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A numerical model of neurovascular coupling (NVC) is presented based on neuronal

activity coupled to vasodilation/contraction models via the astrocytic mediated

perivascular K+ and the smooth muscle cell (SMC) Ca2+ pathway termed a

neurovascular unit (NVU). Luminal agonists acting on P2Y receptors on the endothelial

cell (EC) surface provide a flux of inositol trisphosphate (IP3) into the endothelial cytosol.

This concentration of IP3 is transported via gap junctions between EC and SMC providing

a source of sarcoplasmic derived Ca2+ in the SMC. The model is able to relate a neuronal

input signal to the corresponding vessel reaction (contraction or dilation). A tissue slice

consisting of blocks, each of which contain an NVU is connected to a space filling H-tree,

simulating a perfusing arterial tree (vasculature) The model couples the NVUs to the

vascular tree via a stretch mediated Ca2+ channel on both the EC and SMC. The SMC

is induced to oscillate by increasing an agonist flux in the EC and hence increased IP3

induced Ca2+ from the SMC stores with the resulting calcium-induced calcium release

(CICR) oscillation inhibiting NVC thereby relating blood flow to vessel contraction and

dilation following neuronal activation. The coupling between the vasculature and the set

of NVUs is relatively weak for the case with agonist induced where only the Ca2+ in cells

inside the activated area becomes oscillatory however, the radii of vessels both inside

and outside the activated area oscillate (albeit small for those outside). In addition the

oscillation profile differs between coupled and decoupled states with the time required

to refill the cytosol with decreasing Ca2+ and increasing frequency with coupling. The

solution algorithm is shown to have excellent weak and strong scaling. Results have

been generated for tissue slices containing up to 4096 blocks.

Keywords: neurovascular coupling, neurovascular unit, parallel computing, computational biology, agonistic

behavior

1. Introduction

The human brain is an immensely powerful organ that requires a delicately regulated supply
of nutrients to sustain its activity. Unlike other organs in the body, cerebral tissue is unable to
survive restricted blood supply for longer than a few seconds without cell death. The network
of blood responsible for supplying the brain has two primary purposes, to deliver the required
oxygen and nutrients to the tissue, and to convectively remove metabolic waste products such as
CO2. Additionally, the blood vessel network has to maintain the blood supply under conditions
of significant increases and decreases in blood pressure feeding the network such as occur when
standing up from lying down, known as autoregulation, and additionally has to dynamically match

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2015.00109
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2015.00109&domain=pdf&date_stamp=2015-09-15
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tim.david@canterbury.ac.nz
http://dx.doi.org/10.3389/fncom.2015.00109
http://journal.frontiersin.org/article/10.3389/fncom.2015.00109/abstract
http://loop.frontiersin.org/people/37134/overview


Dormanns et al. Neurovascular coupling: a parallel implementation

supply to the varying metabolic demand of localized neuronal
activity, a phenomenon known as functional hyperaemia
or neurovascular coupling (NVC). Functional hyperaemia
is an important mechanism which describes the local
vessel dilation and constriction due to neuronal activity
in the human/mammalian brain. The change in vessel
diameter controls the local cerebral bloodflow and thereby
the supply of oxygen and glucose. Impaired functional
hyperaemia is associated with several pathologies such
as hypertension, Alzheimer’s Disease, cortical spreading
depression, atherosclerosis and stroke (Iadecola, 2004; Girouard
and Iadecola, 2006). All of these pathologies start with an altered
relationship between neural activity and the cerebral blood
flow (CBF). These alterations affect the delivery of substrates
to active brain cells and impair the removal of waste-products
from cerebral metabolism (Zlokovic, 2005). It is likely that this
disruption contributes to brain dysfunction. Increasing the
understanding of neural interactions highlights the importance
of vascular pathology in cerebral diseases.

Although investigations of functional hyperaemia started over
100 years ago by Roy and Sherrington (1890), the exact cellular
and chemical pathways that are involved are still unknown.
However, studies over the last decades indicate that neurons,
astrocytes, smooth muscle cells, and endothelial cells constitute
a functional unit with the primary purpose of maintaining
homeostasis in the cerebral micro-circulation (Iadecola, 2004;
Hamel, 2006; Attwell et al., 2010; Drewes, 2012). Nutrient
exchange primarily occurs in the capillaries, the fine mesh-
like network of blood vessels embedded in the tissue, where
species such as O2, CO2, and glucose are able to diffuse in and
out of the capillary walls. The principal physical mechanism
that controls bloodflow through the capillary network is the
active dilation and contraction of the small arterioles that feed
the tissue. Vessel dilation reduces the resistance to bloodflow,
and hence increases the flow, while contraction restricts the
blood supply. The contraction and dilation is due to the layers
of smooth muscle cells surrounding the arteriole, which have
the ability to actively contract or relax through actin-myosin
crossbridge formation and cycling. The primary biochemical
agent responsible for regulating this process is Ca2+ in the cytosol
of the smooth muscle cell. Stimuli that have chemical pathways
ultimately affecting cytosolic Ca2+ are manyfold, including shear
stress at the arterial wall (Wiesner et al., 1997), transmural
pressure in the vessel (Gonzalez-fernandez, 1994), tissue pH, and
neuronal activity through glutamate and potassium release in the
synaptic cleft (Attwell et al., 2010).

The cerebral cortex is fed with blood and nutrients from
the outside inwards, starting at the pia mater (pial arteries)
and bifurcating into the cortex with penetrating arteries which
eventually perfuse the capillary bed. Thus, it is essentially a
tree of blood vessels, which repeatedly bifurcates from a large
root vessel, into vessels of shorter length and smaller radius. A
cerebral vascular tree may comprise up to 20 or more bifurcation
levels, corresponding to many millions of vessels in the tree.
The dimensions of the vessels scale in such a way as to leave a
significant fraction of the overall pressure drop from the root of
the tree to the capillary bed across the smallest arterioles near

the leaves of the tree (Fung, 1997). Variation in the resistance of
these vessels can hence modify bloodflow in a highly localized
manner, and collective variation can significantly modify the
overall cerebral perfusion. Because of the connectivity of the
tree, a change in resistance of one blood vessel can cause a
change in pressure, and hence flow, throughout the binary tree.
For example, if the resistance of blood vessels in a particular
region decreases, then bloodflow will effectively be diverted
through those vessels from other parts of the tree. The remainder
of the tree will need, to some extent, to compensate for this
decrease in flow. The effects that this connectedness will have
on cerebral perfusion is not immediately apparent. One means of
studying this problem is through large-scale simulation, whereby
arteriole-level models of NVC (defined by a collection of linked
cells as described below) incorporating the desired biochemical
processes are inserted into a spatially-embedded vascular tree,
and simulations are conducted at a macroscopic-scale.

