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In recent years there has been a growing interest in the use of intensive longitudinal

research designs to study within-person processes. Examples are studies that

use experience sampling data and autoregressive modeling to investigate emotion

dynamics and between-person differences therein. Such designs often involve multiple

measurements per day and multiple days per person, and it is not clear how this nesting

of the data should be accounted for: That is, should such data be considered as two-level

data (which is common practice at this point), with occasions nested in persons, or

as three-level data with beeps nested in days which are nested in persons. We show

that a significance test of the day-level variance in an empty three-level model is not

reliable when there is autocorrelation. Furthermore, we show that misspecifying the

number of levels can lead to spurious or misleading findings, such as inflated variance or

autoregression estimates. Throughout the paper we present instructions and R code

for the implementation of the proposed models, which includes a novel three-level

AR(1) model that estimates moment-to-moment inertia and day-to-day inertia. Based on

our simulations we recommend model selection using autoregressive multilevel models

in combination with the AIC. We illustrate this method using empirical emotion data

from two independent samples, and discuss the implications and the relevance of the

existence of a day level for the field.

Keywords: intensive longitudinal data, experience sampling, multilevel analysis, dynamical modeling,

autoregression, emotional inertia, variance decomposition, code:R

In psychological research it is increasingly common to study the dynamics of within-person
processes by collecting intensive longitudinal data (ILD; cf. Walls and Schafer, 2006), that is,
many repeated measurements for multiple persons. Examples of ILD research designs include
diary reports, observational methods, and experience sampling methods (ESM, also referred to
as ambulatory assessment; cf. Trull and Ebner-Priemer, 2013) which have become highly feasible
and efficient thanks to the widespread use of devices like tablets and smartphones. With the
resulting ILD, researchers can analyze each person’s time series separately, or use a multilevel model
to account for the nesting of measurements in persons and to study interpersonal variation in
dynamics.

In ESM and related ILD designs there are often multiple measurements per day, and multiple
days per participant. While many researchers have implemented two-level modeling approaches
to account for the nesting of measurements within persons and to study interpersonal differences,
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we can ask whether the day should be treated as an intermediate
level, so that measurements in the model are nested within days,
and days are nested within persons. Indeed, some researchers
have used three-level models to account explicitly for this
structure of the data (e.g., van Eck et al., 1998; Peeters et al., 2006;
Moberly and Watkins, 2008; Doane and Adam, 2010; Mor et al.,
2010; Nisenbaum et al., 2010). In this paper we argue that it is
crucial to consider the number of levels in ILD to avoid spurious
findings or misleading estimates.

The question whether a day level should be included in the
model, i.e., whether there is variation over days, may seem
relatively straightforward to answer: By comparing an empty
model that consists of two levels (measurements nested within
persons) to a three-level empty model (beeps nested in days
nested in persons), we should be able to tackle this issue.
However, as we will show in this paper, the issue is more
complicated when there is autocorrelation in the data. The
presence of autocorrelation is to be expected in ILD, and it
can lead to the appearance of substantial variance at the day
level, which results in overfitting if this variance is taken as
an indication that three levels are needed. Underfitting, where
the day level is omitted from the model even though there
is substantial variance at this level, can also be problematic,
resulting in inflated or spurious autocorrelation. In both
scenarios, researchers run the risk of drawing misleading
conclusions based on their estimated models. Therefore, it is
important for researchers working with nested longitudinal
measurements to explicitly consider how many levels are
appropriate before interpreting a specific model. This advice
applies also if researchers consider the autocorrelation itself to
be of little substantive interest.

The purpose of this article is twofold. First, we wanted to
investigate the issue of the day level and the question of how
to choose the number of levels when modeling nested ILD. We
propose a novel three-level model that can be used to investigate
new hypotheses about within-person dynamics. Second, this
paper provides a tutorial for multilevel autoregressive (AR)
modeling of ILD using R, in which we demonstrate how one
can specify meaningful two-level and three-level AR(1) models,1

and how one can determine whether two-level or three-level
modeling is more appropriate. The implementation of multilevel
AR(1) models requires close attention to details, such as how to
create the lagged predictor(s), how to center them, how to deal
correctly with missing values and with the interruptions caused
by the nighttime, and how to make a valid comparison between
different models, given that they necessarily have different
numbers of usable observations. For this reason, throughout the
paper we present instructions and R code for the implementation
of the proposed techniques.

This paper is structured as follows. First, we discuss the
two-level and three-level AR(1) models and illustrate their
implementation in R, using empirical emotion data from two
independent samples. The empirical analyses serve a dual

1The notation AR(1) indicates a first-order autoregressive model, i.e., a model

where each observation is predicted from the one immediately preceding it. Here

we do not consider higher-order autoregressive models.

function, as they address substantive research questions about the
regulation of affect, in addition to illustrating the application of
the models. Then, in the section after that, we explore why the
significance test of the day-level variance should not be used to
choose the number of levels, and why underfitting and overfitting
can both occur and lead to problems. In the fourth section we
use simulations to evaluate model selection as an alternative
approach for deciding on the number of levels. Then, in the fifth
section we revisit the empirical data, and lastly we end the paper
by summarizing our findings and discussing opportunities for
further research.

1. THE MODELS

In this section we will show how we can specify meaningful
two-level and three-level AR(1) models for ILD and how we
can implement them in R. First, we provide some background
regarding AR(1) modeling of ILD, and regarding the substantive
questions that are addressed by our empirical applications. Then
we introduce the empirical data, and discuss the software and
some necessary preparations required for the analysis, after
which we are ready to present and apply the various models.

1.1. Background
AR(1) models have previously been applied to ILD to study the
regulation of affect and the between-person differences in affect
dynamics. In this context, the autoregressive parameter of the
AR(1) model is interpreted as the inertia of affect, indicating how
much carry-over there is from onemeasurement to the next. This
parameter takes an absolute value of one or smaller, with larger
values indicating more carry-over, considered to be indicative of
weaker affect regulation. Previous research has linked inertia with
other person characteristics such as trait neuroticism, depression,
and low self-esteem (Suls et al., 1998; Kuppens et al., 2010).
Inertia research has been done with observational data (e.g.,
Kuppens et al., 2012), daily diary data (e.g., Wang et al., 2012;
Brose et al., 2015), and ESM data (e.g., Suls et al., 1998; Koval
and Kuppens, 2011). The recently developed network approach to
psychopathology also involves (vector) autoregressive modeling
of ESM data (Borsboom and Cramer, 2013; Bringmann et al.,
2013).

In inertia research using diary data, each measurement
represents a different day, so it is the carry-over of affect from
day to day that is studied. In contrast, in designs with multiple
measurements per day, the measurements reflect different
moments nested within days, so that the focus is on the carry-
over of affect from moment to moment within a day. This raises
the question whether the different studies were investigating
one and the same regulation mechanism, or actually distinct
regulation mechanisms that operate at different time scales. And
if the latter is true, then the next question is how the mechanisms
are related: Do people who have more carry-over of affect from
day to day also, on average, have more carry-over from moment
to moment? To be able to address these questions, we will
propose a three-level AR(1) model, combining day-to-day and
moment-to-moment autoregression in one model.
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1.2. Introducing the Data
In this article we use empirical affect data from two ESM
studies, each giving us two outcome variables. The participants
in both studies were students at the University of Leuven. Both
studies were approved by the Ethics committee of the Faculty
of Psychology and Educational Sciences at KU Leuven and all
participants gave written informed consent. The first data set
(from Koval et al., 2013) contains negative affect (Neg) and
positive affect (Pos) scores for 95 persons, over the course of 7
days (although three participants provided data for an 8th day),
with a maximum of 10 measurements on each day. The second
data set (from Pe and Kuppens, 2012) contains negative and
positive affect scores for 79 persons, over the course of 6–21 days,
with 14 days being the average length. As in the first data set,
there were at most 10 measurements per day. In both studies, the
participants rated several specific positive and negative emotions
on a slider scale running from 1 to 100, and the Neg and Pos
scores were obtained by averaging over the specific negative and
positive emotions, respectively. By using both data sets, we have
an opportunity to compare findings for different samples. Since
the second study included more days (on average), it can be
expected that an analysis using this data set has more statistical
power.

