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Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese
Academy of Sciences, Guangzhou, China

Flow cytometry (FCM) is a commonly used method for estimating genome size in
many organisms. The use of FCM in plants is influenced by endogenous fluorescence
inhibitors and may cause an inaccurate estimation of genome size; thus, falsifying
the relationship between genome size and phenotypic traits/ecological performance.
Quantitative optimization of FCM methodology minimizes such errors, yet there are
few studies detailing this methodology. We selected the genus Primulina, one of the
most representative and diverse genera of the Old World Gesneriaceae, to evaluate
the methodology effect on determining genome size. Our results showed that buffer
choice significantly affected genome size estimation in six out of the eight species
examined and altered the 2C-value (DNA content) by as much as 21.4%. The staining
duration and propidium iodide (PI) concentration slightly affected the 2C-value. Our
experiments showed better histogram quality when the samples were stained for
40min at a PI concentration of 100μg ml−1. The quality of the estimates was not
improved by 1-day incubation in the dark at 4◦C or by centrifugation. Thus, our study
determined an optimum protocol for genome size measurement in Primulina: LB01
buffer supplemented with 100μg ml−1 PI and stained for 40min. This protocol also
demonstrated a high universality in other Gesneriaceae genera. We report the genome
size of nine Gesneriaceae species for the first time. The results showed substantial
genome size variation both within and among the species, with the 2C-value ranging
between 1.62 and 2.71 pg. Our study highlights the necessity of optimizing the FCM
methodology prior to obtaining reliable genome size estimates in a given taxon.

Keywords: flow cytometry, genome size, Gesneriaceae, methodology, Primulina

Introduction

Genome size (C-value or the haploid nuclear DNA content) is significantly correlated with
cell/nucleus sizes, cellular processes (e.g., the DNA synthesis rate), and a range of ecological

Abbreviations: CV, coefficient of variation; FCM, flow cytometry; PI, propidium iodide.
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characteristics (Beaulieu et al., 2008; Greilhuber and Leitch,
2013). Genome size has fundamental biological importance with
considerable applications in a wide range of fields, including
ecology, cell and molecular biology, systematics, and evolution
(Bennett and Leitch, 2005, 2011; Veselý et al., 2012). Genome
size varies a remarkable 2400-fold across the angiosperm
flora (Pellicer et al., 2010) and even exhibits substantial
variation among closely related species (Duchoslav et al., 2013;
Fleischmann et al., 2014). It is an important biological parameter
that has been increasingly used to clarify evolutionary patterns
and adaptation mechanisms of plants (e.g., Huang et al., 2013;
Kang et al., 2014; Jordan et al., 2015). Rapid advancements in
whole-genome sequencing of non-model plants further highlight
the importance of accurately estimating genome size.

Flow cytometry (FCM) has been considered a fast, sensitive
technique for determining the genome size of plants since
Galbraith et al. (1983) developed a rapid and simple method
for isolation of nuclei by chopping leaf tissues in a lysis buffer.
However, the accuracy of FCM results in plants has been
reportedly influenced by secondary metabolites, such as tannic
acid (Loureiro et al., 2006), anthocyanins (Bennett et al., 2008),
and extremely mucilaginous compounds (Cires et al., 2011). The
detrimental impact of endogenous fluorescence inhibitors on
genome size estimation has led researchers to see k effective
methods to prevent or minimize such effects (e.g., Loureiro
et al., 2006, 2007a; Bennett et al., 2008). It was reported that
simultaneous processing of both target and standard samples
followed by a comparison of the data based on internal and
external standards can effectively ameliorate the secondary
metabolites’ influence on genome size estimations (Price et al.,
2000; Noirot et al., 2005). Other methods include selecting
suitable nuclei isolation buffers, using antioxidant compounds
(Doležel and Bartoš, 2005; Loureiro et al., 2006), determining
the optimum stain concentration and staining duration (Loureiro
et al., 2006; Doležel et al., 2007), and centrifuging nuclear
suspensions and discarding the supernatant (Doležel and Bartoš,
2005). To reduce experimental errors, all of the samples,
including both target and standard plants, should be maintained
under the same environmental conditions (Noirot et al., 2005)
and distinct replicates should be performed (Doležel and Bartoš,
2005; Bennett et al., 2008). On the other hand, recent advances
in FCM methods have enabled rigorous documentation of inter-
and intra-specific genome size variation (Bainard et al., 2010;
Cires et al., 2011). However, only a few studies have evaluated
the effect of methodology on genome size estimations in a given
taxon (Bainard et al., 2010; Cires et al., 2011).