These arterioles located within the cortex and providing
nutrients of oxygen and glucose consist of the perfused lumen
and a wall consisting of a thin layer of endothelial cells (EC)
creating a tight boundary between the wall tissue and blood and
covered by an outer layer of smooth muscle cells (SMC). The
primary function of the SMC is to contract or relax, resulting
in vessel constriction or dilation, respectively. The EC layer
forms the blood brain barrier (BBB), preventing toxic, and
metabolic waste products from diffusing into the cerebrospinal
fluid (CSF). The assembly of cells which allow local perfusion
of the cerebral tissue is collectively called a neurovascular unit
(NVU), dynamically performing together and functioning as a
major contributor to cerebral functional hyperaemia. For NVC
signaling from the neuron to the SMC of the perfusing arteriole,
glial cells are of particular importance, specifically astrocytes.
These are known to have an important role in the control of the
vessel diameter.

The astrocyte is a star-shaped cell with peripheral ends
located near the synaptic clefts of neurons and other astrocytes
whilst their end-feet of the astrocyte are located in a layered
fashion around vascular smooth muscle cells (VSMC). Here
the gap between astrocytic endfeet and VSMCs is known
as the perivascular space. One important function of the
astrocyte is their ability to buffer extracellular K+ and other
neurotransmitters. These buffered ions can be taken up and
transported to the end-feet of the astrocyte and released into the
perivascular space and subsequently taken up by the SMC of the
perfusing arteriole.

The endothelial and SMC have intracellular communication
via hetero-cellular connexin gap-junctions (Haddock et al., 2006).
Cells can change their dynamical state by transporting messenger
molecules such as IP3 through these gap-junctions. Indeed as
noted below IP3 is a mediator in the calcium-induced-calcium-
release (CICR) mechanism which can induce oscillations in the
SMC. Additionally EC are able to detect and respond to changes
in the radial change through stretch-activated channels. This
is shown in Figure 1 in the EC and denoted as “stretch.” The
channel provides a flux of Ca2+ into the EC which through a
gap junction transfers Ca2+ to the SMC causing constriction
via the myocin-actin pathway. The stretch channel flux equation
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FIGURE 1 | Overview of the complete NVC Model including all subsystems. NE, Neuron; SC, Synaptic cleft; AC, Astrocyte; PVS, Perivascular space; SMC,

Smooth muscle cell; SR, Sarcoplasmatic reticulum; EC, Endothelial cell; ER, Endoplasmatic reticulum; LU, Lumen; NBC, Sodium bicarbonate pump; KCC1,

Potassium chloride cotransporter pump; NKCC1, Sodium potassium chloride cotransporter pump; BK, Large conductance potassium channel; VOCC,

Voltage-operated calcium channel; CICR, Calcium induced calcium release channel; R, Residual current regrouping channel; K1, K7, reaction rate constants; M, free

nonphosphorylated cross bridges; Mp, free phosphorylated cross bridges; AMp, attached phosphorylated cross bridges; AM, attached dephosphorylated latch

bridges.

is a function of a number of variables, notably the membrane
potential and the vessel radius and is given as

Jstretchi =
Gstretch

1+ exp
(

−αstretch

(

1pR
h

− σ0

)) (vi − ESAC) . (1.1)

Here p is the pressure in the vessel, R the radius Gstretch the
channel conductance, h the vessel wall thickness, ESAC the Nernst
(equilibrium) potential, αstretch a model parameter and σ0 a

circumferential stress associated with an equilibrium state of the
vascular tone of the vessel. Hence this is essentially the link
between the NVU and vascular tree. The center of the NVU
is the SMC since as noted above it receives input from both
neuronal activity via the astrocyte and indications of the state of
bloodflow from the endothelium. These inputs are in the form
of voltage coupling via ionic transport, release of SMC cytosolic
Ca2+ from the sarcoplasmic reticulum due to IP3 transported
from the EC, and finally Ca2+ from the EC itself. Investigating
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the relationship between neuronal activity and the resulting
variation in the radius of the perfusing arteriole in addition to
the role of EC/SMC connectivity and the resulting effects of
flowing blood is crucial to the further understanding of NVC
and how it interacts over the larger scale elucidated by non-
invasive measurement techniques such as fMRI; our current
multi-scale model provides a framework for investigating both
scales simultaneously. The complex NVU model used is that
described in Dormanns et al. (2015).The model is based on
experimentally validated ion channel parameters providing the
model with the ability to describe the full NVC phenomenon.
The model contains that which we believe to be the fundamental
ingredients of NVC but it also has the ability to include other
pathways.

The perfusion of blood provides not only oxygen and glucose
(a natural nutrient) but also through the vasculature a spatially
varying concentration of agonists via convection and the release
of ATP from red blood cells by fluid shear stress. P2Y receptors
situated on the luminal side of the EC and activated by these
agonists such as ATP provide an IP3 signaling pathway via
the membrane bound phospholipase-C (PLC) (Keizer and De
Young, 1992) thus allowing information on the bloodflow
environment to pass to the outer SMC layers through the
heterotypic gap-junctions.

Up to now in vitro, in vivo, and in silico experiments have
either investigated time-dependent flow through either simple or
complex vasculatures or looked at cell functioning independent of
the consideration of how blood flow itself is affecting the neural
phenomena and vice versa.

