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Evidence obtained in recent years in a few species, especially rainbow trout, supports

the presence in fish of nutrient sensing mechanisms. Glucosensing capacity is present

in central (hypothalamus and hindbrain) and peripheral [liver, Brockmann bodies (BB,

main accumulation of pancreatic endocrine cells in several fish species), and intestine]

locations whereas fatty acid sensors seem to be present in hypothalamus, liver and

BB. Glucose and fatty acid sensing capacities relate to food intake regulation and

metabolism in fish. Hypothalamus is as a signaling integratory center in a way that

detection of increased levels of nutrients result in food intake inhibition through changes

in the expression of anorexigenic and orexigenic neuropeptides. Moreover, central

nutrient sensing modulates functions in the periphery since they elicit changes in hepatic

metabolism as well as in hormone secretion to counter-regulate changes in nutrient levels

detected in the CNS. At peripheral level, the direct nutrient detection in liver has a crucial

role in homeostatic control of glucose and fatty acid whereas in BB and intestine nutrient

sensing is probably involved in regulation of hormone secretion from endocrine cells.

Keywords: nutrient sensors, fish, hypothalamus, liver, Brockmann bodies, intestine, food intake, homeostasis

NUTRIENT SENSING MECHANISMS IN FISH

Since sensing and responding to fluctuations in environmental nutrient levels is a requisite for life,
is not surprising that different organisms are able to detect extracellular and intracellular levels
of sugars, amino acids, and lipids. The sensing of a specific nutrient may occur directly through
binding of the sensed molecule to the sensor, or indirectly through detection of a related molecule
that reflect nutrient abundance (Ogunnowo-Bada et al., 2014; Efeyan et al., 2015). We provide in
the next sections a summary of the findings obtained in fish about glucose and fatty acid sensors.

As for the other main nutrient, amino acid, the increase in mammals in the levels of specific
branched-chain amino acids (BCAA) such as leucine inhibits food intake. This process occurs
through activation of amino acid sensing systems mediated by activation of target of rapamycin
(mTOR) and/or inhibition of AMP-activated protein kinase (AMPK) signaling, or via activation of
BCAA metabolism (Heeley and Blouet, 2016; Morrison et al., 2016). Furthermore, the deficiency
in essential amino acids (including BCAA) elicits an increase in food intake through amino acid
sensing systems mediated by general control nondepressable 2 and eukaryotic initiation factor 2α
(Fromentin et al., 2012; Maurin et al., 2014). In fish, no studies have attempted yet to evaluate
the possible presence and functioning of comparable amino acid sensing mechanisms and their
relationship with food intake control. Their presence in central areas regulating food intake is
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however reasonable considering that most fish are carnivorous,
and therefore they are strongly dependent (certainly much more
than omnivorous mammals in which most studies have been
carried out to date) on dietary protein/amino acid levels for
functioning. The only studies available in fish demonstrated in
peripheral tissues like muscle and liver the effect of changes in
amino acid levels in mRNA abundance of mTOR (Seiliez et al.,
2008; Wacyk et al., 2012; Tu et al., 2015; Liang et al., 2016; Xu
et al., 2016).

The hypothetical mechanisms involved in sensing of glucose,
fatty acid, and amino acid in fish are summarized in Figure 1.

Glucosensors
Glucosensing is the ability of specialized cells to detect changes
in the levels of glucose. This ability relates to food intake
control and counter-regulatory responses to changes in levels
of plasma metabolites in brain areas like hypothalamus and
hindbrain. In pancreatic endocrine cells and intestine it relates
to hormone release whereas in liver relates to the metabolic
switch between glucose utilization and production in liver.
There are several glucosensing mechanisms characterized in

FIGURE 1 | Schematic drawing with a model of different sensing systems for glucose, fatty acid, and amino acid in sensor cells in fish. Black line,

activation; gray dotted line, hypothetical activation; red line, inhibition; red dotted line, hypothetical inhibition; ACC, Acetyl-CoA carboxylase; ACS, Acetyl-CoA

synthetase; AMPK, AMP-activated protein kinase; BSX, brain homeobox transcription factor; CPT-1, carnitine palmitoyl transferase type 1; CREB, cAMP

response-element binding protein; ER, endoplasmic reticulum; ERK, extracellular signal–regulated kinase; FA, fatty acid; FAS, fatty acid synthase; FAT/CD36, fatty

acid translocase; FoxO1, forkhead box protein O1; K+ATP, inward rectifier ATP-dependent K+ channel; GK, glucokinase (hexokinase IV); GLUT2, facilitative glucose

carrier type 2; IP3, inositol 1,4,5-triphosphate; GPR40. G-protein-coupled receptor 40; GPR120, G-protein-coupled receptor 120; LCFA, long-chain fatty acid; LXR,

liver X receptor; MCD, malonyl-CoA decarboxylase; MCFA, medium-chain fatty acid; mTOR, target of rapamycin; PLC, phospholipase C; PPARs, peroxisome

proliferator-activated receptors; SGLT-1, sodium/glucose co-transporter 1; SREBP1c, sterol regulatory element-binding protein type 1c; PKC, protein kinase C; PUFA,

poly-unsaturated fatty acid; ROS, reactive oxygen species; T1R2, type 1 taste receptor subunit 2; T1R3, type 1 taste receptor subunit 3; UCP2, uncoupling protein 2;