Genome sizes have been estimated for more than 7500
angiosperm species, belonging to more than 50% of the
angiosperm families and representing approximately 2% of
flowering plant species (APG III, 2009; Bennett and Leitch,
2012). However, these studies are confined to particular regions
(e.g., Europe and North America), whereas plant genome size in
other areas with higher species richness and endemism remains
poorly understood (Bennett and Leitch, 2011). The Southern
and Southwestern parts of China boast of 20,000 plant species
and are considered the most endemic-rich subtropical flora
areas of the world. We have initiated a large-scale project to

examine the genome size in the flora of Southern China. The
largest genus of the old world Gesneriaceae, Primulina (Wang
et al., 2011; Weber et al., 2011), is a monophyletic group
with more than 150 perennial species that is widely distributed
throughout the karst regions of China and adjacent countries
in Southeast Asia. Approximately 120 Primulina species (85%)
are endemic to Southern and Southwestern China. The high
microhabitat specialization and species richness of the genus
makes Primulina an ideal non-model system for studying
speciation and adaptation. Moreover, an accurate estimation of
genome size in Primulina is important to understand the pattern
of genome size variation and its role in evolutionary adaptation
and speciation mechanism.

The abundant and diverse secondary metabolites detected in
Gesneriaceae (Verdan and Stefanello, 2012) make it critical to
evaluate the effect of methodologies and determine the optimal
FCM protocol prior to estimating genome size of Primulina
species. The present study was conducted to quantify the impact
of different FCM methodologies on genome size measurement
in Primulina. These include evaluating the performance of
different nuclei extraction buffers, staining regimens, dark and
cold conditions, and centrifugation during sample preparation.
We quantitatively optimized a FCM methodology suitable for
Primulina and validated the protocol’s universality in several
other genera of Gesneriaceae. Additionally, in the present study,
we report the genome size of nine species of the Gesneriaceae
family in China.

Materials and Methods

Plant Material
Eight Primulina species (P. linearifolia, P. huaijiensis, P.
heterotricha, P. liguliformis, P. roseoalba, P. lunglinensis, P.
hedyotidea, and P. subrhomboidea) with different phenotypic
and ecological traits were selected to test the effects of FCM
methodology. Because our preliminary survey revealed the 2C-
value of the eight species ranged between 1.0 and 2.1 pg, Solanum
lycopersicum cv. “Stupické polni rané” (2C = 1.96 pg, Doležel
et al., 1992) was selected as an appropriate primary reference
standard. Oryza sativa ssp. japonica (2C = 0.86–0.90 pg,
Arumuganathan and Earle, 1991), whose 2C-value was further
calibrated against S. lycopersicum (10 replicates on different
days), was chosen as a secondary reference standard. The seeds
of O. sativa ssp. japonica and S. lycopersicum were obtained
from the South China Botanical Garden, the Chinese Academy
of Sciences, and the Laboratory of Molecular Cytogenetics and
Cytometry (Olomouc, Czech Republic), respectively. Seedlings of
the references were grown and kept in greenhouses at the South
China Botanical Garden.

Sample Preparation
We conducted preliminary analyses to determine the appropriate
amount of sample required to produce sufficient nuclei counts
and good-quality histograms. Approximately 20mg of fresh
tissue from the young leaves of samples and standards were used,
respectively. Briefly, the sample and standard tissues were co-
chopped in 1ml of cold buffer on ice. A razor blade with a
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single edge was used for chopping each sample in a Petri dish
as described by Galbraith et al. (1983). Samples were chopped
quickly (approximately 45 s) but not intensely to minimize the
release of cytosolic compounds. A 50-μmmesh filter was used to
filter the resulting homogenate. RNase A (Sigma, Cream Ridge,
USA) was added at a final concentration of 50μg ml−1, PI
(Sigma) was used according to the methodology outlined below,
and samples were incubated in the dark and on ice.

