naturally Derived Polymeric
Scaffolds
Acellular matrices are characterized as nonviable biomaterials.
They may be animal- or human-derived, with all cells removed
during manufacture, or they may be synthetic or a composite,
where cells are simply not present from the outset. Natural
polymers are commonly utilized in the development of acellular
matrices for chronic wound treatments because of their inherent
biocompatibility and bioactivity as well as their ability to
mimic the structural, biomechanical, and biochemical functions
of the ECM. There are cost advantages to using naturally
derived ECM-based polymeric scaffolds. Using a Markov model
to estimate the comparative cost effectiveness of Apligraf,
Dermagraft, and an ECM-based therapy, the ECM-based therapy
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was economically dominant and determined to be the most cost
effective for the management of venous leg ulcers as an adjunct
therapy to standard of care (Carter et al., 2014). The expected
costs for a naturally derived ECM-based scaffold (Oasis R©),
Apligraf and Dermagraft were $6732, $10, 638, and $11, 237,
for 31, 29, and 17 ulcer free weeks, respectively, suggesting that
naturally derived ECM-based therapies yield potential savings
compared to other cell or tissue-derived products (Carter et al.,
2014). The most common, bioactive natural polymers utilized
in the development of acellular matrices for wound healing are
collagen, hyaluronic acid, chitosan, and alginate.

Collagens are the most abundant ECM macromolecule and
are the main component in human skin that provides structural
integrity (Singer and Clark, 1999). In addition to its structural
function, collagen I governs many cellular functions of fibroblasts
and keratinocytes, including cell adhesion, differentiation,
migration, ECM deposition, and angiogenesis (Heino, 2000;
Gelse et al., 2003; Whelan and Senger, 2003). Collagen I is
also able to bind excess proteases, inflammatory cytokines,
and free radicals that are rampant in the chronic wound bed
(Wiegand et al., 2010). The role of collagen in tissue repair and
wound healing are multifactorial, which supports the extensive
use of exogenous collagen-based scaffolds for chronic wound
applications. Generally speaking, collagen-based scaffolds are
classified as either decellularized matrices, derived from a variety
of mammalian sources, and anatomical locations, including
porcine small-intestine submucosa, or urinary bladder matrix,
human cadavers, placental tissue, or they are synthesized via
extraction and chemical crosslinking. There are many products
that are currently used in the treatment of chronic wounds and
several of them are briefly described below as representative
examples.

Oasis R© Wound Matrix (Healthpoint) is a naturally occurring
ECM graft (>90% collagen) derived from porcine SIS, which is a
thin, approximately 0.15mm thick translucent layer of porcine
intestine that is predominately type 1 collagen. Porcine SIS
possesses a porous microstructure, with pores ranging in size
from 20–30 µm that enables oxygen diffusion and promotes cell
viability (Nihsen et al., 2008). Porcine SIS also retains the active
forms of other biologically relevant components that provide
cell and growth factor binding sites, sequester matrix-degrading
enzymes, and enhance cellular infiltration into injured tissue.
It is also embedded with glycosaminoglycans, proteoglycans,
fibronectin, and various growth factors that imparts significant
bioactivity (Hodde et al., 1996, 2001; Shi and Ronfard, 2013).
In this way, the SIS not only provides a structural matrix
and delivers growth factors to stimulate angiogenesis and cell
migration but also regulates proteolytic activity and dampens
the inhibitory effects of MMP-1, MMP-2, and MMP-9 on
keratinocyte migration (Shi et al., 2012).

There are myriad acellular wound matrices available for
clinical use that are processed, decellularized dermal constructs
derived from donated human tissue. They are all designed to
provide a scaffold for wound repair, however, each acellular
dermal wound matrix differs by the way in which it is
processed. For GraftJacket R© (Wright Medical Technology),
donated human tissue is treated to remove the epidermis

and cellular components, but it retains collagen, elastin,
proteoglycans, and the internal matrix of the dermis, which
remains intact and is chemically crosslinked to maintain
the collagen architecture before cryopreservation (Turner and
Badylak, 2015). DermACELL R© (LifeNet Health) is a human
tissue matrix allograft that employs a unique, proprietary
MATRACELL R© technology (Moore et al., 2015) that uses anionic
detergents and an endonuclease to achieve >97% nucleic acid
removal while retaining biomechanical strength. This allows
DermACELL to be preserved at ambient temperature and
offer a >3 year shelf-life. Both of these products have been
indicated for the treatment of non-healing ulcers and dermal
wounds and have demonstrated the ability to reduce time to
complete wound closure and increase healing rates compared
to conventional care (Reyzelman et al., 2009; Yonehiro et al.,
2013; Walters et al., 2016). In these processed acellular dermal
matrices, the removal of the cellular components reduces the
risk of rejection, and the critical dermal proteins that remain
minimize inflammation and facilitate cell infiltration and tissue
revascularization. In contrast to xenogeneic ECM allografts,
minimally manipulated human tissue products are classified
as human cell, tissues, and cellular and tissue-based products
(HCT/Ps) by the FDA. As a result, there are fewer restrictions
on the applications for which these devices can be used; they are
viewed as tissue transplants and manufacturers are only required
to follow manipulation guidelines to ensure materials are free
from transmissible pathogens (Table 2).

The use of placental membranes for wound healing has been
reported for over 100 years, which can be attributed to its
collagen-rich ECM presenting biologically active components,
such as developmental cytokines and elevated concentrations
of regenerative growth factors (Silini et al., 2015). Placental
membranes contain a plethora of multifunctional growth factors,
including, but not limited to, epidermal growth factor, basic
fibroblast growth factor, PDGF, VEGF, TGF-β1, and keratinocyte
growth factor, as well asMMPs and TIMPs (Fortunato et al., 1998;
Koizumi et al., 2000; Lopez-Valladares et al., 2010) that support
critical cell behavior and wound healing events. Also expressed
in placental membranes are immunosuppressive factors and
antibacterial peptides that contribute to the reduced risk of
rejection of placental membranes (Park et al., 2008; Mamede
et al., 2010). Large amounts of the ECM glycosaminoglycan
hyaluronan (HA) are also present in placental membranes,
which has been shown to function as a free radical scavenger
to remove reactive oxygen species (Trabucchi et al., 2002;
Lockington et al., 2014). However, different processing methods
impact the composition and functionality of these materials
(von Versen-Hoeynck et al., 2008). There are more than 25
commercially available placental membrane products, yet most
contain no viable cells because they are either dehydrated or
are cryopreserved devitalized or decellularized tissue. One such
product, EpiFix R© (MiMedx), is a dehydrated human tissue
allograft comprising laminated amnion and chorion membranes
derived from donated human placenta. During processing, the
amnion and chorion tissue layers are isolated from the placenta
and washed. The two layers are then laminated to form the
graft, which is subsequently dehydrated and sterilized. EpiFix
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TABLE 2 | Brief overview of United States FDA pathways for wound healing products (medical devices).