VDCC, L-type voltage-dependent calcium channel; Vm, membrane potential.

mammals. The best known is that mediated by glucokinase
(GK), as demonstrated in brain neurons, pancreatic β-cells and
hepatocytes (Blouet and Schwartz, 2010; Ogunnowo-Bada et al.,
2014; Efeyan et al., 2015). In this mechanism (Marty et al., 2007;
Polakof et al., 2011d), glucose is taken up by glucose facilitative
carrier type 2 (GLUT2), phosphorylated to glucose 6-phosphate
by GK, and then metabolized through glycolysis increasing
intracellular ATP/ADP ratio (Figure 1). The increased ratio
induces closure of ATP-dependent inward rectified potassium
channel (K+

ATP) inducing the depolarization of membrane and
the entry of calcium into the cell through L-type voltage-
dependent calcium channel. This entry of calcium finally results
in changes in neuronal activity (brain), modulation of hormone
release (endocrine cells) or changes in metabolism (liver). There
is also evidence in mammals for GK-independent glucosensing
mechanisms as also displayed in Figure 1 (Fioramonti et al.,
2004; Marty et al., 2007; González et al., 2009; Thorens, 2012;
Donovan and Watts, 2014). The expression of liver X receptor
(LXR) (Mitro et al., 2007) responds to increased glucose levels
eliciting a decrease in gluconeogenic capacity (Anthonisen et al.,
2010; Archer et al., 2014). The sweet taste receptors (formed by
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type 1 taste receptor subunits (T1Rs) 2 and 3, and α-gustducin)
respond to changes in glucose levels activating an intracellular
signaling cascade (Ren et al., 2009; Kyriazis et al., 2014; Murovets
et al., 2015; Herrera Moro Chao et al., 2016). Enhanced
glucose levels induce increased expression of sodium/glucose co-
transporter 1 (SGLT-1) (Díez-Sampedro et al., 2003; González
et al., 2009; Thorens, 2012). The mitochondrial production of
reactive oxygen species (ROS) leads to increased expression of
uncoupling protein 2 (UCP2) in response to increased glucose
levels (Beall et al., 2010; Diano and Horvath, 2012). These
different systems might relate since, for instance, T1R3 and
α-gustducin are necessary for SGLT-1 response to increased
carbohydrate levels in the diet (Wauson et al., 2013).

In fish, evidence obtained in recent years support the
presence of a GK-dependent glucosensing mechanism in central
and peripheral areas of rainbow trout (Polakof et al., 2011d;
Soengas, 2014). Indeed, in rainbow trout changes in the
levels of glucose induced dietary (Polakof et al., 2008b,c),
intraperitoneal (IP) (Polakof et al., 2007a, 2008a; Conde-Sieira
et al., 2010a,b, 2012b; Otero-Rodiño et al., 2015), in vitro
(Polakof et al., 2007b; Aguilar et al., 2011; Conde-Sieira et al.,
2011, 2012a), or intracerebroventricular (ICV) (Polakof and
Soengas, 2008) treatments resulted in changes in glucosensing
mechanisms in hypothalamus and hindbrain. These include
changes in GK mRNA abundance and activity, glucose and
glycogen levels, GLUT2 mRNA abundance, glycolytic and
glycogenic potentials, and in the activity of K+

ATP. Besides
the studies carried out in rainbow trout, a recent study
provided evidence of glucose sensing properties in several
hypothalamic nuclei in medaka (Hasebe et al., 2016). In
peripheral tissues of rainbow trout, the presence and functioning
of GK-dependent glucosensing mechanisms is supported by
findings in liver (Soengas et al., 2006; Conde-Sieira et al.,
2012b), Brockmann bodies (BB, main accumulation of endocrine
pancreatic cells) (Polakof et al., 2007a,b, 2008b,c), and intestine
(Polakof et al., 2010a; Polakof and Soengas, 2013). Interestingly,
the response of glucosensing systems to glucose is more
important during the day than during the night in liver but
not in hypothalamus, hindbrain, and BB whose responses to
hyperglycemic treatment were similar at night and day (Conde-
Sieira et al., 2012a).