To investigate the effect of complex cellular models embedded
in a vascular tree we allow a single NVU to be connected to each
of the leaves of a tree which models in some topological sense a
small section of cortical tissue/vasculature. Thus, an individual
NVU perfuses a small section of tissue. The activity of each NVU
may be varied according to its position in the tissue block. By
introducing a model of a spatially embedded dynamic vascular
tree regulated by a time-dependent and spatially varying cellular
scale model of NVC we can begin to examine some of the effects
introduced by the connectivity of the structure of the tree and
the dynamics of the cellular function. In addition the coupling
induced by the vascular tree presents numerical challenges to not
only the numerical solution of the resulting ODE or PDE systems
but also because of the possible size of the system to the parallel
implementation itself. Dormanns et al. (2015) showed that for
certain concentrations of agonist in both the flowing blood and
tissue the EC/SMC system exhibits domains of oscillation and
induces oscillation (or vasomotion) in the arteriolar radii of the
vascular tree. In addition the frequency changes as a function of
agonist concentration. The model is therefore able to investigate
the relationship between oscillatory states of the EC/SMC and the
resulting motion of the vasculature.

2. Materials and Methods

In this section we first describe the basic structure of the vascular
tree which allows for a space filling simulation. The root of the
tree can be considered as either a pial artery and a subsequent

penetrating arterial structure into the cerebral cortex or the start
of the penetrating structure itself. Having determined the basis
of the tree the NVU is briefly described but as noted the details
can be found in Dormanns et al. (2015). Finally a description
is given which links the two models together forming a multi-
scale model and an algorithm which determines the numerical
solution method in a parallel environment.

2.1. Vascular Tree Model
The vascular network considered in this article is a tree-like
structure of blood vessels modeling a portion of the cerebral
vasculature branched off from the large cerebral arteries. The
blood vessels branch into successively shorter and narrower
vessels until they reach the fine mesh structure of the capillary
bed. The final vessels in the tree are referred to as the terminal
arterioles, and have a typical radii of 10 µ m. The Reynolds and
Womersley numbers for the flow in the small blood vessels in
the model are very small, so we can readily assume a Hagen-
Poiseuille flow: for a vessel of length L and radius R, we have

Q =
πR4

8µL
1P , (2.1)

where Q is the blood flow, µ is the blood viscosity and 1P is the
pressure drop over the vessel. We fix characteristic length and
pressure values R0, L0, and P0, and setting R = R0r,1P = P0w,
and L = L0l, Equation (2.1) becomes

Q =
πR40P0

8µL0

r4

l
w = Q0gw = Q0q , (2.2)

where g = r4/l is the (non-dimensional) conductance of the
vessel. The equation q = gw is analogous to Ohm’s Law for
an electrical circuit, with flow q taking the role of current,
w as potential difference, and g as conductance (reciprocal of
resistance). Note that the conductance is highly sensitive to the
radius of the vessel. Because most of the systemic pressure drop
occurs over the small arterioles, we assume a constant capillary
bed pressure pcap, and a (possibly) time-dependent pressure p0(t)
at the root of the tree.

2.1.1. Spatially Embedded Vascular Tree
As a crude approximation of a tree with physiologically realistic
morphology, we model the tree as a symmetric binary tree, with
a 2D H-tree spatial structure. At each bifurcation, the radius of
the daughter vessels is a factor α of the radius of the parent,
and the length is divided by 2 every second bifurcation. These
scalings are again within the biologically realistic limits described
in the asymetric binary tree algorithm of Ottesen et al. (2004).
The smallest vessels are defined to have radius 10 and length
200 µ m, and the scale of the model is therefore determined by
the number of levels in the tree. Finally, we assume that when
unpressurized, each vessel has wall thickness h∗ proportional to
its radius R∗, namely

h∗ = hRRR
∗ . (2.3)

The result is a tree with a somewhat realistic morphology, but
with a space-filling property that enables the coupling of 2D or
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3D spatial phenomena such as the localized neural activity to
the inherently 1D (or 0D) problem of blood flow in the vascular
tree.

2.2. Neurovascular Coupling Model
The model used to describe the NVC is that of Farr and David
(2011) and Dormanns et al. (2015). We do not describe the
full details but refer the reader to Dormanns et al. (2015)
however in the interests of continuity a short description of
the model and its subsystems is given below. The full NVU
model is divided into seven basic compartments: the neuron
(NE), the synaptic cleft (SC), the astrocyte (AC), the perivascular
space (PVS), the smooth muscle (SMC), and endothelial
(EC) compartments and the arteriolar lumen (LU). These
compartments are shown in Figure 1. These compartments along
with the synaptic cleft and the perivascular space are represented
in the model by separate subdomains. These subdomains are
assembled together using a lumped parameter approach where
spatial variations in the compartment are considered negligible,
thus allowing intercellular interactions. We should note that
although each compartment is assumed to contain a number
of homotypic cells and to have differing volumes they are
considered to be an aggregate of cells and therefore act as
a single entity. Each compartment contains a number of ion
channels allowing fluxes of ions, such as Ca2+ as well as second
messenger molecules (e.g., IP3). This allows for the formation
of conservation equations for ions, other molecular species
and through the use of Kirchoff’s Law the evaluation of the
membrane potential for each cell type. Heterotypic gap junctions
are also modeled between the smooth muscle and EC thus
simulating the connectivity of the arterial wall. A graphical
overview of these compartments and the channels is shown in
Figure 1.

To understand the connectivity of the full system we
consider four “subsystems”, the Neuron/Astrocyte subsystem
(NE/AC) including the PVS and SC, the Smooth Muscle Cell
and Endothelial Cell subsystem (SMC/EC) which couples
the SMC and EC together, the Arteriolar Contraction
subsystem and the Arteriolar Wall Mechanical subsystem.
We treat each subsystem as having a “triggering” input and
subsequent output that provides connectivity and a further
“triggering” input to the other linked subsystems, essentially a
coupling influence across all sub-systems providing a holistic
model.