Experimental Design
Testing the Presence of Endogenous Inhibitors
The Partec CyStain PI Absolute P kit (Partec GmbH, Münster,
Germany) was used to test for a reduction in PI fluorescence of
the reference standard by secondary metabolites in Primulina,
given that it has been used in Gesneriaceae (Zaitlin and
Pierce, 2010). Leaves of standard (S. lycopersicum or O. sativa
ssp. japonica) were independently chopped and simultaneously
processed (co-chopped) with leaves of Primulina. After staining,
mean PI fluorescence was measured for standards independently
and simultaneously processed, respectively. Three replicates were
completed.

Buffer Screening
The effect of nuclei isolation buffer on genome size determination
was tested for eight buffers across all eight species. In addition to
the Partec CyStain PI Absolute P kit, seven buffers were selected
from the 10 most-commonly used non-commercial FCM buffers
Loureiro et al., 2007a,b. These buffers were de Laat’s (de Laat and
Blaas, 1984; modified as in Kron and Husband, 2009), Galbraith’s
(Galbraith et al., 1983), General Purpose (Loureiro et al., 2007a),
LB01 (Doležel et al., 1989), MgSO4 (Arumuganathan and Earle,
1991), Tris-MgCl2 (Pfosser et al., 1995), and Woody Plant
(Loureiro et al., 2007a). Four replicates of each species were
analyzed with each buffer. PI was used at a concentration of 50μg
ml−1 for 20min, according to protocol described by Price et al.
(2000).

Determination of Staining Duration
Samples of P. linearifolia, P. huaijiensis, P. heterotricha, and
P. liguliformis were randomly selected from the eight species
to investigate the effect of staining duration. Buffer LB01 was
chosen due to its relatively high-resolution performance during
the buffer test. Each sample was examined using the following
time course: 5, 10, 15, 20, 40, 60, and 120min. Because each
sample was analyzed seven times, we increased the tissue amount
to 40mg for samples and standards and the volume of isolation
buffer to 2ml. PI was used at 50μg ml−1 and samples were
incubated on ice between runs. The experiment was repeated
three times for each species.

Determination of Stain Concentration
According to the results from the tests described above, the
optimal conditions included LB01 buffer and staining duration
of 40min were then tested for any effect of stain concentration.
The same four species as previously described were used. The
PI concentrations examined included: 10, 25, 50, 100, 150, and
200μg ml−1. Similarly, a larger volume of homogenate (2ml)
was needed to perform each analysis at the six different PI

concentrations. Four replicates were analyzed for each species at
each stain concentration.

Effect of Darkness and Centrifugation
The samples of the same four species were analyzed after
incubation in the dark at 4◦C for 24 h to check the possible
effect of darkness on the quality of histograms. Alternatively,
the homogenates were centrifuged at 500 × g for 10min at 4◦C
to test the effect of centrifugation, according to the procedure
used in Sinningia (Gesneriaceae) (Zaitlin and Pierce, 2010). After
centrifugation, the supernatant was carefully decanted, and the
pellet was gently re-suspended in 850μl of new extraction buffer.
Three replicates were tested for each species.

Flow Cytometric Analyses
Analysis of stained samples was performed on a Partec CyFlow
Space (Partec, Münster, Germany) equipped with a 20-mW
sapphire laser, a 25-mW solid-state laser, and a 50-mW UV-
LED operating at 488, 638, and 365 nm, respectively, and the
fluorescence intensity of 10,000 particles was recorded. Before
each use, we calibrated the instrument using 3-μm calibration
beads (Partec, Münster, Germany). The forward scatter (FSC),
side scatter (SSC) and orange fluorescence (FL2: 590 nm ±
25) were measured for each sample. These parameters were
visualized alone and in combined histograms as follows: FL2 vs.
FSC, FL2 vs. SSC, and FSC vs. SSC.