The presence of GK-independent glucosensing mechanisms
and their response to changes in glucose levels has recently been
assessed in different central and peripheral areas of rainbow
trout (Polakof and Soengas, 2013; Otero-Rodiño et al., 2015,
2016a,b,c). These include hypothalamus (mitochondrial activity,
sweet taste receptor, and LXR), hindbrain (SGLT-1), liver (sweet
taste receptor), BB (sweet taste receptor, LXR, and mitochondrial
activity), and intestine (sweet taste receptor, SGLT-1, and LXR).
Furthermore, a recent study (Balasubramanian et al., 2016) also
demonstrated increased mRNA abundance of T1R2 and LXR in
brain of rainbow trout nutritionally programmed to cope with
enhanced carbohydrate levels in the diet.

Figure 2 summarizes the integrative responses of
glucosensing systems in different fish tissues to an increase
or decrease in glucose levels.

Fatty Acid Sensors
In mammals fatty acid sensing systems are involved in
hypothalamus and hindbrain in the detection of changes in
the levels of long-chain fatty acid (LCFA) thus contributing to
energy homeostasis control (Migrenne et al., 2007; Gao et al.,
2013; Duca and Yue, 2014; Efeyan et al., 2015). The best known
mechanism is of metabolic nature (Figure 1) in a way that
a rise in LCFA levels results in increased levels of malonyl-
CoA, which inhibits carnitine palmitoyl transferase-1 (CPT-
1) then resulting in the inability of mitochondria to import
fatty acid-CoA for oxidation (López et al., 2005, 2007). There
is also evidence for the presence of alternative mechanisms
in mammals (Figure 1). These include the increased binding
capacity of fatty acid translocase (FAT/CD36) in response to
elevated LCFA levels resulting in changes in the expression of
several transcription factors (Le Foll et al., 2009). The activation
of specific isoforms of protein kinase C in response to increase
levels of LCFA results in the inhibition of K+

ATP activity (Benoit
et al., 2009; Blouet and Schwartz, 2010). The activity of K+

ATP
inhibited by increased capacity of mitochondria to produce ROS
in response to increased LCFA levels (Blouet and Schwartz, 2010).
Finally, the activity of lipoprotein lipase increases in response to
enhanced availability of triglycerides resulting in increased levels
of LCFA stimulating G-protein-coupled receptors 40 and 120
(Picard et al., 2013; Ekberg et al., 2016). These systems apparently
respond to specific LCFA, such as the monounsaturated fatty
acid oleate (C18:1 n-9) (López et al., 2007; Blouet and Schwartz,
2010; Duca and Yue, 2014). The ability of other classes of LCFA
differing in the length of their acyl chain and/or in their degree
of unsaturation to elicit the activation of these systems has
been scarcely assessed to date. The available studies in mammals
indicate that neither saturated fatty acids like palmitate (C16:0)
nor the presence of two (such as in linoleate, C18:2 n-6) or three
(such as in docosahexanoate, C22:6 n-3) double bonds activate
fatty acid sensing systems (Gomez-Pinilla and Ying, 2010; Ross
et al., 2010; Schwinkendorf et al., 2011; Greco et al., 2014).

Lipids are major nutrients in fish where they metabolically
support many different processes (Sheridan, 1994; Tocher, 2003;
Polakof et al., 2010b). Therefore, not surprisingly, many studies
evaluated the effects of different dietary lipids in fish metabolism
(Morash et al., 2009; Torstensen et al., 2009; Sánchez-Gurmaches
et al., 2010; Figueiredo-Silva et al., 2012a,b,c; Martinez-Rubio
et al., 2013). However, only recent studies provide evidence for
the presence of fatty acid sensing systems in central areas of
rainbow trout (Librán-Pérez et al., 2012, 2013a, 2014a,b, 2015a,b)
and Senegalese sole (Conde-Sieira et al., 2015a) as well as in
peripheral areas of rainbow trout (Librán-Pérez et al., 2012,
2013a,b,c, 2015c).

The treatment of rainbow trout with oleate induced responses
compatible with fatty acid sensing in hypothalamus (Librán-
Pérez et al., 2012, 2013a, 2014a), BB (Librán-Pérez et al., 2012,
2013a, 2015c), and liver (Librán-Pérez et al., 2013b,c, 2015c).
These responses include decreased lipogenic and fatty acid
oxidation capacities, reduced activity of K+

ATP, and changes in
the expression of transcription factors resultant of FAT/CD36
modulation. This response is comparable in general with that
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FIGURE 2 | Schematic drawing with a hypothetical model of integrative responses to an increase or decrease in glucose levels of glucosensing

systems in different fish tissues. ↑, increase; ↓, decrease; ?, unknown; AgRP, agouti-related peptide; Akt, protein kinase B; AMPK, AMP-activated protein kinase;