Device

classification/

Risk

PHS 361: HCT/Ps 510 K PMA

low Class II/moderate Class III/high

Review

standard

No pre-market review

Not required to demonstrate safety or effectiveness

Substantial equivalence in safety and

effectiveness to a legally marketed predicate

device

Approval requires that the safety and

effectiveness of the device be established

with valid scientific evidence, i.e., high-quality

clinical data

Requirements Minimally manipulated

Intended for homologous use

No systemic effect/not dependent on metabolic

activity of cells

Manufacturers follow good tissue practice to

prevent the introduction, transmission, and spread

of communicable diseases

Non-clinical laboratory studies for safety

(performed under GLP conditions)

Clinical investigations not typically required

Quality Systems in place prior to interstate

commerce

Manufacturing not reviewed pre-approval

Non-clinical laboratory studies for safety

(performed under GLP conditions)

Clinical investigations (such as performed

under an Investigational Device Exemption)

Detailed Quality Systems in place

Pre-approval of manufacturing facility with

inspection

Regulatory

burden

Low Medium High

Wound healing

products

TheraSkin®

GraftJacket®

DermACELL®

EpiFix®

Oasis®

Integra®*

PromogranTM

TegagenTM, AlgisiteTM Algi-Fiber Talymed®

Hyalomatrix®

Apligraf®

Dermagraft®

IntegraTM*

Pre-market approval (PMA); Human cells, tissues, or cellular-based products (HCT/Ps).

*Although initial PMA was received in 1996, in April 2001, the FDA approved IntegraTM Dermal Regeneration Template for marketing in the treatment of life-threatening full-thickness

and/or deep partial thickness thermal injuries. Because the treatment of thermal injuries poses a significant risk, medical devices developed to treat burns are considered Class III devices

that support of sustain human life. These products require a PMA submission accompanied with clinical data demonstrating safety and effectiveness. A separate 510(k) submission

was filed for IntegraTM Bilayer Matrix Wound Dressing, which was cleared for marketing in August 2002 for the management of a broad range of wound types, including partial,

and full-thickness chronic wounds, surgical wounds (donor sites/grafts, post-Mohs surgery, post-laser surgery, podiatric, wound dehiscence), trauma wounds (abrasions, lacerations,

second-degree burns, and skin tears) and draining wounds. Both Integra LifeSciences products are composed of cross-linked bovine tendon collagen with glycosaminoglycan and a

semi-permeable polysiloxane membrane. With the 510(k) clearance, the Bilayer Matrix Wound Dressing is marketed to manage a broad range of wound indications, whereas the PMA

limits indications to thermal injuries. However, as recently as January 2016, the IntegraTM Dermal Regeneration Template was approved for indications including partial and full thickness

neuropathic DFUs based on submitted clinical data.

www.FDA.gov.

contains a single layer of epithelial cells, a basement membrane,
and an avascular connective tissue matrix. After processing,
EpiFix retains soluble biological molecules and growth factors
that stimulate human dermal fibroblast proliferation and the
migration of human mesenchymal stem cells (Koob et al., 2013).
When evaluated in the treatment of DFUs and venous leg ulcers,
EpiFix promoted complete epithelialization and reduced the
wound size in patients compared to standard treatment (Zelen
et al., 2013).

IntegraTM (Integra Life Sciences) and PromogranTM

(Systagenix Wound Management) are two wound healing
products synthesized using extracted and polymerized collagen.
Integra is a bilayer composite matrix of crosslinked collagen type
I from bovine sources and a glycosaminoglycan (chondroitin
6-sulfate) isolated from shark skin. It has a semipermeable
silicone membrane that functions as a temporary epidermal
layer by controlling water vapor loss and providing structural
integrity. The bilayer matrix recruits dermal fibroblasts to the
wound, which then synthesize, and secrete new ECM to the
wound bed to facilitate healing (Burke et al., 1982). Although
initially indicated for third degree burns via an FDA pre-market
approval (PMA; to be discussed below), a 300 subject clinical trial
demonstrated that the non-healing DFUs treated with Integra
had a more rapid time to complete wound closure and increased
rate of wound closure compared to standard of care treatment

(Driver et al., 2015). Promogran is a combination matrix
composed of 55% bovine type I collagen and 45% oxidized
regenerated cellulose (ORC) that is freeze dried and formed into
a 3mm thick sheet that is applied directly to the wound bed.
Upon application, the composite matrix absorbs wound exudate
to form a biodegradable gel that enhances fibroblast migration
and proliferation (Hart et al., 2002). The composite matrix
binds and stabilizes growth factors and physically sequesters and
inactivates excessive MMPs while providing a scaffold for cellular
migration (Cullen et al., 2002). Clinical studies demonstrate
a significant reduction in the concentration and activity of
proteases in the wound exudate of DFUs treated with Promogran
and a greater reduction in wound size (Ulrich et al., 2011).

Other natural polymers used as wound dressings are alginate
and chitosan. Alginate is a polysaccharide with homopolymeric
blocks of 1,4-linked β-D-mannuronic and α-L-guluronic residues
that is isolated from the cell walls of a variety of species of
brown seaweed. Alginate exhibits unique gelation properties and
ionically crosslinks in the presence of divalent ions to form
a biocompatible 3D polymeric crosslinked scaffold for tissue
engineering applications (Augst et al., 2006). Alginate wound
dressings are used in wound management because they provide
a moist environment, are highly absorbent, and function as a
hemostat. When an alginate dressing comes into contact with
wound exudate there is an ion exchange between the calcium
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ions in the mannuronic and gluronic groups of the alginate
dressing and the sodium ions in blood or exudate (Segal et al.,
1998). As sufficient calcium ions are replaced by sodium ions,
the alginate fibers swell, partially dissolve, and form a gel that
maintains a moist environment for autolytic debridement and
reduces pain during dressing changes (Pirone et al., 1992).
Alginate dressings have also been shown to minimize microbial
bioburden and sequester proteinases (Sweeney et al., 2012).
There are numerous alginate-based wound dressings approved
for use in managing variety of wound types in which exudate
is present, such as chronic wounds, including TegagenTM (3M),
AlgisiteTM (Smith and Nephew), and Algi-Fiber (CoreLeader
Biotech) to name a few (Dumville et al., 2015; O’Meara et al.,
2015).

Chitosan is a linear polysaccharide composed of randomly
distributed β-(1–4)-linked D-glucosamine and N-acetyl-
D-glucosamine that is predominately used as a hemostat
but is currently being evaluated as a wound dressing for
chronic wounds because of its ability to modulate the wound
environment (Sandoval et al., 2011; Mayol et al., 2014).
Chitosan is prepared by deacetylating chitin, the principle
component in the exoskeleton of crustaceans, via enzymatic
or alkaline hydrolysis before being processed into various
fibrous, scaffold, and hydrogel biomaterials (Azuma et al., 2015).
Chitosan contributes to wound healing by stimulating the rapid
mobilization, adhesion, and aggregation of platelets and red
blood cells to the wound site to facilitate rapid clotting (Chou
et al., 2003; Okamotoa et al., 2003). Post-hemostasis, chitosan
also accelerates granulation tissue and matrix formation (Biagini
et al., 1992; Ueno et al., 2001). Lysozymes gradually depolymerize
chitosan via hydrolysis to release N-acetyl-D-glucosamine, which
stimulates fibroblast proliferation and collagen deposition and
remodeling (Kojima et al., 2004). Chitosan has also been shown
to stimulate inflammatory cells migration (Peluso et al., 1994). As
a wound dressing biomaterial, chitosan exhibits several unique
advantages, including non-toxicity, physiological inertness,
antibacterial properties, biocompatibility, and an affinity to
proteins (Dai et al., 2012). Chitosan’s antimicrobial properties
are attributed to the presence of primary amine groups that
confer an overall cationic charge, which destabilizes, and
permeabilizes microbial membranes (Rabea et al., 2003).