1.3. Preparations
We implement our analyses with the open-source statistical
software R (version 3.1.2; R Core Team, 2014), together with
the packages lme4 (version 1.1-7; Bates et al., 2014), lmerTest
(version 2.0-11; Kuznetsova et al., 2013), and DataCombine
(Gandrud, 2014). Although, it should be possible to fit themodels
in other multilevel software like HLM (Raudenbush et al., 2004),
we use R because it is highly flexible, freely available, and it can
be used for all steps of the analysis from preparing the data to
summarizing the model results.

For our analyses the data need to have the right format
within R. We start out with a dataframe in the R workspace
called “ESM,” which contains the data set (for one sample) in
long format, that is, with a different row for each measurement
occasion. Each column in the data frame represents a different
variable, and we have the numeric affect variables “Neg” and
“Pos,” in addition to the integer variables “Person,” “Day,” and
“Beep,” which together indicate the person (1 to Np) and the
occasion for each affect score. For use in our analysis, we create
factor variables for person and day, by specifying:

ESM$PersonF <- factor(x=ESM$Person)

ESM$DayF <- factor(x=ESM$Day)

Note that it would be no problem if different persons had
different numbers of rows in the dataframe, for example, if in a
given study some persons had more days or more measurements
on some days than other persons. If there are missing values
in between observations, they need to be coded with the value
NA in R. Importantly, the rows of the dataframe should have
a consistent ordering, with the beeps sorted in ascending order
within the days, and the days sorted in ascending order within
the persons. For instance, if person 1 is measured 10 times a day

for 7 days, as in our empirical data, the first 70 rows in the data
set should contain the data for this person, with the first 10 rows
representing that person’s first day of measurement, etcetera.

1.4. Two-Level Models
We start by looking at the two-level modeling approach. First
we consider the most basic, empty (or intercepts-only) two-level
model, which accounts for the fact that we have measurements
within persons, but which does not include an autoregressive
parameter. This empty model partitions the variance into
variance at the person level and variance at the measurement
level, and as we will show, the estimates of this model provide us
with the lagged centered predictor that we need for the two-level
AR(1) model, which is presented next.

1.4.1. Empty Two-Level Model
The empty two-level model provides insight into the relative
magnitude of between-person variability and within-person
variability over time. Let ybi be the affect score of person i at
measurement (beep) b. The model is given by

Level 1: ybi = µi + ebi (1)

Level 2: µi = γ00 + u0i, (2)

where µi represents the mean or trait level of person i, ebi their
deviation from this trait level at beep b, γ00 the grand mean (or
average trait level) in the population, and u0i the deviation of
person i’s trait level from this grand mean. The three parameters
that need to be estimated are the average trait level γ00, the
person-level variance σ 2

u0
, and the beep-level variance σ 2

e .
We use the lmer() function (after loading the packages lme4

and lmerTest) to estimate the model, by specifying the model
equation, the name of the dataframe, and selecting regular
Maximum Likelihood or Restricted Maximum Likelihood
estimation (we choose the former):

twolevel.empty <- lmer(Neg ∼ 1 + (1 |

PersonF),

data = ESM, REML = FALSE)

To extract a summary of the model results from the stored object
“twolevel.empty” we specify

summary(twolevel.empty)

Similar code was used for the Neg variable in the other data
set, and for the Pos variables in both samples. The estimated
parameters for all four outcome variables are given in the top
part of Table 1. We report the standard deviations, rather than
the variances, because we find the standard deviations easier
to interpret and compare. As can be seen in the table, there is
substantial variation over persons in the trait levels of negative
and positive affect, but the variation in people’s state levels over
time is a bit larger.

1.4.2. Two-Level AR(1) Model
Now we turn to the two-level AR(1) model, in which each affect
score is regressed on the immediately preceding affect score of
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TABLE 1 | The estimated parameters from the two-level empty model and AR(1) model, for negative affect (Neg) and positive affect (Pos) in the two

samples.

Two-level empty model Notation Neg1 Neg2 Pos1 Pos2

Avg. trait level γ00 15.65 (1.10) 11.21 (0.90) 57.26 (1.34) 58.69 (1.40)

SD at person level σu0
10.60 7.95 12.91 12.39

SD at beep level σe 10.99 10.37 17.91 15.64

Two-level AR model Notation Neg1 Neg2 Pos1 Pos2

Avg. trait level γ00 15.54 (1.08) 11.19 (0.90) 57.48 (1.35) 59.01 (1.42)

Avg. inertia beep γ10 0.33 (0.02) 0.33 (0.02) 0.35 (0.02) 0.39 (0.02)

SD at person level σu0
10.45 7.92 12.94 12.49

SD of inertia beep σu1
0.18 0.14 0.15 0.14

Residual SD at beep level σe 9.72 9.38 16.52 14.11

Corr. trait level and inertia beep r(u0, u1 ) 0.52 0.53 −0.38 −0.50

The standard errors for the fixed effects are given between parentheses.

that person. We call the autoregressive coefficient in this model
inertia, and it reflects the extent to which the person’s affect
carries over from one moment to the next.

The two-level AR(1) model can be formulated as

Level 1: ybi = µi + φi(yb−1,i − µi)+ ebi (3)

Level 2: µi = γ00 + u0i (4)

φi = γ10 + u1i, (5)

or as a single equation

ybi = γ00 + γ10(yb−1,i − µi)+ u0i + u1i(yb−1,i − µi)+ ebi,
(6)

where µi again represents the trait level of individual i, and
ebi now is the part of the person’s deviation from his/her trait
level at measurement occasion b that cannot be explained by the
autoregression. The lagged predictor (yb−1,i − µi) is centered
around the person’s trait level, and the parameter φi represents
the emotional inertia of person i. Values of φi closer to one
indicate higher inertia, which implies strong carry-over of affect,
whereas φi values close to zero indicate weak carry-over. Values
between zero and minus one are possible, but not expected
when studying affective inertia (Hamaker and Grasman, 2014),
and values larger than one would imply that the process is not
stationary.

The reason that we center the lagged predictor as we do,
is that we want to estimate each person’s trait level µi, as
well as the population average γ00. If the AR(1) model were
specified with an uncentered lagged predictor, then it would have
a different intercept at the beep level, namely ai = µi(1 − φi),
which would not represent the person’s average. The intercept
at the second level would also have a different interpretation,
not representing the population average trait level of affect. We
prefer the centered model notation as it allows us to put a
normal distribution on the person’s trait level of affect, and,

optionally, to predict this trait level using other person-level
variables. This makes substantive sense, whereas the uncentered
model formulation would put the normal distribution on the
substantively uninteresting intercept ai, which seems rather
arbitrary and which has the undesirable implication that the
trait level itself is assumed to be non-normally distributed in the
population (Hamaker and Grasman, 2014). For these reasons, the
centered model notation is preferable, but it has the downsides
that we need to have an estimate of each person’s mean µi

beforehand, and that the estimate of the average (fixed) inertia
will have a negative bias, as demonstrated by Hamaker and
Grasman (2014).

For this model a total of five parameters need to be
estimated: The average trait level γ00, the average moment-
to-moment inertia γ10, the variance at the person level σ 2

u0
,

the variance of the inertia σ 2
u1
, and lastly the residual variance

at the beep-level σ 2
e . If we add the correlation between the

trait level and the inertia we end up with six parameters.
But before we can estimate the model, we need to create a
new variable in the dataframe containing the lagged, centered
predictor. This involves using some estimate for each person’s
trait level µi around which their predictor is centered. One
option is to use the sample mean (i.e., the observed mean of
each person’s time series) but here we use the empirical Bayes
estimate, which results in slightly less bias and higher coverage
rates for the fixed inertia parameter (Hamaker and Grasman,
2014).

The empirical Bayes estimates of the trait levels of the
persons can be obtained from the empty two-level model. In
fact, we can directly obtain the centered predictor values, by
using the function resid() to extract the residuals (ebi) from
“twolevel.empty,” and storing these as a new variable “e.bi.” Since
there were some missing values on the outcome variable, it is
important to use subsetting to skip those rows, so that each
extracted residual ends up next to the corresponding datapoint
in the ESM dataframe:
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ESM$e.bi[!is.na(ESM$na)] <-

resid(twolevel.empty)

Now we have the residual stored next to the corresponding
affect score, but for our model we need to lag the predictor.
With the code below, we make a new variable which, for each
row in the data set, equals the previous beep’s residual, or NA if
the previous beep was missing or was on the previous day. This
code uses the slide() function from the package DataCombine
(Gandrud, 2014). For the first beep of each day, the lagged
predictor is assigned a missing value, because we apply the
lagging operation only within the same day, as specified through
“GroupVar = DayF.” The reason is that it would make no sense
to regress the first observation of a day on the previous day’s
last observation as if they were just two consecutive beeps on
the same day. The night represents a significant interruption
of the affective process that should be taken into account.
Note that for this procedure it is crucial that the data are
still ordered as we explained at the beginning of Section 2.
After making the lagged predictor, we save “ESM” as a regular
dataframe again, which is needed because the slide() function
has the side effect of changing some of the properties of the
object.