BSX, hypothalamic homeobox transcription factor; CART, cocaine- and amphetamine-related transcript; ChREBP, carbohydrate-responsive element-binding protein;

CREB, cAMP response-element binding protein; FoxO1, forkhead box protein O1; HPI, hypothalamus-pituitary-interrenal axis; mTOR, target of rapamycin; NPY,

neuropeptide Y; POMC, pro-opio melanocortin.

reported in mammals. Furthermore, in rainbow trout, similar
responses occurred after treatment with the medium-chain fatty
acid (MCFA) octanoate, and this is in contrast to mammals
(Hu et al., 2011). This different behavior between fish and
mammals might relate to the findings that body lipids in teleosts
contain considerable amounts of MCFA (Davis et al., 1999;
Trushenski, 2009) and/or MCFA oxidation in fish, at least
in rainbow trout, is equally preferred compared with that of
LCFA (Figueiredo-Silva et al., 2012a), in contrast with mammals
(Ooyama et al., 2009). The response of fatty acid sensing systems
in rainbow trout hypothalamus to increased levels of oleate or
octanoate is also supported by the response of these tissues to
specific inhibitors in vitro (Librán-Pérez et al., 2013a). Another
peculiarity of fatty acid sensing systems in fish is their apparent
capacity to respond to changes in the levels of polyunsaturated
fatty acid (PUFA) of the n-6 and particularly n-3 series. These
PUFA are very relevant for fish since their diets are particularly

rich in long chain PUFA (Sargent et al., 2002) and PUFA
are therefore abundant in their tissues (Mourente and Tocher,
1992; Tocher, 2003). Furthermore, the brain of marine fish is
particularly rich in n-3 PUFA, mainly in α-linolenate (C18:3 n-3),
eicosapentanoate (C20:5 n-3), and docosahexanoate (C22:6 n-3)
(Tocher et al., 1992; Betancor et al., 2014). Conde-Sieira et al.
(2015a) demonstrated that not only oleate but also α-linolenate
activated fatty acid sensing systems present in the hypothalamus
of Senegalese sole. This is completely different to that described
in mammals (see above) and may relate to the importance of n-
3 PUFA in fish. However, the capacity of PUFA to activate fatty
acid sensing systems appears to be specific of certain PUFA since
eicosapentanoate did not induce any significant change in fatty
acid sensing systems (Conde-Sieira et al., 2015a).

Although levels of a particular fatty acid cannot be decreased,
lipolysis inhibitors have been used to decrease circulating levels
of all fatty acids, and this resulted in decreased activity of fatty
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acid sensing systems in mammals (Oh et al., 2012, 2014). A
similar experimental approach in rainbow trout also resulted in
the inhibition of fatty acid sensing systems in hypothalamus, BB,
and liver, and these changes apparently relate to the activation
of hypothalamus-pituitary-interrenal (HPI) axis (Librán-Pérez
et al., 2014b, 2015d).

Figure 3 summarizes the integrative responses to changes in
levels of specific fatty acids of fatty acid sensing systems in
different fish tissues.

In summary, the evidence obtained in recent years
support the presence in fish central and peripheral areas of
several of the sensing mechanisms for glucose and fatty acid
already characterized in mammalian models. However, these
mechanisms are not exactly the same since besides responding
to glucose or LCFA they also respond to other molecules such as
MCFA or PUFA. Clearly, the assessment of amino acid sensing
mechanism is lacking in fish, and this is of crucial importance
considering that most fish species are carnivorous. Finally, there
is also no information available regarding cellular mechanisms
integrating information of main nutrient sensing systems into
shared regulatory pathways.

IMPACT OF NUTRIENT SENSING ON FOOD
INTAKE REGULATION

In mammals nutrient detection activates directly or indirectly
hypothalamic neurocircuits involved in the regulation of food
intake, energy expenditure, and homeostasis (Berthoud, 2002;

Morton et al., 2006, 2014; Berthoud and Morrison, 2008; Blouet
and Schwartz, 2010). These circuits include two clearly defined
populations of neurons mostly present in several hypothalamic
nuclei including arcuate, as well as in other brain regions like
hindbrain (Schwartz et al., 2000; Mobbs et al., 2005; Blouet and
Schwartz, 2010; Efeyan et al., 2015). The first population responds
to rises in circulating levels of glucose, fatty acid, or amino acid
with the enhancement of AgRP and NPY expression. The second
population responds to rises in levels of the same nutrients with
enhanced co-expression of CART and POMC. Accordingly, in
response to a rise in the levels of nutrients CART/POMC neurons
depolarize while AgRP/NPY neurons hyperpolarize (Levin et al.,
2004; Fioramonti et al., 2007). These populations also inhibit each
other producing signals to higher-order neurons (Marty et al.,
2007). Hypothalamic projections terminating in the hindbrain
also causes a flow of efferent information to tissues involved
in energy balance including liver, adipose tissue, and endocrine
pancreas (Zheng and Berthoud, 2008).