Acellular Matrices-Biosynthetic Polymeric
Scaffolds
Acellular synthetic matrices offer several advantages over
naturally derived polymeric and cellular based scaffolds,
including longer shelf-life, cost efficacy, and limited risk of
rejection. In a retrospective study, the number of applications
needed to treat (NNT) was used tomodel the comparative clinical
and cost efficacy of currently available advanced wound care
matrices as adjuncts to compression therapy for the treatment
of venous leg ulcers. It was found that fewer applications of an
acellular biosynthetic scaffold was required to achieve closure
compared to a human skin equivalent (Apligraf) and biologically
derived polymeric scaffold (Oasis) at a significantly lower cost.
The incremental costs per additional successfully treated patient

were $1600 for the acellular biosynthetic scaffold (Talymed R©),
$3150 for Oasis, and $29,952 for Apligraf (Hankin et al., 2012).

To design an efficacious biosynthetic polymeric scaffold
that achieves wound closure and skin regeneration, several
parameters, and criteria need to be considered in addition
to those listed in the above section. Scaffolds that are
chemically synthetized or modified not only need to be easily
manufacturable but also biocompatible, biodegradable, and
non-toxic while exhibiting optimal biomechanical properties,
including ideal porosity, and morphology to modulate the
transport cells, metabolites, and signaling molecules. Most
importantly, cells must be able to appropriately respond to and
infiltrate the scaffold to facilitate degradation and support a
regenerative healing process (Kirsner et al., 2015a). Therefore, the
fundamental design strategy in developing biosynthetic scaffolds
is to recapitulate structural and molecular aspects of the ECM
using tunable polymeric materials that simulate the elasticity and
porosity of dermis. Polysaccharides possess reactive functional
groups that can be modified to form non-toxic and bioactive
wound healing biomaterials with optimized and tailorable
characteristics, such as pore size and degradation rate, which
elicit the appropriate biological response, and stimulate tissue
regeneration. To date, there are few FDA cleared, commercially
available biosynthetic scaffolds indicated for the use in managing
chronic wounds. Two FDA cleared scaffolds, both of which are
polysaccharide-based, will be discussed below. A brief overview
of FDA device classification for wound healing scaffolds is also
provided.

The United States FDA predominately regulates wound
healing products as medical devices based on their composition
and device classification, which depends on the intended use of
the device. Devices that present relatively low risk are generally
categorized as Class I or Class II devices, and higher risk
devices are Class III. Minimally manipulated human-derived
products, such as placental membrane-derived products, are
regulated as human cells, tissues, and cellular and tissue-
based products (HCT/Ps) and only require manufacturers to
follow good tissue practices and manipulation guidelines. Class
III human/animal-derived products, such as cellular wound
matrices, are approved through a pre-market approval (PMA).
Devices that present relatively low or moderate risk (Class
II), such as animal-derived and synthetic products, require
the manufacturer to seek 510(k) clearance, which is generally
granted when submitted information establishes that a new
device is “substantially equivalent” to an already approved and
legally marketed “predicate” device in terms of technological
characteristics, such as design, mode of action and composition,
and performance. Many biosynthetic scaffolds are cleared
through the 510(k) pathway (Table 2). In the European Union
there are directives that outline requirements under which a
medical device could be marketed across all E.U. member
states after earning a Conformité Européenne (CE) mark in
any one member country. These directives similarly categorize
devices into four classes (I, IIa, IIb, and III) on the basis of
associated risks. Approval and CE marks for medical devices are
directly managed by designated Notified Bodies and are subject
to performance and reliability testing. Approval is generally
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granted if the device successfully performs as intended in a
manner in which the benefits outweigh expected risks. The
specific requirements for pre-marketing clinical studies are
vague, and the guidelines for the nature of these studies are
not binding on manufacturers or Notified Bodies (Kramer et al.,
2012).

Talymed R© (Marine Polymer Technologies) is a biodegradable,
wafer-thin wound matrix that was cleared in 2010 for the
management of full and partial-thickness wounds, including
chronic wounds. Talymed is a bioactive scaffold composed of
shortened fibers of poly-N-acetyl glucosamine derived from
diatom algae. Native poly-N-acetyl glucosamine fibers are
shortened to ∼4–7 µm using gamma radiation, which retains
the unique 3D polymeric structure and enables the nanofibers
to form a thin, biodegradable scaffold membrane (Scherer
et al., 2009). Pre-clinical animal studies demonstrated that
a nanofibrous scaffold composed of shortened poly-N-acetyl
glucosamine fibers initiated wound healing through material-
facilitated interactions with fibroblast and endothelial cells
that stimulated re-epithelization via increased keratinocyte
migration, granulation tissue formation, cell proliferation and
vascularization (Scherer et al., 2009). The shortened fibers of
poly-N-acetyl glucosamine become completely integrated into
the wound bed and upregulate the integrin-dependent Ets1
transcription factor, which regulates genes involved in cell
migration, proliferation and survival. The shortened fibers of
poly-N-acetyl glucosamine stimulate endothelial cells and the
increased secretion of several cytokines and growth factors,
including IL-1 and VEGF, that are imperative for proper wound
healing (Vournakis et al., 2008). In a pilot study, 86% of patients
with venous leg ulcers that were treated with Talymed biweekly
achieved complete wound healing within 5 months compared
to patients only receiving standard of care (45%) (Kelechi et al.,
2012).

Hyaluronan or hyaluronic acid (HA) is a linear
glycosaminoglycan composed of alternating units of D-
glucuronic acid and D-N-acetyl-d-glucosamine that is
ubiquitously distributed within the ECM and specifically in
connective tissue. HA is a well-established co-regulator for
gene expression, proliferation, motility, adhesion, signaling, and
morphogenesis (Toole, 2004). In wound healing, HA plays a key
role in modulating inflammation, stimulating cell migration,
and promoting angiogenesis through interactions with 2 cellular
receptors: RHAMM and CD44 (Chen and Abatangelo, 1999).
However, the role of HA in tissue repair is largely dependent
on molecular size (Litwiniuk et al., 2016). High molecular
weight HA exhibits anti-inflammatory, immunosuppressive,
and anti-angiogenic effects by inhibiting EC proliferation,
migration, and capillary formation, whereas short chain,
low molecular weight degradation products of HA, namely
oligosaccharides of 3–10 disaccharide units, are potent pro-
inflammatory molecules that induce angiogenesis by stimulating
EC proliferation, migration, and angiogenic sprouting (West
and Fan, 2002). In vivo, native HA is subject to rapid enzymatic
degradation by hyaluronidases and, in wounded tissue, further
fragmentation by free radicals (Stern, 2004). Fortunately, HA
is amenable to chemical modifications due to the presence of
carboxyl and hydroxyl groups on its repeating disaccharide
units. The functional groups allow HA-based biomaterials
to be tailored to retard and control degradation for tissue
regeneration and wound healing applications. Indeed, synthetic
HA derivatives have been chemically modified by esterification
of the carboxylic group of glucuronic acid with benzyl groups
(Benedetti et al., 1993). This modification imparts higher
resistance to hyaluronidase enzymatic activity and degradation.
Hyalomatrix R© (Anika Therapeutics) is a bilayered wound device
composed of a wound contact layer containing fibers of esterified
HA and an outer semipermeable silicone membrane that acts as

FIGURE 1 | Biopolymeric dextran scaffold facilitates wound healing in murine and porcine burn models. (A) Complete healing was observed in mice by day