ESM2 <- slide(ESM, Var = "e.bi", GroupVar =

"DayF",

NewVar = "lev1pred", slideBy = -1)

ESM < − as.data.frame(ESM2)

The resulting lagged predictor, stored as ESM$lev1pred has a
missing value for the first beep of each day, as well as for those
beeps where the person did not provide data on the preceding
measurement occasion. Since missing values on predictors are
not allowed, when we estimate the AR(1) model the lmer()
function will apply listwise deletion to remove all cases with
missing predictors from the analysis. It is important to realize
that for this reason, the sample size for the AR(1) model will
always be smaller than that for the emptymodel, with a difference
of Np∗Nd if there are no missing values, and a larger difference if
there are.

We can now fit the two-level AR(1) model of Equations (3–5)
by specifying a model equation that has “lev1pred” as a predictor
with a random effect over persons:

twolevel.AR <- lmer(Neg ∼ 1 + lev1pred +

(1 + lev1pred | PersonF),

data = ESM, REML = FALSE)

The model results are given in the bottom part of Table 1 (recall
that the outcomes for the first empirical sample are referred to
as Neg1 and Pos1, and those for the second sample as Neg2
and Pos2). We see that the average moment-to-moment inertia
is between 0.33 and 0.39 for all four outcome variables, with
very small standard errors (rounded to 0.02). Since we activated
the lmerTest package before running our analysis, the output
includes p-values (based on the Satterthwaite approximation
also used in SAS Proc Mixed, cf. Kuznetsova et al., 2015) for the

t-tests of the fixed effects in the model2. The fixed inertia was
significant for each outcome, with t(98.78) = 13.2, p < 0.001
for Neg1, t(80.75) = 15.57, p < 0.001 for Neg2, t(95.58) = 16.13,
p < 0.001 for Pos1, and t(75.41) = 19.87, p < 0.001 for Pos2. The
estimated standard deviation of the inertia over persons was also
similar across the variables, ranging between 0.14 and 0.18. To
obtain a significance test for this random effect, we can use the
rand() function from the lmerTest package on the stored model
object, which provides us with a likelihood ratio test:

rand(twolevel.AR)

The inertia variance is significant for each outcome, with χ2
(2)

=

155, p < 0.001 for Neg1, χ2
(2)

= 147, p < 0.001 for Neg2,

χ2
(2)

= 54, p < 0.001 for Pos1 and χ2
(2)

= 95.5, p < 0.001

for Pos2. This indicates that there are significant between-person
differences in the extent of carry-over of negative affect, as well as
that of positive affect.

Interestingly, for negative affect we see that the trait level
and inertia are positively correlated in both samples, while for
positive affect, the trait level and inertia are negatively correlated
in both samples. To test the significance of a correlation between
random effects, we cannot use the rand() function, but we can fit
a constrained model where the correlation is fixed at zero, which
is achieved by explicitly separating the random intercept and the
random predictor in the lmer() model equation. Then we can
use anova() for a likelihood ratio test:

twolevel.AR.nocor <- lmer(Neg ∼ 1 +

lev1pred + (1 | PersonF) +

(0 + lev1pred | PersonF),

data = ESM, REML = F)

anova(twolevel.AR, twolevel.AR.nocor)

The correlation turns out to be significant for each of the
variables, with χ2

(1)
= 17.4, p < 0.001 for Neg1, χ2

(1)
= 15.2, p <

0.001 for Neg2, χ2
(1)

= 6.6, p = 0.01 for Pos1, and χ2
(1)

= 12.3,

p < 0.001 for Pos2. We can conclude that for negative affect,
a higher trait level is associated with more carry-over, while for
positive affect, the opposite holds.

1.5. Three-Level Models
We now propose an alternative, three-level modeling approach.
As before, we first consider an empty (intercepts-only) model,
which accounts for the fact that the beeps are nested within
persons, but in this case also accounts explicitly for the multi-
day structure of the data by allowing for variation at the day level.
Next, we discuss the three-level AR(1) model, which enables us
to investigate affective carry-over from day to day and from beep
to beep.

2Other options for significance testing for mixed models fitted with the lme4

package include the use of bootstrapped or profile likelihood confidence intervals,

which can be obtained using the confint() function.
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1.5.1. Empty Three-Level Model
By using an empty three-level model, we can partition the
variance in the affect scores into variance at the person level (level
3), variance at the day level (level 2), and variance at the beep level
(level 1). Let ybdi be the affect score of person i on the bth beep of
day d. The model is then given by:

Level 1: ybdi = µdi + ebdi (7)

Level 2: µdi = µi + r0di (8)

Level 3: µi = γ000 + u00i (9)

where µdi represents the mean of individual i on day d, such that
ebdi is that person’s deviation at beep b from his or her day mean;
µi represents the person’s trait level, such that r0di is the deviation
of the current day mean from this trait level; and finally, γ000
represents the grand mean of the population, such that u00i is
person i’s deviation from the average. The four parameters that
need to be estimated for this model are the grand mean γ000,
the person-level variance σ 2

u00
, the day-level variance σ 2

r0
, and the

beep-level variance σ 2
e . Again, we can obtain a model expression

more similar to the R code that we will use below, by writing out
the model as a single equation for the predicted value ŷbdi:

ŷbdi = γ000 + r0di + u00i (10)

The model is specified in lme4 by:

threelevel.empty <- lmer(Neg ∼ 1 + (1 |

PersonF/DayF),

data = ESM, REML = FALSE)

and, as before, we obtain the model results using the summary()
function. The parameter estimates for the four outcome variables
are shown in the top part of Table 2. There appears to be
substantial variance at the day level for each outcome, although
it is clearly smaller than the amount of variance at the person
and beep levels. Using rand(), we find that the day-level variance
is significant for all outcomes, with χ2

(1)
= 744, p < 0.001

for Neg1, χ2
(1)

= 1148, p < 0.001 for Neg2, χ2
(1)

=

395, p < 0.001 for Pos1, and χ2
(1)

= 1054, p < 0.001

for Pos2. Thus, it appears in each case that a three-level
model should be preferred, because a two-level model fails
to account for substantial fluctuations in the daily means of
affect.

1.5.2. Three-Level AR(1) Model
To investigate affect regulation in more depth, and in a way
that takes into account the three-level structure of the data, we
propose using a three-level AR(1) model, in which there are
distinct inertia parameters for the carry-over from day to day
and from moment to moment. Such a model can be specified as

follows:

Level 1: ybdi = µdi + ζi(yb−1,di − µdi)+ ebdi (11)

Level 2: µdi = µi + βi(µd−1,i − µi)+ r0di (12)

Level 3: µi = γ000 + u00i (13)

βi = γ010 + u01i (14)

ζi = γ100 + u10i, (15)

or in the single equation

ybdi = γ000 + γ010(µd−1,i − µi)+ γ100(yb−1,di − µdi)+

r0di + u00i + u01i(µd−1,i − µi)+ u10i(yb−1,di − µdi)+ ebdi
(16)

where µdi again represents the mean of individual i on day d,
and ebdi now is that part of the person’s deviation from this day
mean at beep b that cannot be predicted from their previous
centered affect score. Likewise, r0di represents the part of the
day mean’s deviation from the person’s stable trait level that
cannot be explained by the autoregressive relationship, that is,
by the regression on the previous day’s centered mean. The
eight parameters that need to be estimated for the three-level
AR(1) model are the grand mean γ000, the average day-level
inertia γ010, the average beep-level inertia γ100, the variance
across persons of the trait level σ 2

u00
, of the day-level inertia σ 2

u01
,

and of the beep-level inertia σ 2
u10

, and the residual variances

at the day level σ 2
r0

and on the beep level σ 2
e . Allowing for

all possible parameter correlations gives us a total of eleven
model parameters, as there are three parameters that vary across
persons (the trait level, the day-level inertia, and the beep-level
inertia).