In fish, NPY/AgRP and POMC/CART neurons are present in
brain areas analogous to those in mammals (Cerdá-Reverter and
Canosa, 2009). In addition, the expression of these neuropeptides
relates to food intake control since feeding conditions change
mRNA abundance of neuropeptides (Volkoff et al., 2005,
2009; Volkoff, 2006; Hoskins and Volkoff, 2012). Indeed, food
deprivation decreased mRNA abundance of CART in goldfish
(Volkoff and Peter, 2001), cod (Kehoe and Volkoff, 2007), and
Atlantic salmon (Murashita et al., 2009) while values increased
with re-feeding in channel catfish (Kobayashi et al., 2008), and

FIGURE 3 | Schematic drawing with a hypothetical model of integrative responses to an increase (left panel) or decrease (right panel) in levels of specific

fatty acids of fatty acid sensing systems in different fish tissues. ↑, increase; ↓, decrease; ?, unknown; AgRP, agouti-related peptide; Akt, protein kinase B; AMPK,

AMP-activated protein kinase; BSX, hypothalamic homeobox transcription factor; CART, cocaine- and amphetamine-related transcript; CREB, cAMP

response-element binding protein; FoxO1, forkhead box protein O1; HPI, hypothalamus-pituitary-interrenal axis; LCFA, long-chain fatty acid; MCFA, medium-chain

fatty acid; mTOR, target of rapamycin; NPY, neuropeptide Y; POMC, pro-opio melanocortin; PUFA, poly-unsaturated fatty acid.
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post-prandial changes occurred in goldfish (Volkoff and Peter,
2001) and channel catfish (Peterson et al., 2012). As for POMC,
its mRNA abundance increased post-prandially in rainbow trout
(Gong and Björnsson, 2014), medaka (Chisada et al., 2014), and
Atlantic halibut (Gomes et al., 2015). The mRNA levels of AgRP
increased with food deprivation in hypothalamus of goldfish
(Cerdá-Reverter and Peter, 2003), zebrafish (Song et al., 2003),
carp (Zhong et al., 2013), and sea bass (Agulleiro et al., 2013),
though not in Atlantic salmon (Murashita et al., 2009) whereas
no post-feeding changes occurred in medaka (Chisada et al.,
2014). AgRP mRNA levels also increased in hypothalamus of
GH-transgenic carp that also displayed increased food intake
(Zhong et al., 2013). The mRNA abundance of NPY decreased
post-feeding in grass carp (Zhou et al., 2013), goldfish (Kehoe
and Volkoff, 2007), and zebrafish (Tian et al., 2015) but responses
were contradictory in orange-spotted grouper (Tang et al.,
2013), rainbow trout (Gong and Björnsson, 2014), and zebrafish
(Chen et al., 2016). Finally, decreased mRNA abundance of
NPY occurred in food-deprived rainbow trout (Gong et al.,
2016b).

Glucosensors and Regulation of Food
Intake
In mammals, the detection of changes in glucose levels
by glucosensing mechanisms results in regulatory responses,
including food intake, allowing the animal to control blood
glucose levels (Marty et al., 2007). Accordingly, reduced
glycaemia increases food intake whereas enhanced glycaemia
decreases food intake (Morton et al., 2014; Ogunnowo-Bada
et al., 2014; Rogers et al., 2016).

Similar changes in food intake in response to altered glucose
levels occur in fish (Polakof et al., 2011d, 2012a). Decreased food
intake occurred in rainbow trout fed with a diet enriched in
carbohydrates (Kaushik et al., 1989; Suárez et al., 2002; Krogdahl
et al., 2004; Polakof et al., 2008b,c; Figueiredo-Silva et al., 2013).
A similar response was observed after ICV or IP hyperglycaemic
treatments in the same species (Ruibal et al., 2002; Polakof
et al., 2007a, 2008a; Conde-Sieira et al., 2010a,b, 2012b). In
contrast, increased food intake occurred in rainbow trout fed a
diet with a reduced amount of carbohydrates (Sánchez-Muros
et al., 1998; Capilla et al., 2003; Polakof et al., 2008b,c) or after IP
or ICV hypoglycaemic treatments (Polakof et al., 2007a, 2008a;
Conde-Sieira et al., 2010a,b). Comparable responses of food
intake to changes in glucose levels also occurred in other fish
species including goldfish (Narnaware and Peter, 2002), tilapia
(Saravanan et al., 2012; Figueiredo-Silva et al., 2013), Siberian
sturgeon (Gong et al., 2014) or sea bass (Castro et al., 2015).