21. Dextran treated wounds exhibited mature epithelial structures, including hair follicles (F) and sebaceous glands in the dermal layer as indicated by Masson

trichrome staining (left panel; scale bar = 100 µm). By day 35, new hair growth was observed in the center of dextran treated wounds, as shown by photos,

compared to wounds treated with dressing only; arrows indicate center of wound. (B) Wound closure was observed by day 14 in a porcine model as shown by

representative macroscopic and immunohistological images. Identification of neoepithelium using Masson’s trichrome-stained sections (right panel) confirmed that

wounds treated with dressing-only had an epithelial gap, whereas dextran-treated wounds were completely re-epithelialized with a thick reticulated epithelium. Scale

bar = 1 cm. Modified from Sun et al. (2011b), and modified and reprinted from Shen et al. (2015). Copyright (2015), with permission from Elsevier.
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a barrier to prevent vapor loss and reduce bacterial colonization.
Hyalomatrix acts as a regenerative matrix by providing HA in
the form of a 3D scaffold. The scaffold enables rapid fibroblast
and endothelial cell infiltration and modulates ECM deposition
(Galassi et al., 2000; Turner et al., 2004). In slow-healing
wounds, as the matrix degrades, a high concentration of HA is
locally released to the wound site that stimulates a regenerative
response. When evaluated in wounds of different etiologies,
including vascular, DFUs, traumatic wounds, and pressure
ulcers, 83% of Hyalomatrix treated wounds achieved some
degree of re-epithelialization (≥10%) within 16 days (Caravaggi
et al., 2011).

Among the natural polymers, dextran is a hydrophilic,
non-toxic polysaccharide composed of linear a-1,6-linked D-
glucopyranose residues with a low fraction of branches extending
from α-1,2, α-1,3, and α-1,4 linked side chains. Dextran
is synthesized by bacteria, Leuconostoc mesenteroide, and is
naturally resistant to protein adsorption and cell adhesion, and
modification of its polymer backbone allows the development
of biomaterials with specific properties. Dextran is also highly
water soluble and easily functionalized through its reactive
hydroxyl groups. For instance, modifying dextran polymers
with polymerizable vinyl groups creates functionalized dextran
macromers that present available C = C groups for crosslinking.
These modified dextran macromers are then combined with
PEG-diacrylate and photopolymerized to produce a hybrid
crosslinked scaffold (Sun et al., 2010). The biosynthetic scaffold
technology was developed in Dr. Gerecht’s laboratory at Johns
Hopkins University. The physical properties of the biosynthetic
dextran scaffold can be tuned to facilitate cell infiltration and
scaffold degradation by modifying the degree of substitution
of crosslinking groups and ratio of polymeric components,
modified dextran and PEG-diacrylate (Sun et al., 2011a). The
degree of substitution, or the number of functionalized hydroxyl
groups on the dextran anhydroglucose units, and dextran content
combinatorially affect the crosslinking density and, therefore,
the porosity, elasticity, and degradation of the scaffold. Tissue
ingrowth and regeneration is largely dependent on these physical
properties. A reduced degree of substitution of crosslinking
groups affects degradation and generates a scaffold with a more
porous architecture (∼10 µm) that facilitates cell infiltration
and migration as well as the diffusion of oxygen and nutrients.
Increased dextran content generates a less rigid scaffold but
retains structural integrity to enable handling and interface
with the wound bed. When applied to 3rd degree burns in
murine and porcine models, the dextran scaffold is quickly
penetrated, and degraded by early inflammatory cells, promoting
the infiltration of necessary cells to re-epithelialize the wound
and facilitate skin regeneration. Third degree burns were selected
to evaluate the wound healing potential of the dextran scaffold
because in preliminary studies, the dextran scaffold demonstrated
rapid vascularization when implanted subcutaneously (Sun
et al., 2011a). Thermal injuries display increased capillary
permeability and thrombosis, so wound healing outcomes are
dependent on neovascularization (Rowan et al., 2015). In mice,
complete epithelial repair with mature epithelial morphologies
was observed, including hair follicles and sebaceous glands, after
application of the dextran scaffold, see Figure 1A (Sun et al.,

2011b). Accelerated wound closure was also observed in a porcine
model after treatment with the dextran scaffold, in which a thick
reticulated neoepithelium was regenerated, see Figure 1B (Shen
et al., 2015). This is particularly exciting, because the ability to
regenerate skin with functional epidermal appendages, such as
hair follicles, and sebaceous and sweat glands, has long been and
still is a major clinical objective, and challenge, particularly in the
healing of chronic wounds in which obtaining wound closure is
the primary objective.

CONCLUSIONS

Chronic wounds are characterized by an extremely complex
pathophysiology arising from varied etiologies and combined
comorbidities including diabetes, immunosuppression, vascular
deficiencies, and increased bacterial load that disrupt healing.
These wounds suffer from severe molecular and cellular
deficiencies and are, unfortunately, heterogeneous across
the patient population. This has contributed to the lack of
clinical studies directly comparing the efficacy of available
products for the treatment of chronic wounds. Performing
controlled comparative trials that evaluate the efficacy of
advanced wound care products in healing difficult-to-to heal
chronic wounds are necessary. Because of the heterogeneity
and lack of clinical evidence demonstrating significantly
greater performance of specific products, there is currently
no single wound dressing or scaffold that is exclusively
used for the treatment and healing of all chronic wound
types. The treatment paradigm for chronic wounds must
shift toward precision medicine strategies that provide
personalized therapy based on individual patient need. The
development of novel polymers that mimic the ECM and
can be modified to incorporate therapeutics, growth factors,
antimicrobials, or cells ushers in a new era of customized
platform technologies that deliver bioactive components for
the treatment of chronic wounds. As chronic wound healing
is multifactorial, biopolymeric scaffolds will be designed based
on specific patient need to alter the wound bed and provide the
optimal wound healing microenvironment. This personalized
approach begins with the identification of therapeutic targets
and the development of quantitative biomarker assays to
allow physicians to stratify patient populations and guide
interventional treatments. This may include delivering bioactive
VEGF to stimulate vascularization, releasing antimicrobials
to control infection, and/or supplying protease inhibitors to
mitigate proteolytic activity and stimulate regenerative wound
healing.

AUTHOR CONTRIBUTIONS

LD and SG contributed to writing and revising the manuscript.
Both authors approved the final version of this manuscript.

ACKNOWLEDGMENTS

The authors acknowledge the research work completed by
members of Dr. SG’s laboratory that is cited in this review and
the funding resources used to support that work.

Frontiers in Physiology | www.frontiersin.org 9 August 2016 | Volume 7 | Article 341

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Dickinson and Gerecht Engineering Scaffolds for Chronic Wounds

REFERENCES

Augst, A., Kong, H., and Mooney, D. (2006). Alginate hydrogels as biomaterials.

Macromol. Biosci. 6, 623–633. doi: 10.1002/mabi.200600069

Azuma, K., Izumi, R., Osaki, T., Ifuku, S., Morimoto, M., Saimoto, H., et al. (2015).

Chitin, Chitosan, and its derivatives for wound healing: old and new materials.

J. Funct. Biomater 6, 104–142. doi: 10.3390/jfb6010104

Badylak, S. F. (2002). The extracellular matrix as a scaffold for tissue

reconstruction. Semin. Cell Dev. Biol. 13, 377–383. doi: 10.1016/S1084952102

000940

Bainbridge, P. (2013). Wound healing and the role of fibroblasts. J. Wound Care

22:407. doi: 10.12968/jowc.2013.22.8.407

Benedetti, L., Cortivo, R., Berti, T., Berti, A., Pea, F., Mazzo, M., et al. (1993).