2.3. NE/AC Subsystem
The model for this subsystem extends the model of Østby et al.
(2009) by adding a large conductance potassium channel in the
astrocytic wall and directing K+ into the perivascular space with
flux JBK . The Østby model was chosen since it provides the basic
model for potassium efflux. We use this on the basis of Filosa’s
work which showed that K+ efflux into the synaptic cleft is one
of the dominant effects of neuronal activity. Farr and David
(2011) assumed that in addition to K+ glutamate is produced
(Attwell et al., 2010). For brevity we do not show details of Østby’s
complete model but simply refer the reader to Østby et al. (2009)
and also to the Supplementary Material, which contains a full list

of equations used. We have used the model of Østby for neuronal
activity rather and although simple provides the required time-
dependent input for the NE/AC subsystem, treated as a pulse like
release of K+ into the synaptic cleft and a simultaneous equal
flux back into the neuron via the NaK-ATPase pump. The total
input signal, f (t), and corresponding increased K+ concentration
in the synaptic cleft are shown in Figure 2 in Dormanns et al.
(2015).

Beside this neuronal input signal the NKCC1 (sodium-
potassium-chloride) and KCC1 (potassium-chloride)
co-transporters are only enabled when the neuronal ion release
and spatial buffering are applied. This behavior is modeled by a
simple step function with the value 1 when both are activated
and with a default value of 0. This co-transporter behavior is
shown by the red dashed line in Figure 2 in Dormanns et al.
(2015).

The increase of K+ in the synaptic cleft results in an increased
K+ uptake by the astrocyte, which consequently undergoes
depolarization. This results in a K+ efflux in order to repolarize
the compartment (“cell”) membrane back to its steady state
potential. Since physiologically most of the astrocytes’ K+

conductance channels are located at the end-feet, the outward
current-carrying K+ would flow out largely through these
processes. These end-feet K+ conductance channels are modeled
by the BK channel flux (see Dormanns et al., 2015 for details).
Consequently, the K+ is “siphoned” from the synaptic cleft to the
end-feet of the astrocyte and released into the perivascular space
by the BK channel. This efflux increases the perivascular space
K+ concentration which is an input variable for the SMC/EC
subsystem.

2.4. SMC/EC Subsystem
The SMC/EC subsystem model extends the work of
Koenigsberger et al. (2006) by adding an inward-rectifying
potassium (KIR) channel at the interface between the SMC and
the PVS. There are effectively two inputs to this subsystem, the
KIR channel on the SMC facing the PVS and allowing a flux of
K+ into the cytosol and the influx of IP3 into the EC by virtue
of the luminal agonist P2Y receptors on the EC membrane. This
receptor is activated by a number of agonists flowing in the
blood, for example ATP derived from the red blood cells under
shear stress.

The KIR channel is mediated by K+ concentration in the
perivascular space [K+]p, which varies after neuronal activity.
The rise in K+ activates the KIR channel on the SMC causing
extrusion of more potassium into the PVS. The efflux of
cytosolic K+ via the KIR channel hyperpolarizes the smooth
muscle, causing the voltage-operated Ca2+ channel to close and
preventing any further influx of Ca2+ into the smooth muscle
cytosol. The formulation of the KIR channel uses the data of
Filosa et al. (2006).

The second input to the SMC/EC subsystem is that of IP3
generation in the EC due to the activation of membrane receptors
by agonists flowing in the arteriolar lumen. IP3 mediates the
channel in both the EC and SMC, situated on the surface of
the endoplasmic (EC) and sarcoplasmic reticulum (SMC). This
allows Ca2+ to be released from the reticula. With certain IP3
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concentrations inside either the SMC or EC compartments, Ca2+

oscillations can occur due to the calcium induced calcium release
(CICR) process of Goldbeter et al. (1990). The production of IP3
in the EC is a function of the activity of the P2Y receptors which
is mediated by the concentration of an agonist (in this case ATP)
at the cerebral vascular lumen and in the case of this model also
in the tissue. We treat the ATP concentration as constant within
the lumen compartment and tissue but allowing it to be spatially
varying within the tissue block perfused by the vascular H-tree
defined above.

Physiologically, ECs and SMCs are connected by hetero-
and homo-cellular gap junctions that allow an intercellular
exchange of molecules and voltage. The heterocellular exchange
is implemented by linearized coupling fluxes such that the flux
is simply a function of the difference of concentrations (or
membrane potential) between EC and SMC. These coupling
functions are given by

JCa2+
cpl

= −PCa2+([Ca
2+]i − [Ca2+]j)

JVcpl
= −Gv(Vi − Vj)

JIP3cpl = −PIP3 ([IP3]i − [IP3]j) , (2.4)

where the subscripts i,j correspond EC and SMC, respectively.
Barrio et al. (1997) investigated the voltage-gating properties
of connexin-43 junctions and indicated that the conductance
of the hemi-channel was voltage mediated. However, for this
particular model, we treat PCa2+ ,Gv, and PIP3 as constants,
this can be seen as modeling the simple diffusional flux rather
than the more complete electro-diffusional flux which allows for
ion drift. We choose, for the results presented here, the set of
coupling coefficients for Case 2 found in Dormanns et al. (2015).
It should be noted that this coupling only exists internally to
each tissue block. For the cases and results presented here no
coupling exists between the tissue to simulate effective diffusion

FIGURE 2 | Example of an H-tree model of the vasculature showing fine and coarse decomposition. Left: Depicts an approximately 12 × 12 × 0.4 mm

tissue slice. Each subdomain of the coarse partition is mapped to one processor, whereas the fine partitioning of each subdomain sets the Jacobian block size. For

this example NS = 5, so there are 16 tissue blocks and hence 16 × 24 state variables per fine partition, the Jacobian block size is 384 × 384. Left: Tree of L levels

has an m × n incidence with L = 11 into N = 4 four subtrees (L0 = 2). The root subtree is shown in gray. Right: Fine partitioning of subtree with NS = 5 for Jacobian

approximation. The network is split at the nodes (marked as black circles), resulting in Jacobian blocks for the state variables in each gray rectangle.

FIGURE 3 | (A) Strong scaling (L = 23, NS = 1,3,5; N = 1,2,4,8,...,256). (B) Weak scaling (L = 15,...,23; N = 1,...,256, NS = 3).
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(this will be the subject of a future paper). The perfusing artery,
as a compartment of the NVC model, is treated as a single
time-dependent variable, that of the radius of the artery. This
radial change provides the link to the NVU with the vascular
tree.

2.5. The Arteriolar Contraction Subsystem
The formation of cross bridges between the actin and myosin
filaments in a SMC provides the contraction force and is
mediated by cytosolic Ca2+. The arteriolar contraction subsystem
model is based on the work of Hai and Murphy (1989), and uses
the SMC compartmental cytosolic Ca2+ concentration as input
signal.