In brain areas producing AgRP/NPY and POMC/CART
histochemical studies in rainbow trout support the presence of
GK (Polakof et al., 2009) suggesting a functional relationship
between glucosensors and neuropeptides. However, few studies
in fish described changes in the mRNA abundance of those
neuropeptides in response to changes in glucose levels.
The mRNA abundance of hypothalamic NPY decreased in
hyperglycaemic-treated rainbow trout (Conde-Sieira et al.,
2010b, 2012b; Aguilar et al., 2011; Otero-Rodiño et al., 2016a).

A similar decline occurred in fish fed with a carbohydrate-
enriched diet, such as in rainbow trout (Figueiredo-Silva et al.,
2012c) and goldfish (Narnaware and Peter, 2002) whereas in
the whole brain of gilthead sea bream no changes occurred
(Babaei et al., 2017). CART mRNA levels in hypothalamus
increased in response to elevated glucose levels in catfish
(Subhedar et al., 2011) and rainbow trout (Conde-Sieira et al.,
2010b, 2012b; Otero-Rodiño et al., 2015) or after rainbow trout
were fed with a carbohydrate-enriched diet (Figueiredo-Silva
et al., 2012c). Hypothalamic POMC mRNA levels increased
in hyperglycaemic rainbow trout (Conde-Sieira et al., 2010b;
Otero-Rodiño et al., 2015). Finally, AgRP mRNA abundance
did not display changes in hypothalamus of rainbow trout
after hyperglycaemic treatment (Otero-Rodiño et al., 2015,
2016a). Therefore, the mRNA abundance in glucosensing central
areas (hypothalamus and hindbrain) of the four neuropeptides
involved in the food intake regulation is affected by changes in
glycaemia, and this is compatible with the changes observed in
food intake (Polakof et al., 2008a,b).

Fatty Acid Sensors and Regulation of Food
Intake
In fish fed with a lipid-enriched diet, a decrease in food intake
usually takes place. This occurred for instance in rainbow trout
(Peragón et al., 2000; Rasmussen et al., 2000; Gélineau et al.,
2001; Forsman and Ruohonen, 2009; Figueiredo-Silva et al.,
2012c; Saravanan et al., 2013), chinook salmon (Silverstein et al.,
1999), polka-dot grouper (Williams et al., 2006), Senegalese
sole (Bonacic et al., 2016) or grass carp (Li et al., 2016).
Moreover, enhanced lipid storage is also usually associated with a
reduced food intake (Shearer et al., 1997; Silverstein et al., 1999;
Johansen et al., 2002, 2003). Therefore, lipid metabolism is clearly
influencing food intake control in fish. Considering the relative
high importance of fatty acids within the lipid pool, both in fish
diets and in tissue composition, is not surprising that the available
studies in fish focussed on fatty acids.

In recent studies in rainbow trout a decrease in food intake
was observed after IP (Librán-Pérez et al., 2012) or ICV (Librán-
Pérez et al., 2014a; Velasco et al., 2016a,b) administration of
oleate or octanoate, with the effect being more important for
octanoate. The effect of octanoate is specific of fish (at least
rainbow trout) since in mammals treatment with this fatty acid
did not affect food intake (López et al., 2007; Hu et al., 2011).
Moreover, when rainbow trout fed diets containing different
lipid composition, the lower food intake occurred in fish with
the highest levels of fatty acid in plasma (Luo et al., 2014).
This finding supports that central fatty acid sensing mechanisms
mediated the lipid-induced decrease in food intake. Further
support come from results obtained in rainbow trout where the
decrease in food intake induced by treatment with a fatty acid
synthase (FAS) inhibitor is counteracted by the simultaneous
presence of an acetyl-CoA carboxylase inhibitor (Librán-Pérez
et al., 2012), i.e., a response similar to that of mammals (Loftus
et al., 2000; Gao and Lane, 2003; Hu et al., 2011). In Senegalese
sole IP treatment with oleate, α-linolenate, or eicosapentanoate
also resulted in a decrease in food intake (Conde-Sieira et al.,
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2015a). Furthermore, when levels of circulating fatty acid
decreased through pharmacological treatment a clear increase
in food intake occurred in rainbow trout (Librán-Pérez et al.,
2014b).