It is important to note that the lagged predictor at the beep
level is not the same here as in the two-level AR(1) model
of Equations (3–6): Here the predictor is centered around the
person’s mean for a given day (µdi), whereas in the two-level
model it is centered around the person’s trait level (µi). The
reason for centering the predictor around the day mean is that
this allows us to estimate the day mean in Equation (11), instead
of an intercept, which in turn allows us to predict this day mean
using the autoregressive equation in Equation (12), so that we can
look at day to day inertia.

The three-level AR(1) model requires us to create two lagged
variables, that is, a within-day centered lagged predictor at the
beep level, and a within-person centered lagged predictor at the
day level. To start with the first, we can obtain (yb−1,di − µdi) by
extracting and then lagging the estimated values of ebdi from the
empty three-level model:

ESM$e.bdi[!is.na(ESM$Neg)] <-

resid(threelevel.empty)

ESM2 <- slide(ESM, Var = "e.bdi", GroupVar

= "DayF",

NewVar = "lev1predfor3l", slideBy = -1)

ESM < − as.data.frame(ESM2)

For the second lagged predictor (µd−1,i − µi) we first need
to extract the values of the day-level residuals r0di from the
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TABLE 2 | The estimated parameters from the three-level empty model and AR(1) model, for negative affect (Neg) and positive affect (Pos) in the two

samples.

Three-level empty model Notation Neg1 Neg2 Pos1 Pos2

Avg. trait level γ000 15.71 (1.09) 11.26 (0.90) 57.41 (1.34) 58.72 (1.40)

SD at person level σu00
10.36 7.87 12.52 12.18

SD at day level σr0
5.88 5.36 7.87 7.89

SD at beep level σe 9.57 9.01 16.37 13.69

Three-level AR model Notation Neg1 Neg2 Pos1 Pos2

Avg. trait level γ000 15.52 (1.11) 11.19 (0.91) 56.84 (1.39) 58.72 (1.43)

Avg. inertia day γ010 0.10 (0.06) 0.18 (0.06) 0.25 (0.07) 0.28 (0.05)

Avg. inertia beep γ100 0.14 (0.02) 0.09 (0.02) 0.18 (0.02) 0.15 (0.02)

SD at person level σu00
10.50 7.95 13.06 12.50

SD of inertia day σu01
0.15 0.25 0.22 0.23

SD of inertia beep σu10
0.14 0.11 0.15 0.11

Residual SD at day level σr0
5.11 4.69 6.88 7.09

Residual SD at beep level σe 9.22 8.67 15.81 13.14

Corr. trait level and inertia day r(u00, u01 ) 0.54 0.24 −0.38 −0.52

Corr. trait level and inertia beep r(u00, u10 ) 0.42 0.43 −0.29 −0.44

Corr. inertia day and beep r(u01, u10 ) 0.51 −0.06 0.04 0.40

The standard errors for the fixed effects are given between parentheses.

empty three-level model. The “ESM” dataframe has one line per
measurement, and the day-level residual should, by definition,
be the same for all measurements on the same day, meaning
that it is the same for multiple lines in the dataframe. We can
use the ranef() function to extract the day-level residuals from
the model object “threelevel.empty” by using the subsetting
“$DayF,” but the problem is that missing cases were removed
during estimation, so there are fewer residual values than there
are lines in our dataframe. To ensure that the residuals are stored
alongside the correct datapoints in the dataframe, we first make
a vector that contains one entry for each unique “DayF” value.
Then we use a for-loop to go through the different day labels,
each time extracting the day-level residual for that day (by taking
the first of the residuals for that day, which equals all other values
in the vector) and assigning it to all the corresponding rows in
the dataframe:

di.labels <- unique(ESM$DayF)

for (di in di.labels) {

ESM$r.0di[ESM$DayF==di] <-

ranef(threelevel.empty)$DayF[di,1] }

Having done this, we still need to lag the variable (i.e., shift it by
one day) to obtain our lagged predictor. The resulting predictor
variable should have missing values (NA) for each person’s first
day, and the days from different persons in the study should
never be mixed up. Therefore, we use the code below to do the
lagging operation manually, and for each person separately. The
first for-loop ensures that we consider each person one by one,
and the nested for-loop is used to go through that person’s days
one by one, with the exception of their first day. The predictor is
set to NA for each person’s first day; for all their later days, the

predictor is set to equal the stored residual r0di of the previous
day.

i.labels <- unique(ESM$PersonF)

for (i in i.labels) {

d.labels <- unique(ESM$Day[ESM$PersonF ==

i])

ESM$lev2pred[(ESM$PersonF == i) & (ESM$Day

== 1)] <- NA

for (d in d.labels[-1]) {

ESM$lev2pred[(ESM$PersonF == i) & (ESM$Day

== d)] <-

ESM$r.0di[(ESM$PersonF == i) & (ESM$Day ==

(d-1))][1] } }

Having obtained the necessary lagged predictors, we can
proceed by estimating the three-level AR(1) model, allowing for
correlations between the random effects:

threelevel.AR <- lmer(Neg ∼ 1 + lev2pred +

lev1predfor3l +

(1 | PersonF/DayF) + (1 + lev2pred +

lev1predfor3l | PersonF),

data = ESM, REML = FALSE)

Note that this model will use fewer observations than the
empty three-level model, because listwise deletion is applied
to remove all cases with missing values on any predictors.
Furthermore, since this model has two predictors, and cases are
removed whenever at least one predictor is missing, there are
also necessarily fewer cases available than for the two-level AR(1)
model, which had only one predictor. The reason is that the
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lagged day-level predictor is, by definition, missing for the first
day of each person (as well as in the possible case where a person
has missing scores on the measurements for the entire previous
day of the study).

As before, the summary() function is used to obtain the model
results, which are shown in the lower part of Table 2. For Neg1,
the fixed day-level inertia was not significant [γ010 = 0.10,
t(50.7) = 1.7, p = 0.09], and the random effect for this inertia
was not significant either [σ (u01i) = 0.15, χ2

(3)
= 4.6, p = 0.2].

However, after we removed the non-significant random effect
from the model, the fixed effect estimate became larger and
significant [γ010 = 0.20, t(449) = 3.6, p < 0.001]. The fixed beep-
level inertia and its random effect changed very little between the
models and were significant in either case [results from the full
model: γ100 = 0.14, t(90.4) = 5.8, p < 0.001; σ (u10i) = 0.15,
χ2
(2)

= 38.4, p < 0.001]. The estimates for Neg2 are quite similar

to those for Neg1, but one difference is that for Neg2 the fixed
and random effect for the day-to-day inertia were both significant
[γ010 = 0.18, t(64.0) = 3.3, p = 0.002; σ (u01i) = 0.25, χ2

(3)
= 16.3,

p = 0.001]. As in the other sample, the fixed and random effect
for the beep-level inertia were both significant [γ100 = 0.09,
t(68.1) = 5.0, p < 0.001; σ (u10i) = 0.11, χ2

(3)
= 38.9, p < 0.001].

For positive affect, the fixed day-level inertia was significant
in both samples [γ010 = 0.25, t(83.9) = 3.5, p < 0.001 for Pos1,
γ010 = 0.28, t(70.8) = 5.5, p < 0.001 for Pos2]. Similar to our
findings for negative affect, the individual differences in day-level
inertia were not significant for the first sample [σ (u01i) = 0.22,
χ2
(3)

= 2.3, p = 0.5], but they were significant for the second

[σ (u01i) = 0.23, χ2
(3)

= 10.7, p = 0.01]. Note that the size

of the variance estimate is almost equal in the two samples, but
the number of days was larger in the second sample, which is
likely to have led to a higher power for the significance test of
this parameter. The fixed beep-level inertia was significant in
both samples [γ100 = 0.18, t(88.6) = 7.9, p < 0.001 for Pos1;
γ100 = 0.15, t(67.9) = 8.1, p < 0.001 for Pos2], and so was the
random effect of beep-level inertia [σ (u10i) = 0.15, χ2

(2)
= 29.3,

p < 0.001 for Pos1; σ (u10i) = 0.11, χ2
(3)

= 30.7, p < 0.001 for
Pos2].