There are four possible states for the formation of myosin: free
nonphosphorylated cross bridges (M), free phosphorylated cross
bridges (Mp), attached phosphorylated cross bridges (AMp) and
attached dephosphorylated latch bridges (AM). The dynamics
of the fraction of myosin in a particular state is given by four
differential equations:

FIGURE 4 | Scaling with problem size (L = 15,...,29, N = 128, NS = 3).

FIGURE 5 | Simulation of a 25.6 × 25.6 mm cerebral tissue slice

including 4096 NVU blocks globally coupled with a space-filling

vascular tree. A two-dimensional Gauss input function is used to activate the

center of the tissue blocks with an increased luminal agonist flux (0.18–0.4 µ

M s−1).

d[M]

dt
= −K1[M]+ K2[Mp]+ K7[AM]

d[Mp]

dt
= K4[AMp]+ K1[M]− (K2 + K3)[Mp]

d[AMp]

dt
= K3[Mp]+ K6[AM]− (K4 + K5)[AMp]

d[AM]

dt
= K5[AMp]− (K7 + K6)[AM] (2.5)

with

[AM]+ [AMp]+ [Mp]+ [M] = 1 , (2.6)

where the rate constants, Kn (n = 1, ..., 7), regulate the
phosphorylation and bridge formation. With Equation (2.6) we
need only solve for [AM], [AMp], and [Mp].

The Ca2+ dependence of the cross bridge model is modeled by
rate constants K1 and K6. The total phosphorylation of myosin is
a function of the SMC compartmental Ca2+ (Koenigsberger et al.,
2006) so that K1 and K6 are given by:

K1 = K6 = γcross[Ca
2+]3i (2.7)

in which γcross is a constant characterizing the Ca
2+ sensitivity of

calcium-activated phosphorylation of myosin.
The active stress of a SMC is directly proportional to Fr , the

fraction of attached cross bridges, and is given by Equation (2.8).
This is used as input parameter for the Mechanical subsystem.

Fr =
[AMp]+ [AM]

(

[AMp]+ [AM]
)

max

(2.8)

2.6. The Arteriolar Wall Mechanical Subsystem
As an initial and simple representation the basis for the
Mechanical subsystem is a Kelvin-Voigt model, which describes
the visco-elastic mechanical behavior of the arterial wall. The

FIGURE 6 | A square of 9 tissue blocks (shown in blue) is activated with

neuronal K+ release (Finput = 2.5).
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model consists of a Newtonian damper and Hookean elastic
spring connected in parallel. The fraction of attached myosin
cross bridges as described in Equation (2.8), Fr , is the input signal
for the Mechanical subsystem and corresponds with the active
stress state of the SMC in the circumferential direction.

This circumferential stress in the arterial wall, σθθ , is given by:

σθθ = Eǫθθ + η
dǫθθ

dt
, (2.9)

where E is the Young’s modulus, η the viscosity and ǫθθ the strain
in the arterial wall. Assuming that the acceleration of the vessel
wall due to changes in σθθ is negligible, Laplace’s law is used in
order to relate the circumferential stress to the change in radius:

σθθ =
R1p

h
, (2.10)

where 1p is the transmural pressure, R the vessel radius and h
the vessel thickness. For simplicity we treat the wall thickness as
a constant fraction of the radius, h = 0.1R.

To obtain the Young’s modulus, E, and initial radius, R0, as a
function of the attached myosin cross-bridges, experimental data
of Gore and Davis (1984) is used. For the Mechanical subsystem,
a linear function is utilized mapping the fully activated state to
the fully relaxed state. The linear fit is based on the radii between
10 and 30 µ m, since the full model only models small strains.

The Young’s modulus and initial radius is assumed to be
a continuous function of Fr and a linear interpolation is used
between two known experimental data states (active Eact and
passive Epas) taken from Gore and Davis (1984) of the SMC. We
can therefore write

E(Fr) = Epas + Fr
(

Eact − Epas
)

. (2.11)

FIGURE 7 | SMC Ca2+ concentration changes in two adjacent tissue blocks and radius dynamics in the corresponding leaf branches. Tissue block and

leaf vessel 60 lay in a non-activated area and 61 in an area which is activated with a time-dependent K+ input (Finput = 2.5). NVU tissue blocks and vasculature are

bidirectionally coupled (stretch-activated channels enabled).
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In a similar manner the initial radius is given by

R0(Fr) = R0pas + Fr
(

R0act − R0pas
)

. (2.12)

From Equation (2.9), using Laplacian’s law (Equation 2.10), and
Equations (2.11, 2.12) for the Young’s modulus and initial radius,
respectively, as function of the Fr , an expression for the time-
dependent vessel radius can be derived:

R1p

h
= E(Fr)

(

R− R0(Fr)

R0(Fr)

)

+ η
d

dt

(

R− R0(Fr)

R0(Fr)

)

, (2.13)

giving

dR

dt
=

R0pas

η

(

R1p

h
− E(Fr)

R− R0(Fr)

R0(Fr)

)

. (2.14)

2.7. Numerical Solution Method
A total of 24 coupled ordinary differential equations (ODEs)
make up the present NVU system and are solved using a C
implementation of a backward Euler integration with Newton
iteration due to the domains of stiffness encountered within the
different cases outlined in the Section Results.

2.8. Parallel Implementation
The parallel implementation follows the work of Brown (2013),
however we give a brief explanation here for brevity. Because
of the global coupling induced by the resistive network, the
resulting stiff system of ODEs has a dense Jacobian which
precludes the direct application of traditional implicit methods
for numerically solving the differential equations. We consider a
technique for remedying this problem by taking a block diagonal

FIGURE 8 | A square of 9 tissue blocks is activated with an increased

luminal agonist flux (0.4 µ M s−1). As a response, vessel radii in the

activated area become oscillatory. The vessel segments are number from the

root (126) to the leaf (60, 61) Radial diameters are shown proportional to their

size with color mapped as proportional to blood flow. Tissue blocks are

colored proportional to SMC Ca2+. NVU tissue blocks and vasculature are

uncoupled (stretch-activated channels are disabled).