In mammals, the activation of fatty acid sensing systems
results in food intake inhibition through changes in the
expression of anorexigenic and orexigenic neuropeptides (López
et al., 2005; Oh et al., 2016). Accordingly, the increase in LCFA
levels results in a decrease in the mRNA abundance of AgRP and
NPY as well as in an increase in mRNA abundance of CART
and POMC. Therefore, not surprisingly, several studies have
described changes in mRNA abundance of neuropeptides in fish
fed lipid-enriched diets. Feeding fish with these diets resulted in
increased mRNA abundance of POMC in rainbow trout (Librán-
Pérez et al., 2015b), and increased mRNA abundance of CART
in rainbow trout (Figueiredo-Silva et al., 2012c; Librán-Pérez
et al., 2015b) and Atlantic salmon (Hevrøy et al., 2012). Feeding
diets enriched in lipids also induced a decrease in NPY mRNA
abundance in grass carp (Li et al., 2010) but not in rainbow
trout (Figueiredo-Silva et al., 2012c; Librán-Pérez et al., 2015b) or
orange-spotted grouper (Tang et al., 2013). Finally, AgRP mRNA
abundance did not change in Atlantic salmon (Hevrøy et al.,
2012) but decreased in rainbow trout (Librán-Pérez et al., 2015b)
fed with lipid-enriched diets.

Other available studies described the impact of treatments
with specific fatty acids on mRNA abundance of orexigenic
and anorexigenic neuropeptides. In rainbow trout oleate either
through IP (Librán-Pérez et al., 2012), in vitro (Librán-Pérez
et al., 2013c) or ICV (Librán-Pérez et al., 2014a; Velasco et al.,
2016a,b) treatments resulted in hypothalamus in a decrease
in mRNA abundance of NPY and an increase in mRNA
abundance of CART and POMC. Changes observed in NPY
mRNA levels after oleate treatment are comparable to those of
mammals (Blouet and Schwartz, 2010). The changes displayed
by neuropeptides point to an enhancement of the anorexigenic
potential, which is in agreement with the effects in food intake
after treatment with the same fatty acid. The treatment of
rainbow trout with octanoate also resulted in decreased NPY
mRNA abundance after ICV treatment (Librán-Pérez et al.,
2014a), and increased mRNA abundance of CART and POMC
after ICV and in vitro treatments (Librán-Pérez et al., 2013c,
2014a). These changes also suggest an enhancement of the
anorexigenic potential in hypothalamus in response to octanoate
treatment supporting the reduced food intake observed after
treating the same species with octanoate (Librán-Pérez et al.,
2012, 2014a). This effect of octanoate is exclusive to fish, at
least rainbow trout, since in mammals octanoate does not
induce any change in mRNA abundance of neuropeptides (Hu
et al., 2011). In Senegalese sole, the treatment with oleate also
induced a decrease in the mRNA abundance of AgRP while
that of CART increased, i.e., a balance favoring an anorexigenic
response (Conde-Sieira et al., 2015a). In the same species, the
IP treatment with the PUFAs α-linolenate or eicosapentanoate
(Conde-Sieira et al., 2015a) decreased mRNA abundance of
AgRP (α-linolenate) and increased mRNA abundance of CART
(α-linolenate and eicosapentanoate) thus favoring enhanced
anorexigenic potential, in a way similar to the effects elicited by

oleate. This was the first time in any vertebrate species in which
any PUFA induced changes in hypothalamic mRNA abundance
of neuropeptides involved in food intake control. Interestingly,
parameters involved in fatty acid sensing changed only in the
case of α-linolenate (Conde-Sieira et al., 2015a) suggesting a
complex relationship between changes in fatty acid sensing and
neuropeptide mRNA abundance.

In a way similar to that described above for fatty acid sensing
systems and food intake responses, the decrease in rainbow trout
of circulating levels of fatty acid resulted in decreased mRNA
abundance of POMC and CART. This change favors enhanced
orexigenic potential (Librán-Pérez et al., 2014b), i.e., the opposed
response of that elicited by increased levels of fatty acids.

Linking Nutrient Sensing and Neuropeptide
Control of Food Intake
The mechanisms linking the function of nutrient sensing
systems with changes in the expression of neuropeptides,
which ultimately regulate food intake, are mostly unknown in
mammals. Changes in the expression of neuropeptides might
relate to modulation of forkhead box01, phosphorylated cAMP
response-element binding protein, and/or brain homeobox
transcription factor (Diéguez et al., 2011). The actions of these
factors would result in the enhancement of CART and POMC
expression and the inhibition of AgRP and NPY expression
resulting in decreased food intake (López et al., 2007; Diéguez
et al., 2011). However, it is not clear how these transcription
factors relate to the activity of the different nutrient sensing
systems. Several possibilities have been suggested in mammals
(López et al., 2007; Diéguez et al., 2011; Gao et al., 2013; Morton
et al., 2014) including direct action of malonyl CoA or CPT-1,
indirect action through CPT-1 inhibition, modulation by AMPK,
mTOR, protein kinase B (Akt), or carbohydrate-responsive
element-binding protein and/or involvement of ceramides.