Given that we found no significant variance in the day-
level inertia for Neg1 and Pos1, it makes no sense to use
these outcomes to address the research question whether the
regulation mechanisms at the different time scales are correlated.
However, we did find significant variance in the day-level inertia
parameter for Neg2 and Pos2, so these two outcome variables
can be used for this purpose. We can compare the model that we
have already estimated to a new model that excludes the random
effect correlations, so as to conduct a significance test. The
following code fits a three-level AR(1) model without random
parameter correlations:

threelevel.AR.nocor <- lmer(Neg ∼ 1

+lev2pred +lev1predfor3l +

(1 | PersonF/DayF) + (1 | PersonF) + (0 +

lev2pred | PersonF)+

(0 + lev1predfor3l | PersonF), data = ESM,

REML = F)

The results of the LR test (using the anova() function again) show
that the correlations did not improve the model significantly in
the case of Neg2, with χ2

(3)
= 7.7, p = 0.05, and we note

that the estimated correlation between the two inertias for this
outcome was only −0.06, so it appears that these parameters
represent distinct regulatory mechanisms. In the case of Pos2, the
model was significantly improved by the inclusion of the (three)
correlations, with χ2

(3)
= 10.7, p = 0.01. For this outcome, the

inertia parameters were both negatively correlated with the trait
level [r(u00, u01) = −0.52, r(u00, u10) = −0.44], indicating that
persons who experience more intense positive affect, on average,
tend to have less carry-over from beep to beep and from day to
day than persons with a lower trait level. The moderate positive
correlation between the two inertia parameters [r(u01, u10) =

0.44] indicates that higher carry-over between days is associated
with higher carry-over from moment to moment.

When comparing the three-level AR(1) model to the two-level
AR(1) model, what stands out for each of the four variables is that
the average beep-level inertia in the three-level AR(1) model is
estimated as substantially smaller (at between 0.09 and 0.18) than
the average beep-level inertia from the corresponding two-level
AR(1) model (where it ranged from 0.33 to 0.39). Apparently,
separating out the day-level variation, as we do in the three-
level model by centering the beep-level predictor around the
day means, results in a smaller inertia at the beep level. Thus, it
appears that there is substantial variation at the day level, and
we may be tempted to conclude that the three-level model is
more realistic than the two-level model which fails to account
for this variation. Furthermore, our results seem to indicate that
some of the carry-over of affect actually takes place from day
to day (i.e., there is also day-level inertia). However, we cannot
decide on this basis that the three-level model is the better
model. As we will show in the next section, there is a risk of
analytical artifacts or false positives, and distinguishing between
two- and three-level processes is less straightforward than it
seems.

2. ANALYTICAL ARTIFACTS: CONFUSING
DAY-LEVEL VARIANCE AND BEEP-LEVEL
INERTIA

In the previous section we saw that for each of four empirical
outcomes, there was significant variance at the day level and
carry-over of affect from day to day. Thus, if we go with the
three-level model, based on the variance test, we would conclude
that the carry-over of affect from moment to moment may be
somewhat smaller than suggested by previous studies using two-
level models, because a part of the carry-over of affect should
properly be understood as taking place from day to day, rather
than from moment to moment. However, as we will demonstrate
below, distinguishing between a two-level and a three-level model
is tricky, because beep-level inertia and day-level fluctuations
are hard to distinguish. In this section, we will show that the
appearance of significant variance at the day level, and even of
significant day-level inertia, does not justify the conclusion that
the three-level model is more appropriate than the two-level
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model: The significant day-level variance and day-level inertia
can be artifacts caused by the presence of beep-level inertia in the
actual two-level model underlying a data set. And in the opposite
case, when the three-level model is the actual data-generating
model but a two-level AR(1) model is estimated, we run the
risk of overestimating the size and significance of the beep-level
inertia as a consequence of ignoring the day-level variance.

To demonstrate these problems, we explore the two scenarios
by means of fictitious examples. First, we generate data from the
empty three-level model of Equations (7–9), which means that
there is no inertia at any level, but there is variance at each of the
three levels. Second, we generate data from the two-level AR(1)
model from Equations (3–5), but with measurements spread out
over multiple days, as was the case in our empirical examples.

2.1. Overestimating Moment-to-Moment
Inertia: Fitting a 2-Level Model to 3-Level
Data
To show that variation at the day level may be mistaken for
moment-to-moment carry-over in a two-level AR(1) model, we
first simulate a data set (A) of 90 persons, 21 days, and 10
beeps per day, generated by the empty three-level model given
in Equations (7–9). As parameters we used approximately the
average over the parameter estimates from the empty three-level
model for the two empirical variables Pos1 and Pos2, given in
Table 2 (more specifically, we used γ000 = 58, σu00 = 12.3,
σr0 = 7.9, and σe = 15).

When we fit the two-level AR(1) model from Equations (3–5)
to this data (A), we find a significant fixed effect for beep-level
inertia, with γ10 = 0.21, t(95.8) = 22.2, and p < 0.001.
Note, however, that the data were generated without any inertia
parameters. The random variance of the inertia is significant too,
with σ (u1i) = 0.05, χ2

(2)
= 12.4, and p = 0.002. In comparison,

when we fit a three-level AR(1) model, the random effects for the
two inertias are nearly zero and are not significant [σu01 = 0.03,
χ2
(3)

= 0.60, p = 0.9; σu10 = 0.01, χ2
(3)

= 0.95, p = 0.8].

We remove these non-significant random effects from the model
before interpreting the fixed effects. The fixed day-level inertia
estimate is not significant [γ010 = −0.05, t(1687) = −1.5, p =

0.13], but the fixed beep-level inertia estimate is significant with
γ100 = −0.09, t(14660) = −10.5, p < 0.001. This small but
statistically significant negative inertia indicates negative carry-
over of affect frommoment to moment, which is theoretically not
very plausible. A possible explanation is that, as we mentioned
above, inertia estimates are negatively biased in a centered AR
model (Hamaker and Grasman, 2014). In any case, the estimate
is at least closer to the true value (zero) than the estimate from
the two-level AR(1) model. Note that the residual variances at
the three levels are estimated quite accurately with this model.

Repeating the procedure with another simulated data set,
B, that has a fixed beep-level inertia of 0.15 (without random
variance), we find that this parameter is estimated as 0.31 in the
two-level AR(1) model, so again the estimates misrepresent the
process underlying the data. Moreover, when we create a data
set C with the same beep-level inertia but with a larger day-level
variance (15, which is equal to the beep-level variance, instead

of 7.9 as above), the inflation is even more dramatic, with the
beep-level inertia now being estimated as 0.55. The size of the
population variance at the day level is directly related to how
strongly the beep-level inertia estimate in the two-level AR(1)
model misrepresents (inflates) the actual moment to moment
carry-over of affect.

To explain why the presence of day-level variance can be
mistaken for evidence of (larger than actual) beep-level inertia,
we use the time series plot in Figure 1. This is the data for one
“person” from another data set, D, which was generated by an
empty three-level model with the day-level variance and beep-
level variance both set at 15 to magnify the effect. The top part of
the figure represents the true model, depicting the affect scores
together with the person’s stable trait level (the dashed line)
and the true means for each day (the solid lines). Although we
should emphasize that inertia often cannot be detected visually,
especially when the inertia parameter is small, our point here is
that when the affect scores are evaluated against the means of
each day, we see very little indication of carry-over, so our best
guess would be that there is little or no beep-level inertia and
in this particular case, that would be correct. In contrast, the
bottom part of Figure 1 illustrates what happens when we fit a
two-level AR(1) model, which means that we ignore the variance
at the day level completely and only evaluate the affect scores
against the empirical estimate of the person’s trait level (the solid
line). When we do that, the similarity between affect scores on
the same day, which is plain to see, makes it appear as if there
must be a lot of carry-over, so it makes sense that the two-level
AR(1) model results in a significant beep-level inertia. To put it
differently, some of the day-level variance ends up being confused
for positive moment-to-moment carry-over.