Jacobian approximation which allows use of an implicit method
but retains the desirable property of explicit solvers of linear
solution time scaling with problem size. Additionally, themethod
is amenable to significant parallelization, and we present scaling
results. A mathematical description of the problem is as follows.
We model the network by a directed graph withm internal nodes
and n edges. The graph is represented by an incidence matrix
A ∈ R

m×n with entries aij given by: aij = −1 if edge j enters
node i, aij = 1 if edge j exits node i, and aij = 0 otherwise. With
imposed potential or flow boundary conditions, the potential
differences w across the edges are given by an expression of the
form

w = ATp+ b , (2.15)

where p ∈ R
m is the vector of potentials at each internal node,

and b ∈ R
n incorporates the boundary conditions.

We assume that the constitutive relation on each edge is
Ohm’s law: the flow through edge j is qj = gjwj where gj is the
conductance of the edge. In matrix form,

q = Gw ∈ R
n , (2.16)

where G= diag g.
Flow conservation requires Aq=0, and thus the vector of

potentials p ∈ R
m is given by solving the positive definite linear

system

AGATp = −AGb . (2.17)

The class of models we consider takes such a network and couples
it to a system of ordinary differential equations (ODEs)

ẋ = f (x, p, t), x ∈ R
l, l ∈ N , (2.18)

where the vector x corresponds the set of state variables of the
ODE system. The differential equations for the state variables
depend on the potentials in the network, and the conductances
in the network are algebraically dependent on the state variables,
g=g(x) (the conductances can be computed from the radii of the
terminal arterioles). Further, the boundary conditions may be
time-varying, b=b(t). Equations (2.17, 2.18) thus define a semi-
explicit index-1 differential algebraic system of equations. The
system can naively be solved by a standard ODE methods by
transforming it into an ODE system:

dx

dt
= f(x, (AG(x)AT)−1AG(x)b(t), t) (2.19)

The linear system (Equation 2.17) is positive definite, typically
highly sparse, and depending on its structure, can be efficiently
solved by the conjugate gradient method or direct sparse
Cholesky factorization. Hence, function evaluations for this ODE
system are relatively cheap. However, the system is stiff, requiring
the evaluation of the Jacobian of the system. The Jacobian of
Equation (2.19) can be decomposed into the following form:

J =
∂f

∂x
+

∂f

∂p

∂p

∂g

∂g

∂x
. (2.20)
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For a typical problem the terms
∂f
∂x ,

∂f
∂p ,

∂g
∂x are likely to be highly

sparse, because f and x span the all of the tissue blocks and

components, e.g.,
∂fi
∂xj

in these matrices are only non-zero if i, j

correspond to equations / variables within the same tissue block.

The term
∂p
∂g is given by

∂p

∂g
= −(A diag(g(x)AT)−1A diag(ATp+ b) , (2.21)

which is a dense matrix, since it contains the inverse of a
sparse matrix A diag(g)AT and that matrix cannot be permuted

into block triangular form. The system Jacobian J is thus also
dense, precluding its direct evaluation for a large-scale problem.
For large-scale problems it is not feasible to construct the
full Jacobian of the system to use in a direct linear solver.
For example, the autoregulation problem for a vasculature
involving approximately 10,000,000 vessels would require more
than 20 TB of RAM to store the Jacobian. We choose the
approximation to have block diagonal structure, the factorization
and solution can be decomposed into as many independent tasks
as there are blocks, and hence the decomposition yields a natural
parallelization of the problem. Details of this procedure can be
found in Brown (2013).

FIGURE 9 | SMC Ca2+ concentration changes in two adjacent tissue blocks and radius dynamics in the corresponding leaf branches. Tissue block and

leaf vessel 60 lay in a non-activated area and 61 in an area which is activated with a time-dependent luminal agonist flux (0.4 µ M s−1). NVU tissue blocks and

vasculature are uncoupled (stretch-activated channels disabled).
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2.8.1. Parallel Considerations
When this algorithm is implemented on a parallel system, the
H-tree network is partitioned at a coarser scale, one subnetwork
per computational node. Each of these coarse partitions is
formed from the union of a number of fine partitions. Each
coarse partition has its own incidence matrix A(i) with its
own set of boundary values b(i) corresponding to where
it meets the problem boundary and other subnetworks.
Before the approximate Jacobian can be evaluated, a
global computation of pressures throughout the network is
completed.

2.8.2. Large-scale Simulation of the Neurovascular

Coupling Model
We now consider applying the methodology to our previously
described autoregulation model. The tissue blocks and terminal
arterioles are of fixed size, so the overall problem size is dictated
by the number of levels, L, in the binary tree.

To parallelize the problem, the tissue domain is split into N
subdomains, where N = 2L0 , L0 ∈ N, where L0 is the number
of levels in the root subtree such that each of the subdomains
corresponds to an equally sized subtree with incidence matrix
A(i). The root subtree of the network connecting each of these

FIGURE 10 | SMC Ca2+ concentration time-dependent profiles in vessel segments (60, 61, 94, 110, 119, 123, 115, 126). Tissue block and leaf vessel 60 lay

in a non-activated area and 61 in an area which is activated with a time-dependent luminal agonist flux (0.4 µ M s−1).
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subtrees, has incidence matrix A(0). The subtrees are binary trees
of L − L0 levels each. For each subtree in the coarse partition
we specify the fine partitioning for the Jacobian approximation
by further decomposing each subtree into its own root tree
with subtrees of NS levels. The imposed boundary nodes are the
nodes where the fine subtrees interface with the root. The degree
of sparsity of the Jacobian can be controlled by specifying the
number of levels in the tree, NS, each subtree spans. The two
decompositions are illustrated in Figure 2.