Biocompatibility and biodegradation of different hyaluronan derivatives

(Hyaff) implanted in rats. Biomaterials 14, 1154–1163. doi: 10.1016/0142-

9612(93)90160-4

Biagini, G., Muzzarelli, R., Giardino, R., and Castaldini, C. (1992). “Biological

materials for wound healing,” in Advances in Chitan and Chitosan, eds C. J.

Brine, P. A. Sandford, and J. P. Zikakis (New York, NY: Elsevier Appl. Sci.),

16–24.

Blakytny, R., and Jude, E. (2006). The molecular biology of chronic wounds and

delayed healing in diabetes. Diabet. Med. 23, 594–608. doi: 10.1111/j.1464-

5491.2006.01773.x

Braun, K., and Prowse, D. (2006). Distinct epidermal stem cell compartments

are maintained by independent niche microenvironments. Stem Cell Rev. 2,

221–231. doi: 10.1007/s12015-006-0050-7

Burke, J., Yannas, I., Quinby, W., Bondoc, C., and Jung, W. (1982). Successful use

of a physiologically acceptable artificial skin in the treatment of extensive burn

injury. Ann. Surg. 194, 413–428. doi: 10.1097/00000658-198110000-00005

Caravaggi, C., Grigoletto, F., and Scuderi, N. (2011). Wound bed preparation

with a dermal substitute (Hyalomatrix R© PA) facilitates Re-epithelialization and

healing: results of a multicenter, prospective, observational study on complex

chronic ulcers (The Fast Study).Wounds 23, 228–235.

Carter, M., Waycaster, C., Schaum, K., and Gilligan, A. (2014). Cost-

effectiveness of three adjunct cellular/tissue derived products used in the

management of chronic venous leg ulcers. Value Heal. 17, 801–813. doi:

10.1016/j.jval.2014.08.001

Cha, J., and Falanga, V. (2007). Stem cells in cutaneous wound healing. Clin.

Dermatol. 25, 73–78. doi: 10.1016/j.clindermatol.2006.10.002

Chen, W., and Abatangelo, G. (1999). Function of hyaluronan in wound repair.

Wound Repair Regen. 7, 79–89. doi: 10.1046/j.1524-475X.1999.00079.x

Chou, T., Fu, E., Wu, C., and Yeh, J. (2003). Chitosan enhances platelet

adhesion and aggregation. Biochem. Biophys. Res. Comm. 302, 480–483. doi:

10.1016/S0006-291X(03)00173-6

Cullen, B., Smith, R., and McCullogh, E. (2002). Mechanism of action

of PROMOGRAN, a protease modulating matrix, for the treatment of

diabetic foot ulcers. Wound Repair Regen. 10, 16–25. doi: 10.1046/j.1524-

475X.2002.10703.x

Dai, T., Tanaka, M., Huang, Y., and Hamblin, M. (2012). Chitosan preparations for

wounds and burns: antimicrobial and wound-healing effects. Expert. Rev. Anti.

Infect. Ther. 9, 857–879. doi: 10.1586/eri.11.59

DiDomenico, L., Landsman, A. R., Emch, K. J., and Landsman, A. (2011).

A prospective comparison of diabetic foot ulcers treated with either

cryopreserved skin allograft or bioengineered skin substitute. Wounds 23,

184–189.

Driver, V., Lavery, L., Reyzelman, A., Dutra, T., Dove, C., Kotsis, S., et al. (2015).

A clinical trial of Integra Template for diabetic foot ulcer treatment. Wound

Repair Regen. 23, 891–900. doi: 10.1111/wrr.12357

Dumville, J. C., Keogh, S. J., Liu, Z., Stubbs, N., Walker, R. M., and Fortnam, M.

(2015). Alginate dressings for treating pressure ulcers. Cochrane Database Syst.

Rev. 5:CD011277. doi: 10.1002/14651858.cd011277

Edmonds, M., and European and Australian Apligraf Diabetic Foot Ulcer Study

Group (2009). Apligraf in the treatment of neuropathic diabetic foot ulcers. Int.

J. Low. Extrem. Wounds 8, 11–18. doi: 10.1177/1534734609331597

Eming, S., Krieg, T., and Davidson, J. (2007). Inflammation in wound repair:

molecular and cellular mechanisms. J. Invest. Dermatol. 127, 514–523. doi:

10.1038/sj.jid.5700701

Falanga, V., Isaacs, C., Paquette, D., Downing, G., Kouttab, N., Butmarc, J., et al.

(2002). Wounding of bioengineered skin: cellular and molecular aspects after

injury. J. Invest. Dermatol. 119, 653–660. doi: 10.1046/j.1523-1747.2002.01865.x

Fortunato, S., Menon, R., and Lombardi, S. (1998). Presence of four tissue

inhibitors of matrix metalloproteinases (TIMP-1, -2, -3 and -4) in human

fetal membranes. Am. J. Reprod. Immunol. 40, 395–400. doi: 10.1111/j.1600-

0897.1998.tb00424.x

Galassi, G., Brun, P., Radice, M., Cortivo, R., Zanon, G., Genovese, P., et al.

(2000). In vitro reconstructed dermis implanted in humanwounds: degradation

studies of the HA-based supporting scaffold. Biomaterials 21, 2183–2191. doi:

10.1016/S0142-9612(00)00147-2

Gelse, K., Poschl, E., and Aigner, T. (2003). Collagens–structure, function, and

biosynthesis. Adv. Drug Deliv. Rev. 55, 1531–1546. doi: 10.1016/j.addr.2003.

08.002

Gould, L. J. (2015). Topical Collagen-based biomaterials for chronic wounds:

rationale and clinical application. Adv. Wound Care 5, 19–31. doi:

10.1089/wound.2014.0595

Gurtner, G. C., Werner, S., Barrandon, Y., and Longaker, M. T. (2008). Wound

repair and regeneration. Nature 453, 314–321. doi: 10.1038/nature07039

Hakkinen, L., Koivisto, L., Gardner, H., Saarialho-Kere, U., Carroll, J., Lakso,

M., et al. (2004). Increased expression of beta6-integrin in skin leads to

spontaneous development of chronic wounds. Am. J. Pathol. 164, 229–242. doi:

10.1016/S0002-9440(10)63113-6

Hankin, C. S., Knispel, J., Lopes, M., Bronstone, A., and Maus, E. (2012). Clinical

and cost efficacy of advanced wound care matrices for venous leg ulcers. J.

Manag. Care Spec. Pharm. 18, 375. doi: 10.18553/jmcp.2012

Hart, J., Silcock, D., Gunnigle, S., Cullen, B., Light, N., and Watt, P. (2002). The

role of oxidised regenerated cellulose/collagen in wound repair: effects in vitro

on fibroblast biology and in vivo in a model of compromised healing. Int. J.

Biochem. Cell Biol. 34, 1557–1570. doi: 10.1016/S1357-2725(02)00062-6

Heino, J. (2000). The collagen receptor integrins have distinct ligand recognition

and signaling functions. Matrix Biol. 19, 319–323. doi: 10.1016/S0945-

053X(00)00076-7

Hodde, J., Badylak, S., Brightman, A., and Voytik-Harbin, S. (1996).

Glycosaminoglycan content of small intestinal submucosa: a bioscaffold

for tissue replacement. Tissue Eng. 2, 209–217. doi: 10.1089/ten.1996.2.209

Hodde, J., Record, R., Liang, H., and Badylak, S. F. (2001). Vascular endothelial

growth factor in porcine-derived extracellular matrix. Endothelium 8, 11–24.

doi: 10.3109/10623320109063154

Hu, S., Kirsner, R. S., Falanga, V., Phillips, T., and Eaglstein, W. H. (2006).