To summarize, when there is day-level variance in the
population and we use an autoregressive model that fails to
take this into account, the beep-level inertia becomes inflated,
so that we misrepresent the actual process by overestimating the
moment-to-moment carry-over of affect. This inflation can even
result in finding significant inertia, and significant interpersonal
variation in this inertia, when there is zero inertia in the data
generating model. So with regard to the empirical applications,
at this point the reader may be inclined to put more stock in
the lower inertia estimates obtained from our three-level model,
and to think that the estimates from the conventional two-
level model give a wrong impression of the regulatory process
at work in the data. However, as we will see next, we cannot
simply conclude that the three-level AR(1) model provides a
better indication of the moment-to-moment carry over, since a
three-level model can result in finding spuriously significant day-
level variance and an underestimation of themoment-to-moment
carry-over when it is applied to data generated by a two-level
model.

2.2. Underestimating Moment-to-Moment
Inertia: Fitting a 3-Level Model to 2-Level
Data
To illustrate what can happen in the opposite case, that is, when
we fit a three-level model to data originating from a two-level
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FIGURE 1 | Example data for one person, generated by a three-level empty model, with randomly varying day means and randomly varying affect

scores within days. The top part shows that relative to the day means (solid lines) there is no visual indication of large carry-over from moment to moment. While

inertia is often hard to detect by looking at the data, lack of any visible carry-over does indicate that the inertia, if present, is relatively small, whereas visible carry-over

in the data would imply a large inertia. In the bottom part of the figure, where the affect scores are only evaluated against the estimated trait level in the two-level AR(1)

model, it appears like there is much carry-over, because entire days are characterized by above-average or below-average scores. Thus, it is no surprise that this

model results in a significant estimated beep-level inertia.

model, we simulate a data set E (again with Np = 90, Nd = 21,
and Nb = 10 per day) from the two-level AR(1) model given in
Equations (3–5), using as parameters approximately the averages
over the estimates for the two outcomes Pos1 and Pos2, given
in Table 1 [more precisely, we use γ00 = 58.25, γ10 = 0.37,
σu0 = 12.75, σu1 = 0.1, σe = 15.25, r(u0, u1) = −0.44].
Since we assume that the night interrupts the affective process,
we do not generate the data for a person as a single long time
series stretching out over the days, which would imply that the
first measurement of a day is just as strongly related to the last
measurement of the previous day as any two other consecutive
measurements are related; instead, to incorporate a more realistic
view of the nighttime, we generate the time series within each day
separately. In other words, the time series for each day has the
same person-specific trait level µi and beep-level inertia φi, but
due to the long interruption of the night, the person’s affect in the
morning is not predicted by how they felt the night before3.

When we fit the correct, two-level AR(1) model to this
data, the mean and variance of the beep-level inertia are both
recovered well, each only differing from the true population
value in the second or third decimal. When we estimate the
empty three-level model from Equations (7–9), we get significant
variance at the day level, with σr0 = 6.15, χ2

(1)
= 943, p < 0.001,

which would seem to indicate that we should use a three-level
AR(1) model to account for the day-level variance, rather than
using a two-level AR(1) model. Thus, we continue by fitting the
three-level AR(1) model. We find that the variance of the day-
level inertia is not significant [σ (u01i) = 0.11, χ2

(1)
= 0.7, p =

0.40], so we report the other parameters from the re-estimated

3If we assume that the affective process continues in exactly the same way

during the night as it does during the day, only unobserved, the autoregressive

coefficient for predicting the morning measurement from the previous night’s last

measurement is still effectively zero, because it is given by φ raised to a high power.

model after omitting this random effect. The mean beep-level
inertia is significant [γ100 = 0.25, t(93.4) = 18.9, and p < 0.001],
but gives the impression that the moment-to-moment carry-over
is smaller than we would conclude based on the two-level AR(1)
model, where it is estimated as 0.37. In the three-level model, we
find significant day-level inertia [γ010 = −0.09, t(1640.9) = −2.4,
p = 0.01], while we know that the data was generated in such
a way that there is no carry-over from day mean to day mean,
and any appearance of daily fluctuations in the data is caused by
the beep-level inertia. Since the estimate is negative and there is
a small sample size at the day level with which to estimate this
inertia, the spurious negative inertia can likely be attributed to the
negative bias of inertia parameters in a centered model notation
(Hamaker and Grasman, 2014).

In summary, due to the nature of autoregressive processes,
it is possible for the three-level empty and AR(1) models to
show “spurious” significant day-level variance and even day-level
inertia when the data actually reflect a two-level AR(1) process
that has only beep-level inertia and variance. This means that we
cannot reliably use the estimate or the significance test of the day-
level variance in the empty three-level model to decide whether
a three-level modeling approach should be preferred over a two-
level modeling approach. Furthermore, if we use the three-level
AR(1) model for inference in the case where the data reflect
a two-level process, we end up underestimating the amount of
carry-over from moment to moment, but as we have seen in the
previous subsection, the opposite can also occur when we apply
the two-level model to three-level data. Therefore, we need a
better way of deciding how many levels to include in our model.

2.3. Model Comparison of the AR Models
As we have seen, the two-level and three-level AR(1) models
can both lead to misleading conclusions about the amount of
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carry-over when the number of levels in the data does not match
the model’s assumption. Furthermore, given that the beep-level
inertia in a two-level AR(1) process can cause the appearance of
significant day-level variance when three-level models are fitted,
testing this variance is not a good method of choosing between
the two- and three-level approaches, and neither is comparing
empty two- and three-level models. A model selection procedure
including the AR(1) models seems like a better alternative,
because such an approach immediately takes into account the
carry-over in the data that could otherwise be mistaken for
day-level variance.

A Likelihood Ratio Test (LRT) cannot be used to directly
compare the two- and three-level AR(1) model, because
these models are not nested; as we noted in the section
on the three-level AR(1) model, the beep-level predictor is
centered differently. However, the Akaike Information Criterion
(AIC; Akaike, 1974) and Bayesian Information Criterion (BIC;
Schwarz, 1978) can be used to compare non-nested models,
as long as the same cases are used to estimate each model (a
requirement that would also apply to a LRT). We will now use
the AIC and BIC to choose models for the simulated data sets A
to E from above.

The inclusion of the lagged day-level predictor in the three-
level AR(1) model causes (more) cases to be removed from the
analysis (all cases for which the lagged predictor is missing),
so the sample sizes of the two AR(1) models necessarily differ.
Therefore, for the purpose of model selection we re-estimate the
empty models and the two-level AR(1) model using the smallest
subset of the data, that is, those cases that can be used in the three-
level AR(1) model. For the purpose of centering the predictors in
the AR(1) models we can still use the residuals obtained from the
empty models that were fitted to all cases. In this way, we use all
the available information to obtain the best possible estimate of
each person’s trait level and of the day means, around which the
predictors are centered in the AR(1) models.

Table 3 contains the AICs and BICs for the simulated three-
level data sets A to D and the two-level data set E. In the AR(1)
model specifications, we did not include correlations between the

TABLE 3 | Model selection criteria obtained for the simulated data sets A

to E.

Fit information A B C D E

AIC 2-l. empty 138151.1 137962.6 145156.6 145250.2 137364.1

2-l. AR(1) 137420.7 136357.8 139026.2 140601.8 134641.3

3-l. empty 136401.0 136182.0 137790.1 138077.5 136480.8

3-l. AR(1) 136299.0 136138.1 137784.7 137935.9 135445.3

BIC 2-l. empty 138174.2 137985.7 145179.7 145273.3 137387.2

2-l. AR(1) 137459.2 136396.2 139064.6 140640.2 134679.8

3-l. empty 136431.8 136212.8 137820.9 138108.3 136511.5

3-l. AR(1) 136360.5 136199.6 137846.2 137997.4 135506.8

The models are estimated on the smallest suitable subset of the data to ensure equal

sample sizes. The AR(1) models include the trait level and inertia(s) as random effects, but

do not include their correlations.

The values in bold indicate which model is selected for that data set.

random effects, as these were not of interest to us here and would
cause a larger difference in complexity between the two-level
AR(1) model, in which there can be only one such correlation,
and the three-level AR(1) model, in which there can be three. As
can be seen in Table 3, for all three outcome variables the AIC
and BIC lead us to select a model with the appropriate number of
levels. We do not always end up precisely with the model that
generated the data; outcomes A and D were generated by an
empty model, but the AIC and BIC both favor the AR(1) model.
Conversely, outcome C was generated by an AR(1) model, but
based on the BIC we would select the empty model. However,
our purpose here was determining the number of levels, and for
this purpose the AIC and BIC both performed flawlessly. Note
that it is crucial to include the AR(1) models in the comparison:
Comparing only the empty models would lead us to select a
three-level model in all cases, including for data set E, which
was generated by a two-level model. Selecting between the AR(1)
models, however, yields the correct number of levels for each of
these data sets.