2.9. Implementation
Numerical experiments were conducted to assess the
convergence and scalability of the approach for the cerebral
vasculature problem in a moderate sized SMP cluster. The
test system used is 8 nodes (up to 256 processors) of the
BlueFern IBM Power 755 cluster at the University of Canterbury.
Intranodal communication is conducted using shared memory,
while internodal communication utilizes an Infiniband network.
To solve the ODE system, a fixed-step Backward Euler method
was used to solve the radial change of the leaf of the H-tree
using the NVC model described above in Section 2.2. The
Jacobian was computed from the initial state, and then updated
subsequent to any iteration that took more than 8 iterations to
converge. Newton’s method was said to converge when either
the function value or relative error dropped below a tolerance of
ǫ = 10−6. The matrices ∂f(i)/∂p(i) and ∂f(i)/∂x(i) were computed
numerically by finite differences, using the algorithm of Curtis
et al. (1974). The equations were all scaled to have steady state
values near 1. The matrix ∂g(i)/∂p(i) was computed analytically.
The algorithm was implemented in C with MPI, compiled using
IBM’s XLC compiler, and utilized CSparse (Davis, 2006) for the
sparse matrix operations (sparse Cholesky factorization, sparse
LU decomposition, and matrix multiplication). The code was
executed on a number of cores ranging from 8 to 256.

3. Results

3.1. Numerical Scaling Experiments
Three numerical experiments were performed in order to
determine the scaling effects of the parallel code, the results of
which are depicted in Figure 3. The first experiment measured
the strong scaling performance of the problem for a fixed
problem size of L = 23 levels, with subtree sizes NS ∈ 1, 3, 5.
The number of processors was varied in powers of 2 between 1
and 256 and the simulation wall clock time recorded. Figure 3A
shows that up to this number of processors, the method scales
ideally. Scaling is initially superlinear, because initially as more
processors are added, more of the problem is able to fit in
fast cache memory. Increasing the subtree size increases the
computational time, but does not affect the scalability, which
is dominated by the communication. The second experiment
measured the weak scaling performance of the problem, whereby
the problem size is increased in proportion with the number of
processors. The problem size was varied between L = 15 and
L= 23, with the number of processors varying betweenN = 1 and
N = 256. Figure 3B shows that the elapsed computational time
increases slightly as the problem and computing size increases.

Small problem sizes were chosen to accentuate the relative
contribution of communication, increasing the problem scale
would flatten the curve further. Finally, the performance of the
method was tested with a fixed number of processors (N = 128)
and problem size varying between L = 15 and L = 29. The
imposed block-diagonal structure would be expected to provide
linear solution time with respect to problem size because the
Jacobian evaluation and factorization is linear in the number of
blocks, as is the evaluation of a Newton step. Because the number
of processors is relatively small, the amount of time spent in
communication is very small relative to the computation. The
measured scaling results are depicted in Figure 4, and reflect the
expected linear performance.

3.2. Multi-scale Simulations
Our simulations concentrate on the resulting linkage between the
vasculature and the NVU embedded in a tissue block. The results
are divided into three sections where the simulations provide the
system when there is only (i) neuronal activation only (varying
spatially with the tissue block), (ii) agonist activation only, and
(iii) where is both agonist and neuronal activation. Figure 5
shows a 64 × 64 tissue block slice containing 4096 individual
blocks. The case shown simulates an Gaussian distribution
of agonist centered in the center of the block and inducing
oscillation in each of the tissue blocks out to a defined radius.
Color maps of the blocks simulate Ca2+ whilst the color of
the vascular segments simulate bloodflow. A video of the full
time-dependent simulation can be found in the Supplementary
Material.

3.2.1. Neuronal Activiation Only
Figure 6 shows the tissue block of size 8 × 8 where the neuron
is activated in the area denoted by the 3 × 3 sub-block whose
border is defined by cells numbered 60 (outside) and 61 (inside).
The neuronal activation starts at t = 100 s. The color map on
the vessel segments denotes blood flow whilst the color mapped
onto the tissue blocks denotes cytosolic SMC Ca2+. For this
particular part of the time dependent behavior the radius inside

FIGURE 11 | Sixty-four tissue block with agonist profile is varying

linearly from top to bottom of the tissue block. The tissue color map

simulates cytosolic SMC Ca2+ and the vascular color indicates bloodflow. The

size of the radial segments indicate the actual radius of the vessel segment.

Four blocks are highlighted and number 0, 3, 5, 7.
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the activate area shows a constant and dilated set of arterial
segments. As a response, vessels in the activated area dilate and
due to flow conservation adjacent vessels outside get constricted.
If both leaf vessels lay in the activated area their dilation is smaller
than if in different areas. NVU tissue blocks and vasculature
are bidirectionally coupled. The feedback from the radius to the
NVU via the stretch-activated channels leads to a (small) change
in Ca2+ also for the tissue blocks in the non-activated area.

Figure 7 shows the time dependent profiles for both Ca2+ and
radius for the cells 60 and 61. At the start of the activation the
radius of cell 61 (inside the activated area) shows a constriction
and then a dilation to accommodate the increase in neuronal
activity and hence oxygen consumption. The Ca2+ for cell 61
shows an initial increase in value but then decreases to a constant
value. This is due to the action of the increase in K+ in the

perivascular space and subsequent hyperpolarization of the SMC.
The Ca2+ and radius in cell 60 (outside of the activated area)
shows only a small perturbation with the radius reaching a
constant value slightly lower than the steady state, due to the
effect of the conservation of mass at the junction of the vessel
segments that perfuse cells 60 and 61.

3.2.2. Lumen Agonist Activiation Only
Figure 8 shows a detail of the same size 64 block (as shown in
Figure 6) simulation where the vasculature has been decoupled
from the NVU model. The small 9 × 9 block (red) has a
constant agonist flux of 0.4 µ M s−1 whilst the remaining
blocks (blue) have a constant value of 0.18 µ M s−1. Two
blocks are also highlighted where one block lies within the high
agonist domain (cell 61) and the other (cell 60) lies adjacent

FIGURE 12 | Time dependent Ca2+ profiles in the four tissue blocks for the decoupled (top) and coupled (bottom) case shown as an overview in