The nuclei number and coefficient of variation (CV) were
obtained for each peak of interest (sample and standard) using
the gating function in the FloMax Software by Partec (Version
2.80, 2012). Polygon gates were drawn manually around regions
of interest on the scattergram of PI fluorescence vs. side scatter
to remove the interference of debris particles (Figure 1). To
determine the fluorescence and CV of each peak, regions
were developed around the histograms of interest (Figure 1).
Although most of the genome size literatures recommend CV be
set below 5% over 5000 or 10,000 nuclei analyzed, it was expected
that some of the methodology used here would not produce
optimal results. For each histogram, the nuclei count and CV
for each peak of interest were used to calculate relative standard
error (RSE) using the formula RSE = SE/mean, which can be
calculated as peak CV%/ v(peak nuclei count), as described by
Bainard et al. (2010). The ability to consider both the number
of nuclei measured as well as the CV is especially helpful when
data might otherwise be ignored due to low nuclei counts or high
CV-values.

The nuclear DNA content of Primulina was determined
according to the following formula: Standard 2C-value (pg) =
(Sample peakmean/Standard peakmean) * nuclear DNA content
of the reference Standard (pg).

Statistical Analyses
Analysis of the buffer effect data was performed using a mixed
model analysis of variance (ANOVA) with the buffer as the
fixed variable and the data as the random variable. A mixed
model ANOVA was used to identify the effect of the staining
period, with time as fixed repeated variable. To analyze the
stain concentration data, a general linear model was used with
concentration as the fixed variable. Tukey’s HSD post hoc test
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FIGURE 1 | An example of the gating procedure using data from
Primulina linearifolia. Ungated histogram (A), scatterplot with
manually drawn polygon gate (B), histogram with polygon gate applied

to remove debris and regions drawn to determine peak location and
CV (C), gating procedure completed with FloMax Software (Partec
Version 2.80, 2012).

(P = 0.05) was added to evaluate the significance of the
differences in means within each test and for each species.
Model residuals were used to determine whether the underlying
assumptions of homogeneity of variance and normality weremet.
Data analysis was performed using SPSS Version 3.1 (SPSS Inc.,
Chicago, IL, USA).

Testing the Optimized Methodology in Other
Genera
After optimizing, we further tested the optimized methodology’s
universality in Gesneriaceae in South China Karst. We
examined 32 populations from nine species that belong to
four other genera, including Hemiboea, Lysionotus, Briggsia, and
Aeschynanthus. Herbarium vouchers for these species have been
deposited in the IBSC (South China Botanical Garden, CAS).

Results

Compounds in Primulina Leaves Inhibit
PI-fluorescence
The inhibition tests indicated the ratio of the mean fluorescence
of nuclei (Standard 1) from simultaneously processed standard
(S. lycopersicum or O. sativa ssp. japonica) with Primulina
leaves to the mean fluorescence of nuclei (Standard 2) from
independently processed standards. These ratios ranged between
0.73 and 1.00 (Table S1, Figure 2). The reduced fluorescence
of nuclei from simultaneously processed standards compared
to the nuclei from independently processed standard leaves
suggests the presence of endogenous inhibitors in Primulina. The
fluorescence reduction occurred in seven out of eight Primulina
species, with the exception being P. subrhomboidea. Moreover,
the effects of inhibition differ among species, which is more
apparent in P. liguliformis, P. huaijiensis, P. linearifolia, and P.
heterotricha.