Evaluation of Apligraf R© persistence and basement membrane restoration in

donor site wounds: a pilot study. Wound Repair Regen. 14, 427–433. doi:

10.1111/j.1743-6109.2006.00148.x

Kelechi, T., Mueller, M., Hankin, C., Bronstone, A., Samies, J., and Bonham, P.

(2012). A randomized, investigator-blinded, controlled pilot study to evaluate

the safety and efficacy of a poly-N-acetyl glucosamine-derived membran

material in patients with venous leg ulcers. J. Am. Acad. Dermatol. 66, e209–

e215. doi: 10.1016/j.jaad.2011.01.031

Kirsner, R., Bohn, G., Driver, V., Mills, J., Nanney, L., Williams, M., et al. (2015a).

Human acellular dermal wound matrix:evidence and experience. Int. Wound J.

12, 646–654. doi: 10.1111/iwj.12185

Kirsner, R. S., Sabolinski, M. L., Parsons, N. B., Skornicki, M., and Marston, W. A.

(2015b). Comparative effectiveness of a bioengineered living cellular construct

vs. a dehydrated human amniotic membrane allograft for the treatment of

diabetic foot ulcers in a real world setting. Wound Repair Regen. 23, 737–744.

doi: 10.1111/wrr.12332

Koizumi, N., Inatomi, T., Sotozono, C., Fullwood, N., Quantock, A., and Kinoshita,

S. (2000). Growth factor mRNA and protein in preserved human amniotic

membrane. Curr. Eye Res. 20, 173–177. doi: 10.1076/0271-3683(200003)2031-

9FT173

Kojima, K., Okamoto, Y., Kojima, K., Miyatake, K., Fujise, H., Shigemasa, Y., et al.

(2004). Effects of chitin and chitosan on collagen synthesis in wound healing. J.

Vet. Med. Sci. 66, 1595–1598. doi: 10.1292/jvms.66.1595

Koob, T., Rennert, R., Zabek, N., Massee, M., Lim, J., Temenoff, J., et al. (2013).

Biological properties of dehydrated human amnion/chorion composite graft:

implications for chronic wound healing. Int. Wound J. 10, 493–500. doi:

10.1111/iwj.12140

Frontiers in Physiology | www.frontiersin.org 10 August 2016 | Volume 7 | Article 341

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Dickinson and Gerecht Engineering Scaffolds for Chronic Wounds

Kramer, D. B., Xu, S., and Kesselheim, A. S. (2012). Regulation of medical devices

in the united states and european union. N.Engl. J. Med. 366, 848–855. doi:

10.1056/NEJMhle1113918

Landsman, A., Cook, J., Landsman, A., Garrett, P., Yoon, J., Kirkwood, A., et al.

(2011). A retrospective clinical study of 188 consectuvie patients to examine

the effectiveness of a biologically active cryopreserved human skin allograft

(Theraskin) on the treatement of diabetic foot ulcers and venous leg ulcers. Foot

Ankle Spec. 4, 29–41. doi: 10.1177/1938640010387417

Lauer, G., Sollberg, S., Cole, M., Kreig, T., and Eming, S. (2000). Expression

and proteolysis of vascular endothelial growth factor is increased in chronic

wounds. J. Invest. Dermatol. 115, 12–18. doi: 10.1046/j.1523-1747.2000.

00036.x

Lerman, O., Galiano, R., Armour, M., Levine, J., and Gurtner, G. (2003). Cellular

dysfunction in the diabetic fibroblast: impairment in migration, vascular

endothelial growth factor production, and response to hypoxia. Am. J. Pathol.

162, 303–312. doi: 10.1016/S0002-9440(10)63821-7

Litwiniuk, M., Krejner, A., and Grzela, T. (2016). Hyaluronic acid in inflammation

and tissue regeneration.Wounds 28, 78–88.

Lockington, D., Agarwal, P., Young, D., Caslake, M., and Ramaesh, K. (2014).

Antioxidant properties of amniotic membrane: novel observations from a pilot

study. Can. J. Opthalmol. 49, 426–430. doi: 10.1016/j.jcjo.2014.07.005

Lopez-Valladares, M., Rodriguez-Ares, M., Tourino, R., Gude, F., Silva, M., and

Couceiro, J. (2010). Donor age and gestational age influence on growth

factor levels in human amniotic membrane. Acta Opthamol. 88, 211–216. doi:

10.1111/j.1755-3768.2010.01908.x

Mamede, A., Carvalho, M., Abrantes, A., Laranjo, M., Maia, C., and Botelho,

M. (2010). Amniotic membrane: from structure and functions to clinical

applications. Cell Tissue Res. 349, 447–458. doi: 10.1007/s00441-012-1424-6

Marston, W. A., Hanft, J., Norwood, P., and Pollak, R. (2003). The efficacy and

safety of dermagraft in improving the healing of chronic diabetic foot ulcers:

results of a prospective randomized trial. Diabetes Care 26, 1701–1705. doi:

10.2337/diacare.26.6.1701

Mayol, L., De Stefano, D., Campani, V., De Falco, F., Ferrari, E., Cencetti, C.,

et al. (2014). Design and characterization of a chitosan physical gel promoting

wound healing in mice. J. Mater Sci. 25, 1483–1493. doi: 10.1007/s10856-014-

5175-7

McCarty, S., and Percival, S. (2013). Proteases and delayed wound healing. Adv.

Wound Care 2, 438–447. doi: 10.1089/wound.2012.0370

Moore, M., Samsell, B., Wallis, G., Triplett, S., Chen, S., Linthurst Jones, A.,

et al. (2015). Decellularization of human dermis using non-denaturing anionic

detergent and endonuclease: a review. Cell Tissue Bank 16, 249–259. doi:

10.1007/s10561-014-9467-4

Mustoe, T. A., O’Shaughnessy, K., and Kloeters, O. (2006). Chronic wound

pathogenesis and current treatment strategies: a unifying hypothesis. Plast.

Reconstr. Surg. 117, 35s–41s. doi: 10.1097/01.prs.0000225431.63010.1b

Naughton, G., Mansbridge, J., and Gentzkow, G. (1997). A metabolically active

human dermal replacement for the treatment of diabetic foot Ulcers. Artif.

Organs 21, 1203–1210. doi: 10.1111/j.1525-1594.1997.tb00476.x

Nihsen, E., Johnson, C., and Hiles, M. (2008). Bioactivity of small intestinal

submucosa and oxidized regenerated cellulose/collagen. Adv. Ski. Wound Care

21, 479–486. doi: 10.1097/01.ASW.0000323561.14144.19

O’Meara, S., Martyn-St James, M., and Adderley, U. J. (2015). Alginate dressings

for venous leg ulcers. Cochrane Database Syst. Rev. 19:CD010182. doi: 10.1002/

14651858.CD010182.pub3

Okamotoa, Y., Yanoa, R., Miyatakea, K., Tomohirob, I., Shigemasac, Y., and

Minamia, S. (2003). Effects of chitin and chitosan on blood coagulation.

Carbohydr. Polym. 53, 337–342. doi: 10.1016/S0144-8617(03)00076-6

Park, C., Kohanim, S., Zhu, L., Gehlbach, P., and Chuck, R. (2008).

Immunosuppressive property of dried human amniotic membrane.