Figure 1.
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but inside the low agonist domain. Figure 9 shows the time-
dependent profiles of radii in the two adjacent blocks (cells
60 and 61). Since the agonist flux of 0.4 µ M s−1 is high
enough to include oscillation in the SMC, this is shown clearly
in Figure 9 both in the radius of cell 61 (in the high flux
domain) and in the cytosolic Ca2+ of the associated SMC.
Additionally that although Ca2+ in the block outside of the high
flux domain is constant the corresponding radius does exhibit
small oscillations and indicates that the vasculature provides
a form of coupling to other perfusing segments of the tree.
Figure 8 shows numbered segments of the vasculature from
the root segment (126) to the activated leaf of the H-tree (61).
Figure 10 shows the corresponding bloodflow time dependent
profiles for the number segments (60,..., 126).We see that the root
(segment 126) has the lowest flow but contains the sum of all the
lower mass flow rates but has the largest radius. Interestingly the
blood flow to the two cells (60 and 61) both exhibit oscillations.
Cell 61 has the lowest bloodflow and this is due to the fact
that its Ca2+ has a high temporal average and thus induces a
constriction. Conversely the cell adjacent but outside of the high
agonist domain has the highest bloodflow in order to maintain
mass conservation. The remaining segments exhibit oscillations
due to pressure variations within the vasculature. Hence even
though the vasculature and tissue blocks are effectively decoupled
by forcing the pressure term in Equation (1.1) to be constant
the tissue blocks outside of the activated domain are dynamic.
Figure 11 shows a 64 tissue block with associated vasculature
where the tissue color map simulates cytosolic SMC Ca2+ and
the vascular color indicates bloodflow. The size of the radial
segments indicate the actual radius of the vessel segment. In this
case the agonist profile is varying linearly from top to bottom of

the tissue block. Four blocks are highlighted and number 0, 3, 5,
7. Figure 12 (top) shows the time dependent Ca2+ profiles in the
four tissue blocks for the decoupled case shown as an overview
in Figure 1. The agonist profile is such that the 2 top block rows
and that of the bottom 3 are such as to produce a steady steady
state in the SMC Ca2+. Whilst all other rows induce oscillations
in the SMC compartment of theNVU.Whilst Figure 12 (bottom)
shows the same situation but where the coupling between NVU
and vasculature is active, (i.e., the stretch channel has the radius
and pressure terms changing). Comparison of the profiles show
only a small change, most notably in the Ca2+ of cell block 3. The
Ca2+ in the coupled case has a higher frequency and the profile
is more sinusoidal in shape indicating that the calcium mediated
channels are opening more quickly.

3.2.3. Neuronal and Agonist Activation
For this case both the neuron is activated by an increase in K+

in the synaptic cleft and an increase in agonist concentration
over the highlighted area. Figure 13 shows the tissue blocks and
numbered cells on the border of the activated area. Figure 14
shows for cells numbered 60, 61, and 62 the time dependent
profiles for both radius and Ca2+. Tissue cell 60 (outside of
the activated area) has the largest radius and the lowest Ca2+

perturbed only a small value from equilibrium but showing
small amplitude oscillations. This is a particular effect of the
vasculature on the system since if the vasculature was decoupled
then the radius and Ca2+ would be of a constant value. For the
cells (61 and 62) inside the activated area the time dependent
profiles indicate that there exist a phase difference between both
radius and Ca2+. The phase difference increases as time increases.
Because the time averaged value of Ca2+ for both cells 61 and

FIGURE 13 | Sixty-four block with both neuronal and agonist activation. Highlighted blocks indicate outside (60), boundary (61), and inside (62) the activated

domain.
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62 is high the radius attains a constricted value compared to the
equilibrium state.

4. Discussion

We have developed a coupled model which links a large dynamic
vascular tree to a set of NVC units whose details can be found
in Dormanns et al. (2015). Coupling is enabled by the inclusion
of a variable pressure in the stretch-activated ion channel (see
Equation 1.1). We have implemented three basic cases where a
specific area of the tissue blocks is activated by either neuronal
activation and the corresponding increase in perivascular K+

or the increase in agonist concentration or both. Scaling results
show that strong scaling provides a near ideal profile. Weak
scaling results indicate that wall clock time increases above
10% when the processor number increases from 8 to 256. This
is not a large increase and again indicates that the parallel
algorithm is close to optimal parallelization. Figure 4 shows that

the algorithm provides a smaller wall clock time compared to the
ideal as the number of state variables increases.

Figures 6–14 show a series of results from the three basic
cases. They show that on the basis of the single stretch-activated
channel per NVU block the effect of the vasculature coupling
with the NVU shows only a weak association. However, there
are interesting phenomena occurring on the boundaries of
subdomains activated by either neuronal activity or agonist
concentration. As expected for a neuronal activation only
the solution reaches a steady state with segments outside of
the activated area reaching values slightly smaller than the
equilibrium. For the case with agonist induced only the Ca2+

in cells inside the activated area becomes oscillatory however,
the radii of cells both inside and outside the activated area
oscillate (albeit small for those outside). This shows the effect
of the coupling through the pressure variations evaluated in
the vascular tree although these are small. It is interesting to
investigate the difference between profiles exhibited with and

FIGURE 14 | Time dependent profiles for both radius and Ca2+ for cells numbered 60, 61, and 62.
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without coupling. Again only small differences occur and a
slightly higher time averaged Ca2+ occurs with the coupled
system. This is due to the increase in the open probability of the
stretch mediated ion channel and inducing a larger flux of Ca2+

into the cytosol of the SMC and EC. In addition the oscillation
profile differs between coupled and decoupled states with the
time required to refill the cytosol with decreasing Ca2+ and
increasing frequency with coupling.

4.1. Further Work
We note that further work would benefit investigation in the
following areas.

• At present the variation in arteriolar arteries only occurs at
the leaves of the vascular tree. The future model will include
variations in upstream segments of the vasculature utilizing a
simple pressure balance as well as a myogenic model

• Investigation of oxygen flux from the perfusing vessel into
the NVU providing energy to the ATPase pump of the
neuron.

• The modeling of the transport of ions across tissue boundaries
so as to simulate diffusion within the extracellular space.

• Investigation into the sensitivity in the parameters of the
stretch activated channel.

• A further development of the NVU model to simulate the
wall shear stress activated nitric oxide production and its
subsequent effects on the cellular chemical pathways.

• Investigation of the wall shear stress induced ATP production
and its influence on IP3 and subsequent pathways

• The inclusion of mechano-activated TRPV4 channels located
on the endfeet membrane of the astrocyte.
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