Effect of Various Buffers on Genome Size
Estimation
The buffers tested had a significant effect on the 2C-value in six
out of the eight species analyzed (P < 0.05), with the exceptions

FIGURE 2 | The ratio of the mean fluorescence of nuclei (Standard 1)
from simultaneously processed standard (Solanum lycopersicum or
Oryza sativa ssp. japonica) with Primulina leaves to the mean
fluorescence of nuclei (Standard 2) from an independently processed
standard using the Partec CyStain PI Absolute P kit.

being P. hedyotidea and P. subrhomboidea (Table 1). Although
the absolute differences in DNA content were small (0.120–0.302
pg/2C), the largest percent differences ([maximum estimate -
minimum estimate]/mean) were substantial. The values varied
by 14.6% for P. linearifolia (MgSO4 and Galbraith’s), 21.4% for
P. huaijiensis (de Laat’s and Partec), 15.9% for P. heterotricha
(General purpose and de Laat’s), 19.8% for P. liguliformis (Woody
plant and General purpose), 14.9% for P. roseoalba (Woody
plant and Tris-MgCl2), 9.2% for P. lunglinensis (Tris-MgCl2 and
Galbraith’s), 7.7% for P. hedyotidea (Galbraith’s and MgSO4),
and 6.83% for P. subrhomboidea (Woody plant buffer and
MgSO4). The estimate patterns generated by various buffers was
different across species, although both Partec and Woody plant
buffer usually obtained estimates above the mean and MgSO4
and Galbraith’s buffer tended to produce estimates below the
mean. Buffers de Laat’s, LB01, Tris-MgCl2 and General purpose
produced estimates relatively close to the mean values across the
analyzed species.
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The buffers used also produced variation in resolution for each
of the eight species (Table 1, Figure 3). We used the SE of the
mean 2C-value and RSE to measure quality. A small mean SE-
value indicated high consistency within the 2C-value estimated
over replicates, whereas the mean RSE reflected the quality of
histograms (combining the CV-value and nuclei count obtained
for each peak). MgSO4, de Laat’s and LB01 buffers produced
low mean SE estimates across species. Low CV and RSEs
were consistently produced from MgSO4 and LB01 buffer (with
sample RSE varying between 0.062 and 0.120% across species)
(Table 1, Table S2). Woody plant buffer showed low RSE-values
for most species, with the exception for P. hedyotidea (0.186%)
and P. huaijiensis (0.234%). Partec, de Laat’s, Galbraith’s, and
Tris-MgCl2 buffer produced relatively high RSE-values for the
eight species (sample RSE ranging from 0.002 to 0.247%). Such
effects on resolution of different buffers were also demonstrated
by the scatterplots of SSC vs. PI fluorescence and FSC vs. PI
fluorescence. Significantly larger amounts of debris were usually
obtained from the buffers that produced poor-quality histograms.
Histograms with less compact clusters of nuclei tended to appear
with buffers that generated high RSEs, indicating that the buffer
used affected the nuclei characteristics, such as relative size (FSC),
relative surface complexity estimate (SSC), and the fluorescence
(Figure S1).

Effect of Staining Regimen on Genome Size
Estimation
Our results showed that staining duration affected the relative
fluorescence of both the sample and the standard but had
a negligible effect on the 2C-value estimates. The 2C-value
estimates of the analyzed taxa showed a maximum change of
only 0.096 pg over 120min, and the differences between estimates
were not significant (Table 2). Histogram quality was better
(lower RSE) at the 30 and 40min staining periods than other
periods, for all species. Stain concentration significantly affected
the genome size estimate for P. linearifolia (P < 0.05) but not
for P. huaijiensis, P. heterotricha or P. liguliformis (Table 3). The
genome size estimates were generally low across species at PI
concentrations of 10 and 25μgml−1. The largest difference in the
2C-value estimates for each species was 6.7% for P. linearifolia,
1.0% for P. huaijiensis, 4.5% for P. heterotricha, and 5.9% for P.
liguliformis. The histogram quality varied with different staining
concentrations. Generally, the moderate concentration of PI
(100μg ml−1) generated the best quality histograms (lowest
RSE).

Effect of Darkness and Centrifugation
Our results demonstrate that incubation in absolute dark at
4◦C did not improve the quality of the histograms (Figure
S2). Moreover, poor-quality histograms were obtained after
centrifugation (data not shown).