Ophthalmic Res. 41, 112–113. doi: 10.1159/000187629

Pastar, I., Stojadinovic, O., and Tomic-Canic, M. (2008). Role of keratinocytes in

healing of chronic wounds. Surg. Technol. Int. 17, 105–112.

Peluso, G., Petillo, O., Ranieri, M., Santin, M., Ambrosio, L., Calabró, D., et al.

(1994). Chitosan-mediated stimulation of macrophage function. Biomaterials

15, 1215–1220. doi: 10.1016/0142-9612(94)90272-0

Pirone, L. A., Bolton, L. L., Monte, K. A., and Shannon, R. J. (1992). Effect of

calcium alginate dressings on partial-thickness wounds in swine. J. Invest. Surg.

5, 149–153. doi: 10.3109/08941939209012431

Rabea, E., Badawy, M., Stevens, C., Smagghe, G., and Steurbaut, W. (2003).

Chitosan as antimicrobial agent: applications and mode of action.

Biomacromolecules 4, 1457–1465. doi: 10.1021/bm034130m

Rennert, R. C., Rodrigues, M., Wong, V. W., Duscher, D., Hu, M., Maan, Z.,

et al. (2013). Biological therapies for the treatment of cutaneous wounds:

phase III and launched therapies. Expert Opin. Biol. Ther. 13, 1523–1541. doi:

10.1517/14712598.2013.842972

Reyzelman, A., Crews, R., Moore, J., Moore, L., Mukker, J., Offutt, S., et al.

(2009). Clinical effectiveness of an acellular dermal regenerative tissue matrix

compared to standard wound management in healing diabetic foot ulcers: a

prospective, randomised, multicentre study. Int. Wound J. 6, 196–208. doi:

10.1111/j.1742-481X.2009.00585.x

Rowan, M. P., Cancio, L. C., Elster, E. A., Burmeister, D. M., Rose, L. F., Natesan,

S., et al. (2015). Burn wound healing and treatment: review and advancements.

Crit. Care 19, 243. doi: 10.1186/s13054-015-0961-2

Sandoval, M., Albornoz, C., Muñoz, S., Fica, M., García-Huidobro, I., Mertens,

R., et al. (2011). Addition of chitosan may improve the treatment efficacy of

triple bandage and compression in the treatment of venous leg ulcers. J. Drugs

Dermatol. 10, 75–79.

Santoro, M., and Gaudino, G. (2005). Cellular and molecular facets of keratinocyte

reepithelization during wound healing. Exp. Cell Res. 304, 274–286. doi:

10.1016/j.yexcr.2004.10.033

Scherer, S., Pietramaggiori, G., Matthews, J., Perry, S., Assmann, A., Carothers, A.,

et al. (2009). Poly-N-acetyl glucosamine nanofibers: a new bioactive material to

enhance diabetic wound healing by cell migration and angiogenesis. Ann. Surg.

250, 322–330. doi: 10.1097/SLA.0b013e3181ae9d45

Schultz, G. S., and Wysocki, A. (2009). Interactions between extracellular matrix

and growth factors in wound healing. Wound Repair Regen. 17, 153–162. doi:

10.1111/j.1524-475X.2009.00466.x

Segal, H., Hunt, B., and Gilding, K. (1998). The effects of alginate and non-alginate

wound dressings on blood coagulation and platelet activation. J. Biomater. Appl.

12, 249–257.

Sen, C. K., Gordillo, G. M., Roy, S., Kirsner, R. S., Lambert, L., Hunt, T. K., et al.

(2009). Human skin wounds: a major and snowballing threat to public health

and the economy. Wound Repair Regen. 17, 763–771. doi: 10.1111/j.1524-

475X.2009.00543.x

Shen, Y.-I., Song, H.-H. G., Papa, A. E., Burke, J. A., Volk, S. W., and

Gerecht, S. (2015). Acellular hydrogels for regenerative burn wound healing:

translation from a porcine model. J. Invest. Dermatol. 135, 2519–2529. doi:

10.1038/jid.2015.182

Shi, L., Ramsay, S., Ermis, R., and Carson, D. (2012). In vitro and in vivo studies on

matrix metalloproteinases interacting with small intestine submucosa wound

matrix. Int. Wound J. 9, 44–53. doi: 10.1111/j.1742-481X.2011.00843.x

Shi, L., and Ronfard, V. (2013). Biochemical and biomechanical characterization of

porcine small intestinal submucosa (SIS): a mini review. Int. J. Burn. Trauma 3,

173–179.

Shultz, G., Davidson, J., Kirsner, R. S., Bornstein, P., and Herman, I. (2012).

Dynamic reciprocity in the wound microenvironment. Wound Repair Regen.

19, 134–148. doi: 10.1111/j.1524-475X.2011.00673.x

Shultz, G., Sibbald, R., Falanga, V., Ayello, E., Dowsett, C., Harding, K., et al. (2003).

Wound bed preparation: a systematic approach to woundmanagement.Wound

Repair Regen. 11, S1–S28. doi: 10.1046/j.1524-475X.11.s2.1.x

Silini, A., Cargnoni, A., Magatti, M., Pianta, S., and Parolini, O. (2015). The long

path of human placenta, and its derivatives, in regenerative medicine. Front.

Physiol. 3:162. doi: 10.3389/fbioe.2015.00162

Singer, A. J., and Clark, R. A. F. (1999). Cutaneous wound healing. N.Engl. J. Med.

341, 738–746. doi: 10.1056/NEJM199909023411006

Stern, R. (2004). Hyaluronan catabolism: a new metablolic pathway. Eur. J. Cell

Biol. 83, 317–325. doi: 10.1078/0171-9335-00392

Stojadinovic, O., Pastar, I., Nusbaum, A. G., Vukelic, S., Krzyzanowska, A., and

Tomic-Canic, M. (2014). Deregulation of epidermal stem cell niche contributes

to pathogenesis of non-healing venous ulcers. Wound Repair Regen. 22,

220–227. doi: 10.1111/wrr.12142

Sun, G., Shen, Y.-I., Ho, C. C., Kusuma, S., and Gerecht, S. (2010). Functional

groups affect physical and biological properties of dextran-based hydrogels. J.

Biomed. Mater. Res. A 93, 1080–1090. doi: 10.1002/jbm.a.32604

Sun, G., Shen, Y.-I., Kusuma, S., Fox-Talbot, K., Steenbergen, C. J., and

Gerecht, S. (2011a). Functional neovascularization of biodegradable dextran

Frontiers in Physiology | www.frontiersin.org 11 August 2016 | Volume 7 | Article 341

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Dickinson and Gerecht Engineering Scaffolds for Chronic Wounds

hydrogels with multiple angiogenic growth factors. Biomaterials 32, 95–106.

doi: 10.1016/j.biomaterials.2010.08.091

Sun, G., Zhang, X., Shen, Y.-I., Sebastian, R., Dickinson, L. E., Fox-Talbot,

K., et al. (2011b). Dextran hydrogel scaffolds enhance angiogenic responses

and promote complete skin regeneration during burn wound healing.