2.4. Preliminary Conclusion
As we showed above, distinguishing between two-level and
three-level time series data is tricky because beep-level inertia
and day-level variance can easily be confounded. Therefore, a
significance test on the day-level variance is not a suitable method
of determining whether the model should include this day level
in addition to the person and beep levels. Comparing the empty
models is similarly problematic because such a procedure does
not take into account the effect of possible beep-level carry-over
in the data, appearing as spurious day-level variance. Based on
our illustration data, using the AIC and/or BIC to select between
the AR models seems to be a feasible alternative. Since these
results only provided a tentative conclusion, we perform a small
simulation study to see whether this approach performs well
enough on average to recommend it.

3. SIMULATIONS

We use simulated data to investigate how well we can distinguish
between two-level and three-level AR(1) processes by selecting
models based on the AIC or BIC. Given that a three-level data
structure is more complex, having day-level variance that is
absent in the two-level model, the problem can be formulated in
terms of the power to detect a three-level structure, on the one
hand, and the risk of false positives (that is, of overfitting) on the
other.We investigate the power of themodel selection procedure,
defined as the proportion of cases where a three-level model is
chosen for three-level data, and the Type I error (i.e., overfitting)
rate, given by the proportion of cases where a three-level model
is selected for two-level data.

3.1. Data Generation
In generating the data, we used various combinations of sample
sizes at each level to investigate how the power of the procedure
depends on the design of the study. The number of persons was
30, 60, or 90; the number of days per person was 5, 7, 10, or 14;
and the number of beeps per day was 5, 7, 9, or 11. Some of these
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values are small, but they reflect sample sizes that are realistic in
practice, so it is relevant to know whether the procedure would
be feasible in these cases. Combining the three factors gave us
48 sample size conditions, and 1000 samples for each condition
were generated from a two-level AR(1) model and a three-level
AR(1) model. In generating the time series for each person, each
day’s first measurement was assumed to be independent from the
previous day’s last, just as in the illustration data in the previous
section. All data sets were created without any missing values.

The parameter values for the models were roughly based on
the empirical estimates that we obtained for positive affect in the
two data sets. More specifically, for the two-level AR(1) data we
used γ00 = 58, γ10 = 0.37, σu0 = 12, σu1 = 0.14, σe = 15 and
r(u0, u1) = −.44. For the three-level AR(1) data the parameter
values were γ000 = 58, γ010 = 0.27, γ100 = 0.16, σu00 = 13,
σu01 = 0.22, σu10 = 0.13, σr = 7, σe = 15, r(u00, u01) = −0.45,
r(u00, u10) = −0.365, and r(u01, u10) = 0.22. In the rare case
that a sampled individual inertia parameter (φi, ζi or βi) was 1
or larger, it was changed to 0.99 because an inertia of 1 or larger
violates the stationarity assumption of an AR(1) model.

3.2. Analysis
The first step of the analysis was fitting the empty models to
each complete sample to obtain the best possible estimates of all
persons’ trait levels and centered day means. The residuals from
thesemodels were stored to be used as the predictors in the AR(1)
models.

Next, for each sample we estimated the two-level AR(1) model
from Equations (3–5), omitting random parameter correlations.
This model was fitted to the smallest usable subset of the data,
that is, to those cases that can also be used to fit the full three-
level AR(1) model. Using those same cases, we then fitted several
variations on the three-level AR(1) model from Equations (11–
15), always omitting random parameter correlations. In the first
model variation, a simplification was made by omitting entirely
the day-level inertia, in other words, setting the fixed and random
effect of day inertia in Equation (14) equal to zero. This means
that when we compare it to a two-level AR(1) model, the only
difference between the two models is that the three-level model
includes day-level variance and has the beep-level predictor
centered around the day means instead of around the person’s
trait level. The second model had a fixed effect for day-level
inertia, and the third model added to this a random effect. We
compared the AICs and BICs for all the estimated models to see
whether the lowest value was obtained for the two-level model or
for a three-level model. This way, we focused on the power and
the Type I error rate of the decision procedure to choose between
two-level and three-level modeling, without making a priori
assumptions about specific parameters in the three-level model.
Since comparison of the empty models is sensitive to the same
overfitting problem as the direct test of the day-level variance,
these models were not included in the selection procedure.

3.3. Results
The results of the model selection procedure for our simulated
samples are presented in Tables 4, 5. From the power values
in Table 4 we can conclude that adequate power was obtained

in all cases when there were 11 measurements per day, and
in many cases when there were 9 measurements per day. It
seems clear from our results that the ability to detect day-level
variance depends crucially on having at least 9 or preferably 10
measurements per day, regardless of the sample size at the other
levels, that is, regardless of the number of participants or days in
the study.When the number of beeps per day was lower than this,
the power to detect the three-level structure was almost always
inadequate given the parameter values used here, and increasing
the sample size at the day level then only worsened the problem.
This latter result may seem surprising, but makes sense when we
consider that the day means are estimated poorly when so few
measurements per day are available. It is clear that the number of
beeps per day cannot be traded against, or compensated by, the
number of days or persons in the study; it is crucial to always have
sufficient measurements per day. Another finding is that model
selection based on the AIC always provided us with higher power
to detect a three-level structure thanmodel selection based on the
BIC. This power did not come at the cost of unacceptably higher
Type I error rates, because the error rates were always well below
.05 for both the AIC and BIC, as can be seen in Table 5.

3.4. Conclusion
Based on our simulations we can conclude that model
comparison of the AR models, using the AIC or BIC, is a suitable
method of deciding whether to specify two or three levels. The
AIC is to be preferred over the BIC, as it results in a higher
power while the Type I error risk remains low. Overall, it was
clear that the number of measurements per day should be around
ten or higher, regardless of the sample size at the other levels,
for adequate power. This is not really surprising given that even
the most stripped-down version of the three-level model involves
estimating a mean for each separate day. When our simulated
data had a sufficient number of measurements per day, the
power was adequate even for the smallest numbers of persons
and days and varied only little depending on these sample sizes.
We used empirically derived parameter values for the simulated
data, with some inertia present both at the beep level and at
the day level. Although, we did not investigate with simulations
the exact performance of this model selection procedure when
different parameter values apply, our results indicate that model
comparison of the AR models using the AIC is a viable approach
to deciding on the number of levels, whereas inspecting or
testing the day-level variance in the empty models are not viable
approaches in this context.

Figure 2 summarizes our conclusion by contrasting two
procedures for deciding on the number of levels. The intuitive
procedure, based on common practice in multilevel modeling,
would be to test the day-level variance first (either directly, or
by a comparison of the empty models) before continuing with
the specification of AR models, but in the context of time series
data, this approach clearly breaks apart due to the possibility
that carry-over is mistaken for day-level variance. The alternative
approach that we recommend here is to start by specifying the
AR models and then select between these models, using the AIC,
to determine the number of levels needed.

Frontiers in Psychology | www.frontiersin.org 12 June 2016 | Volume 7 | Article 891

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


de Haan-Rietdijk et al. Decomposing Variance in Longitudinal Data

TABLE 4 | Power to detect the three-level structure for each sample size.

AIC Np = 30 Np = 60 N = 90

Nd Nb: 5 7 9 11 5 7 9 11 5 7 9 11

5 0.586 0.585 0.700 0.830 0.642 0.685 0.811 0.921 0.700 0.756 0.881 0.954

7 0.390 0.526 0.638 0.821 0.387 0.530 0.738 0.918 0.375 0.530 0.778 0.964

10 0.249 0.440 0.632 0.856 0.198 0.336 0.713 0.934 0.154 0.385 0.768 0.981

14 0.164 0.327 0.632 0.898 0.086 0.273 0.702 0.967 0.046 0.244 0.758 0.986

BIC Np = 30 Np = 60 N = 90

Nd Nb: 5 7 9 11 5 7 9 11 5 7 9 11

5 0.377 0.394 0.529 0.711 0.452 0.522 0.674 0.851 0.527 0.594 0.777 0.910

7 0.252 0.391 0.525 0.746 0.261 0.421 0.663 0.883 0.263 0.443 0.710 0.935

10 0.171 0.350 0.540 0.793 0.131 0.268 0.640 0.910 0.115 0.299 0.695 0.962

14 0.107 0.231 0.545 0.846 0.056 0.216 0.619 0.952 0.027 0.185 0.696 0.972

The power was defined as the proportion of three-level data sets for which one of the three-level models was selected.