Universality of the Optimized Methodology and
New Genome Size Estimates
Our comparative tests showed that FCM methodology using
LB01 buffer supplemented with 100μg ml−1 PI and staining for
40min yielded the best results for genome size measurement

in Primulina. We further tested performance of this optimal
FCM protocol in other genera of Gesneriaceae, and found
that it was suitable for Hemiboea, Lysionotus, Briggsia, and
Aeschynanthus, with the values of CV falling below 5%
(Table 4). The results revealed up to a 1.67-fold 2C DNA
amount difference between the smallest (H. gracilis; 1.62 pg)
and the largest (L. pauciflorus; 2.71 pg) genomes, indicating
substantial interspecific genome size variation in Gesneriaceae
(Table 4, Figure S3). Specifically, the genome size of H. henryi
was determined based on analysis of 39 individuals from 17
populations across the entire geographical distribution, thereby
representing the extent and pattern of intraspecific nuclear DNA
content variation in this species. Significant differences in the
DNA amount were detected among populations (F = 4.5,
P = 0.001), where the mean 2C-value varied between 1.63
and 2.48 pg (Table 4, Figure S3). Intraspecific genome size
variation was also apparent in H. gracilis and L. pauciflorus,
the genome size of which differed by 5.10 and 11.0%,
respectively.

Discussion

The Presence of PI Intercalation Inhibitors in
Primulina
Phytochemical compounds are reported to decrease the
fluorescence intensity of PI-stained nuclei and consequently
lead to inaccurate results (Greilhuber et al., 2007; Bennett et al.,
2008). Our results confirmed that the existence of secondary
metabolites influence the FCM estimations in most Primulina
species except P. subrhomboidea (Table S1, Figure 2). The
difference in the effects of inhibitors in various species can
be attributed to their distinct composition and proportion of
phytochemical compounds. For example, the level and activity of
DNA PI staining inhibitors in P. roseoalba, P. lunglinensi, and P.
hedyotidea were significantly lower than those in P. liguliformis,
P. huaijiensis, P. linearifolia, and P. heterotricha. The karst
environment, characterized by low soil-water content, periodic
water deficiency and poor nutrients, might have exerted strongly
selective stress on plant species. Previous studies documented
that increased biosynthesis of secondary metabolites can be
induced by nutritional deficiency and abiotic stress, such as
drought, high light, and low temperature (Steyn et al., 2002).
Thus, karst environment might trigger the biosynthesis of
secondary metabolites in most Primulina species. It should be
noted that approximately 300 chemical compounds have been
reported in Primulina or other Gesneriaceae species, including
flavonoids, terpenes, and steroids, phenolic glucosides, simple
phenolics (Verdan and Stefanello, 2012). However, the chemical
nature of the compounds that inhibit DNA staining in the
analyzed Primulina species is yet to be determined.

Significant Effect of Methodology on Genome
Size Estimations in Primulina
The present study confirmed that cytosolic compounds can
affect genome size estimations in Primulina, highlighting
the need for optimizing FCM methodology in the genus
and other plants. Although the staining regimen showed
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FIGURE 3 | Ungated histograms showing the range of quality of Primulina linearifolia obtained with eight different buffers.
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a negligible effect on the value of genome size estimates
in Primulina, both PI concentration and staining duration
influenced the quality of the histograms. Incubation in
absolute dark at 4◦C and centrifugation did not improve the
quality of the histograms. However, our results showed that
the combined processing of target and standard species
reduces potential variability and improves accuracy in
determining genome size. Nevertheless, combined processing
did not eliminate the effect of inhibitors on DNA content
estimation, as evidenced by the variation produced by different
buffers.