Proc. Natl. Acad. Sci. U.S.A. 108, 20976–20981. doi: 10.1073/pnas.1115

973108

Sweeney, I., Miraftab, M., and Collyer, G. (2012). A critical review of modern and

emerging absorbent dressings used to treat exuding wounds. Int. Wound J. 9,

601–612. doi: 10.1111/j.1742-481X.2011.00923.x

Toole, B. P. (2004). Hyaluronan: from extracellular glue to pericellular cue. Nat

Rev. Cancer 4, 528–529. doi: 10.1038/nrc1391

Trabucchi, E., Pallotta, S., Morini, M., Corsi, F., Franceschini, R., Casiraghi, A.,

et al. (2002). Lowmolecular weight hyaluronic acid prevents oxygen free radical

damage to granulation tissue during wound healing. Int. J. Tissue React. 24,

65–71. doi: 10.4049/jimmunol.181.3.2103

Tracy, L. E., Minasian, R. A., and Caterson, E. J. (2016). Extracellular matrix and

dermal fibroblast function in the healing wound. Adv. Wound Care 5, 119–136.

doi: 10.1089/wound.2014.0561

Turner, N., and Badylak, S. (2015). The use of biologic scaffolds in the treatment

of chronic nonhealing wounds. Adv. Wound Care 4, 490–500. doi: 10.1089/

wound.2014.0604

Turner, N., Kielty, C., Walker, M., and Canfield, A. (2004). A novel

hyaluronan-based biomaterial (Hyaff-11) as a scaffold for endothelial cells

in tissue engineered vascular grafts. Biomaterials 25, 5955–5964. doi:

10.1016/j.biomaterials.2004.02.002

Ueno, H., Mori, T., and Fujinaga, T. (2001). Topical formulations and wound

healing applications of chitosan. Adv. Drug Deliv. Rev. 52, 105–115. doi:

10.1016/S0169-409X(01)00189-2

Ulrich, D., Smeets, R., Unglaub, F., Wöltje, M., and Pallua, N. (2011). Effect of

oxidized regenerated cellulose/collagen matrix on proteases in wound exudate

of patients with diabetic foot ulcers. J. Wound Ostomy Continence Nurs. 38,

522–528. doi: 10.1097/WON.0b013e31822ad290

Vaalamo, M., Weckroth, M., Puolakkainen, P., Kere, J., Saarinen, P., Lauharanta,

J., et al. (1996). Patterns of matrix metalloproteinase and TIMP-1 expression in

chronic and normally healing human cutaneous wounds. Br. J. Dermatol. 135,

52–59. doi: 10.1111/j.1365-2133.1996.tb03607.x

Valle, M., Maruthur, N., Wilson, L., Malas, M., Qazi, U., Haberl, E., et al. (2014).

Comparative effectiveness of advanced wound dressings for patients with

chronic venous leg ulcers: a systematic review. Wound Repair Regen. 22,

193–204. doi: 10.1111/wrr.12151

Veves, A., Falanga, V., Armstrong, D. G., and Sabolinski, M. L. (2001). Graftskin,

a human skin equivalent, is effective in the management of noninfected

neuropathic diabetic foot ulcers: a prospective randomized multicenter clinical

trial. Diabetes Care 24, 290–295. doi: 10.2337/diacare.24.2.290

von Versen-Hoeynck, F., Steinfeld, A., Becker, J., Hermel, M., Rath, W., and

Hesselbarth, U. (2008). Sterilization and preservation influence the biophysical

properties of human amnion grafts. Biologicals 36, 248–255. doi: 10.1016/

j.biologicals.2008.02.001

Vournakis, J., Eldridge, J., Demcheva, M., and Muise-Helmericks, R. (2008).

Poly-N-acetyl glucosamine nanofibers regulate endothelial cell movement and

angiogenesis: dependency on integrin activation of Ets1. J. Vasc. Res. 45,

222–232. doi: 10.1159/000112544

Walters, J., Cazzell, S., Pham, H., Vayser, D., and Reyzelman, A. (2016). Healing

rates in a multicenter assessment of a sterile, room temperature, acellular

dermal matrix versus conventional care wound management and an active

comparator in the treatment of full-thickness diabetic foot ulcers. Eplasty

16:e10.

Werdin, F., Tennenhaus, M., Schaller, H.-E., and Rennekampff, H.-O. (2009).

Evidence-based management strategies for treatment of chronic wounds.

Eplasty 9:e19.

West, D., and Fan, T.-P. (2002). “Hyaluronan oligosaccharides promote wound

repair: It’s size dependent regulation of angiogenesis,” in The NewAngiotherapy,

eds T.-P. D. Fan and E. C. Kohn (New York, NY: Humana Press), 177–188.

Whelan, M., and Senger, D. (2003). Collagen I initiates endothelial cell

morphogenesis by inducing actin polymerization through suppression of cyclic

AMP and Protein Kinase A. J. Biol. Chem. 278, 327–334. doi: 10.1074/

jbc.M207554200

Wiegand, C., Schönfelder, U., Abel, M., Ruth, P., Kaatz, M., and Hipler, U. (2010).

Protease and pro-inflammatory cytokine concentrations are elevated in chronic

compared to acute wounds and can be modulated by collagen type I in vitro.

Arch. Dermatol. Res. 302, 419–428. doi: 10.1007/s00403-009-1011-1

Yonehiro, L., Burleson, G., and Sauer, V. (2013). Use of a new acellular dermal

matrix for treatment of nonhealing wounds in the lower extremities of patients

with diabetes.Wounds 25, 340–344.

Zaulyanov, L., and Kirsner, R. S. (2007). A review of a bi-layered living cell

treatment (Apligraf ( R©)) in the treatment of venous leg ulcers and diabetic foot

ulcers. Clin. Interv. Aging 2, 93–98. doi: 10.2147/ciia.2007.2.1.93

Zelen, C., Serena, T., Denoziere, G., and Fetterolf, D. (2013). A prospective

randomised comparative parallel study of amniotic membrane wound graft

in the management of diabetic foot ulcers. Int. Wound J. 10, 502–507. doi:

10.1111/iwj.12097

Zelen, C., Serena, T., Gould, L., Le, L., Carter, M., Keller, J., et al. (2016).

Treatment of chronic diabetic lower extremity ulcers with advanced

therapies: a prospective, randomised, controlled, multi-centre comparative

study examining clinical efficacy and cost. Int. Wound J. 13, 272–282. doi:

10.1111/iwj.12566

Conflict of Interest Statement: Intellectual property related to the biosynthetic

dextran scaffold is owned by Johns Hopkins University and licensed to Gemstone

Biotherapeutics LLC, of which SG is a cofounder and consultant. SG has a financial

interest in Gemstone Biotherapeutics LLC, which is subject to certain restrictions

under University policy. The terms of this arrangement are being managed by

the Johns Hopkins University in accordance with its conflict of interest policies.

Gemstone Biotherapeutics, LLC, partially supported the research work cited

in the manuscript; Gemstone Biotherapeutics LLC did not affect the design,

interpretation, or reporting of any of the experiments herein. LD is currently an

employee of Gemstone Biotherapeutics. All research described in this review of

which LD is a contributing author was completed prior to her employment with

Gemstone and was therefore conducted in the absence of any commercial or

financial relationships that could be construed as a potential conflict of interest.

The reviewer JD and handling Editor declared their shared affiliation, and

the handling Editor states that the process nevertheless met the standards of a fair

and objective review.

Copyright © 2016 Dickinson and Gerecht. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 12 August 2016 | Volume 7 | Article 341

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Engineered Biopolymeric Scaffolds for Chronic Wound Healing
	Introduction
	Wound Healing
	Aberrant Microenvironment of Chronic Wounds
	Bioengineered Skin Substitutes
	Living Skin Equivalents: Human-Derived Technologies
	Acellular Naturally Derived Polymeric Scaffolds
	Acellular Matrices-Biosynthetic Polymeric Scaffolds

	Conclusions
	Author Contributions
	Acknowledgments
	References