TABLE 5 | Type I error rates for each sample size.

AIC Np = 30 Np = 60 N = 90

Nd Nb: 5 7 9 11 5 7 9 11 5 7 9 11

5 0.048 0.008 0.000 0.000 0.008 0.000 0.000 0.000 0.005 0.000 0.000 0.000

7 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

BIC Np = 30 Np = 60 N = 90

Nd Nb: 5 7 9 11 5 7 9 11 5 7 9 11

5 0.007 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The Type I Error rate was defined as the proportion of two-level data sets for which one of the three-level models was selected.

4. EMPIRICAL CASES REVISITED

Having established that the AIC can be used to decide whether
to include a day level in the AR model, we revisit our analyses
of negative and positive affect in the two empirical samples.
In the same way as we did before, the empty models were
fitted to the complete data in order to make use of all the
available information for centering the lagged predictors around
the persons’ trait levels and day means. But for the purpose of
comparing the AIC of the AR(1) models, the two-level AR(1)
models were refitted to the smallest of the data, that is, to those
cases that could also be used in the three-level AR(1) model with
day-level inertia.

The AICs for all fitted AR(1) models are given in Table 6.
For each of the four empirical outcomes, the two-level AR(1)
model has the lowest AIC. Although there were some missing
values in these empirical outcomes, unlike in our simulated data,
the sample sizes at all levels were quite large, so that there is no

compelling reason to think that the choice of a two-level model
must have been caused by a lack of power to detect day-level
variance. The differences in the AICs were very large and clearly
indicate that the two-level AR(1) model is more appropriate for
these data than the three-level AR(1) model, so we can conclude
that our analysis does not lend support to the notion that there
are daily fluctuations in affect that need to be taken into account.

Note that the empirical analyses in the current study focused
on the issue of how many levels should be specified in the
context of the commonly used AR(1) model for affect. We did
not conduct exploratory analysis (e.g., inspection of the partial
autocorrelation function or the power spectrum for each person’s
data) or comparisons with alternative or more complex modeling
approaches (e.g., higher-order AR models, or models with linear
or cyclic trends). As such, our analysis provided an empirical
illustration of the relevance of the day-level question for ESM
data, but it should not be taken as the definitive analysis of these
particular data sets, or as evidence that a 2-level AR(1) model is
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FIGURE 2 | Flowcharts contrasting the intuitive and the recommended approach for determining the number of levels in the context of time series

modeling of ESM data. The intuitive approach would be to inspect or test the variance at the day level first, using empty models. However, such an approach breaks

down when there is carry-over in the data. The recommended alternative is to start by fitting AR models that account for this carry-over, and to use the AIC to then

select between these models.

TABLE 6 | AICs obtained for the four empirical variables, using the same

cases as outcomes in each model.

AIC values Neg1 Neg2 Pos1 Pos2

2-level AR(1) 31771.9 50941.2 36163.5 56649.1

3-level AR(1) without beta 31973.5 51207.2 36332.8 56953.3

3-level AR(1) with fixed beta 31962.4 51183.3 36317.8 56904.3

3-level AR(1) with random beta 31962.1 51170.6 36318.8 56900.0

In these AR(1) models, correlations between random parameters were not included.

The values in bold indicate which model is selected for that data set.

the best analysis method as a general matter. In the discussion
we will consider the broader context of affect dynamics research,
as well as some limitations of the AR modeling approach studied
here.

5. DISCUSSION

The present study was inspired by the observation that two-
level AR(1) models have been used in affective research to study

inertia at the day-to-day level, e.g., using diary data, as well

as inertia at a moment-to-moment level, using ESM data with

multiple measurements within a day. Given the findings from

both types of research, it seems clear that there is carry-over

of affect both within and between days. While ILD frequently

contains multiple days and multiple measurements within days,

the commonly used two-level modeling approach does not

account for daily fluctuations in affect, or for carry-over from one

day to the next. In this paper, we proposed a three-level AR(1)

model that allows us to investigate the variability and the inertia

(carry-over) of affect within and between days simultaneously,

and we illustrated how two- and three-level AR models can be

implemented correctly for ESM data using R.

Surprisingly, our empirical findings, based on positive and

negative affect data from two ESM studies, did not lend support

to the idea of carry-over of affect from day to day. In fact, our

findings would suggest that there is no relevant variance at the

day level, that is, there is no variability in the daily means of affect,

except as an artifact caused by the variability from moment to

moment. This raises some questions about how to interpret and
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combine the findings from different studies. Do the measures
from diary studies, where people report their affect once a
day, reflect something different than an average of their affect
throughout the day? How should we interpret the variability and
inertia that is found in those data sets with daily measurements?
It is known that retrospective reporting can suffer from various
types of bias (for examples, see e.g., Fredrickson and Kahneman,
1993; Trull and Ebner-Priemer, 2009), so perhaps once-daily
measurements do not always represent the average affect levels
of the day accurately. On another note, it may be that an accurate
estimation of day means requires more measurements per day
than we had in our empirical data.

Apart from these substantive questions, in this paper we
have argued that it is a matter of general importance for
researchers working with nested ILD to consider the number
of levels in their data carefully, and to decide whether or
not the day should be included as a level in their model.
When autocorrelation in this type of data is not accounted
for, researchers may end up using models with more levels
than appropriate. At the same time, when there is variance
at the day level that is not accounted for, researchers who
investigate autocorrelation may end up with misleading results.
Thus, our advice is that researchers carefully investigate whether
or not they need to include a day level, before interpreting the
results of a specific model. We demonstrated why a common
approach that makes sense in other contexts—evaluating the
variance components in intercept-only (empty) models—is not
viable in this context. Based on our simulations we recommend
using the AIC to compare AR models with and without a
day level, since this approach seems to minimize the risk of
overfitting while offering a reasonable power to detect day-level
variance. For this procedure to work adequately, it is important
to have at least nine, but preferably more measurements
per day.

The current study focused on one particular approach in
affect dynamics research, namely AR(1) modeling to investigate
carry-over or inertia. A well-known limitation of this modeling
framework is that it assumes equally spaced measurements, an
assumption that is clearly violated in ESM data collection, where
the intervals between measurements are deliberately varied. It is
not clear how much of a problem this is in practice, since AR
models for ESM data have yielded valuable insights into affect
dynamics (e.g., Suls et al., 1998; Koval and Kuppens, 2011), and
the variability of intervals in an ESM design is modest. While
continuous-time extensions of AR (and other) models can be
implemented in software like the ctsem package for R (Driver
et al., submitted), it is not yet possible to estimate random inertia
parameters in that framework. Thus, avoiding the assumption of
equally spaced measurements would come at the cost of making

a different, more problematic assumption, namely, that there are
no individual differences in the carry-over of affect frommoment
to moment, or alternatively, having to fit a separate model to each
person’s time series.

To summarize, we hope that researchers who analyze ILD,
and especially those who are interested in inertia, will be aware
of the potential issues resulting from having measurements
nested not only within persons, but within multiple days per

person. To gain a better understanding of how inertia within
days and between days is related, further research is needed
that addresses potential complicating factors such as time
trends (Wang and Maxwell, 2015) and the role of recall or
other biases in self-reported affect measures (Fredrickson and
Kahneman, 1993; Trull and Ebner-Priemer, 2009). Furthermore,
it is worth noting that AR modeling is but one among many
approaches to investigating affect (cf. Hamaker et al., 2015; also
see Houben et al., 2015), and it is still an open question what
type of analysis can best capture the complex dynamics of affect
in daily life, which may well involve linear or cyclic trends (e.g.,
Ram et al., 2005), longer-range serial dependence (Wagenmakers
et al., 2004), state-switching (Hamaker and Grasman, 2012),
or chaotic elements (e.g., Heiby et al., 2003). Integrating the
findings from different modeling paradigms as well as from
studies measuring affect at different time scales is a major
challenge in the quest for a comprehensive understanding
of affect dynamics and between-person differences
therein.
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