Buffer choice accounted for up to 6.83–21.4% of the estimated
genome size differences in Primulina and also affected the quality
and consistency of data. Buffer choice also seriously impacted
FSC and SSC profiles (reflecting the size and granularity of nuclei,
respectively), indicating a significant influence of buffers on the
consistency of the examined nuclei structural properties. The
significant influence of buffer choice can be explained by the
ability of different buffers to counteract the detrimental effect
of endogenous fluorescence inhibitors (Loureiro et al., 2006,
2007a,b). Consistent with the results in Sinningia (Gesneriaceae)
(Zaitlin and Pierce, 2010), the CV-values obtained with the
Partec CyStain PI Absolute P kit varied from 4.4 to 15.67%
across species (data not shown). Only two (P. lunglinensis and
P. hedyotidea) of the eight species exhibited CV-values below 5%,
suggesting that the Partec CyStain PI Absolute P kit was not a
good choice for genome size studies inmost Gesneriaceae species.
On the contrary, the Partec, Laat’s, Galbraith’s, and Tris-MgCl2
buffers, generally produced histograms with the poorest quality
and genome size estimates with the highest variability in most
species. Woody plant buffer produced good-quality histograms
but the obtained genome size appeared to be very different
from the mean value and had a higher SE. Our results showed
that LB01 was the best buffer for genome size estimation in
Primulina, producing the best-quality histograms and consistent
genome size estimates. LB01 contains β-mercaptoethanol, an
antioxidant that could bind free radicals. Similarly, bufferMgSO4
generated high-quality histograms, which may be due to the
presence of dithiothreitol (DTT), a typical reducing agent. The
reducing function of these compounds probably counteracts the
effect of endogenous fluorescence inhibitors, such as tannins or
other phenolic compounds detected in Primulina (Verdan and
Stefanello, 2012).

High Methodology Universality and Genome Size
Variation Reports for Gesneriaceae
The low CV-values (< 5%) commonly detected in the four other
genera of Gesneriaceae indicate the optimized methodology is
highly universal for Primulina. These results will be helpful
for genome size studies in this family. In fact, the optimized
methodology has been used to obtain genome size of 101
Primulina species (Kang et al., 2014). We also report the genome
size for nine species from the genera Hemiboea, Lysionotus,
Briggsia, and Aeschynanthus, for the first time. The number of
species and individuals analyzed for each genus depended on
the sample availability. Similar to our findings in Primulina
(2C = 1.12–2.54 pg), the genome sizes detected in these genera

(2C = 1.62–2.71 pg) also fall into the very small category
(1C = 1.4 pg), as defined by Soltis et al. (2003) and Leitch
et al. (2005). Our results also indicate a substantial genome
size variation both within and among species. Specifically,
we found high intraspecific genome size variation (52.1%) in
H. henryi. Given the extensive sampling across the species
distribution range and the low CV-values obtained in our study,
our estimates probably reflect real genome size variation among
populations of H. henryi. Although genome size is considered
more likely to be constant at the species level, intraspecific
variation is increasingly detected in plant species (e.g., Duchoslav
et al., 2013; Huang et al., 2013). Similarly, our studies in
Primulina revealed as much as 41.23% intraspecific variation
in P. linearifolia (Kang et al., 2014). Significant variations in
genome size can be attributed to several sources, including
variation in chromosome number or ploidy level or the amount
of repetitive and non-coding DNA, which is considered themajor
mechanism responsible for changes in genome size (Bennetzen
et al., 2005). Moreover, genome size variation could be a result
of local adaptation along ecogeographic gradients (Kang et al.,
2014; Jordan et al., 2015). H. henryi is one of the most widely
distributed species of Gesneriaceae in China, which occurs in
diverse habitats, including limestone karst and acidic soils. The
complexity of selection patterns and variation in adaptation to
environments among lineages may generate population-specific
relationships; thus, the present study highlights the necessity
for further research into detailed ecological or geographical
factors to elucidate the evolutionary patterns of genome size
in H. henryi. Nevertheless, considering the high intraspecific
genome size variation observed in H. henryi, we suggest further
taxonomic treatment for this species based on both molecular
and morphological data in the future.

Conclusions

This study quantitatively evaluated FCM methodology effects
on genome size estimation in the genus Primulina. Our results
confirmed that the existence of secondary metabolites can affect
genome size determination and highlighted the necessity of
optimizing the FCM methodology prior to obtaining a reliable
genome size for a given taxon.
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