In fish, several recent studies carried out in rainbow trout
provided evidence for several of these hypothetical mechanisms.
Indeed, Librán-Pérez et al. (2015b) demonstrated that protein
levels of AMPK, Akt, and mTOR increased in hypothalamus
of fish fed a lipid-enriched diet. Furthermore, Gong et al.
(2016a) demonstrated increased Akt protein levels in isolated
hypothalamic cells incubated with leptin. Finally, Velasco et al.
(2016b) also suggested the possible involvement of ceramides
in the connection between activation of hypothalamic fatty acid
sensing systems, neuropeptide mRNA abundance, and control
of food intake. Besides these preliminary studies, there is no
other evidence in fish about hypothalamic pathways related
to integration of metabolic information coming from different
nutrient sensor systems (glucose, fatty acids, amino acids) into
a shared pathway controlling food intake via neuropeptide
expression.

Food intake regulation is a complex process in which nutrient
sensing systems are apparently involved in fish, in a way
again comparable to that of mammals with notable differences
including the capacity of several nutrients like MCFA or PUFA to
modify food intake control in fish. Again, there is no information
regarding the involvement of amino acid sensing systems in fish
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on food intake regulation, and this clearly needs assessment in the
near future. Once characterized such a putative effect, the next
step would be the assessment of how and why changes in those
sensing systems translate into expression of anorexigenic and
orexigenic neuropeptides ultimately regulating food intake. The
possible mechanisms are mostly unknown, even in mamamals,
and therefore it is quite probable that important differences
between fish and mammals arise considering their different
gastrointestinal morphology and physiology, and dietary habits.

IMPACT OF NUTRIENT SENSING ON
ENERGY HOMEOSTASIS

Nutrient sensing mechanisms in mammals are also implicated
in the regulation of energy homeostasis through processes
other than food intake (Levin, 2006; Blouet and Schwartz,
2010; Morton et al., 2014), such as hormone secretion and
energy expenditure (Morgan et al., 2004; Pocai et al., 2005; Le
Foll et al., 2009; Roh et al., 2016). The homeostatic control
carried out by nutrient sensing systems occurs at both central
and peripheral levels. At the central level, the brain integrates
multiple metabolic inputs from the periphery as nutrients, gut-
derived satiety signals and adiposity-related hormones eliciting
a counter-regulatory response in peripheral tissues modulating
various aspects of metabolism (Morton et al., 2014; Rogers
et al., 2016). At peripheral level, nutrient sensing systems
modulate energy metabolism either directly or indirectly through
endocrine effectors (Marty et al., 2007; Morton et al., 2014).

Central Nutrient Sensing and
Counter-Regulation
Central Nutrient Sensing and Regulation of Hepatic

Metabolism
ICV administration of glucose or a LCFA like oleate in
mammals results in a decrease of hepatic glucose production and
lipogenesis (Obici et al., 2002; Morgan et al., 2004; Migrenne
et al., 2011). The downstream mechanism(s) involved are
presumably based on sympathetic and parasympathetic systems
that provide direct innervations to liver and endocrine pancreas
via the splanchnic nerve and vagus nerve, respectively (Morgan
et al., 2004; Migrenne et al., 2006; Blouet and Schwartz, 2012; Roh
et al., 2016).

In fish, central glucose administration affects liver
metabolism. In rainbow trout ICV administration of glucose
resulted in liver in decreased levels of glucose and glucose
6-phosphate, increased capacity for glycolysis and glycogenesis,
and decreased capacity of glucose export into plasma (Polakof
and Soengas, 2008). The presence of glucose in the brain
appears to be a signal of energy abundance indicative that no
production and release of glucose from liver is necessary to
sustain plasma glucose levels (Polakof and Soengas, 2008).
Central treatment with oleate or octanoate in rainbow trout
also induced changes in several parameters related to fatty acid
and glucose metabolism in liver directed to counter-regulate
the elevated fatty acid levels detected in the brain (Librán-Pérez
et al., 2015c). These changes in liver include increased levels

of glucose and glycogen, decreased levels of fatty acids and
total lipids, decreased mRNA abundance of GK and fructose
1,6-bisphosphatase as well as FAS and CPT-1 activities. The
changes in glucose metabolism observed in liver are similar to
those reported in mammals where ICV administration of oleate
(but not octanoate) resulted in a marked decrease of hepatic
glucose production via decreased glycogenolysis and glucose
release (Obici et al., 2002; Morgan et al., 2004). Furthermore,
the results obtained in liver metabolism were similar when
comparing central (Librán-Pérez et al., 2015c) and IP (Librán-
Pérez et al., 2013b) administration of fatty acid, which would
indicate that sensing capacity in liver is indirect and therefore
dependent on the previous sensing in brain. These changes in
hepatic metabolism after central administration of glucose or
fatty acid are indicative of a functional connection between
central nutrient sensing and production/release of fuels from
liver (Marty et al., 2007). The mechanisms involved are also likely
based on sympathetic and parasympathetic systems (Morgan
et al., 2004; Migrenne et al., 2006) since, at least in rainbow trout,
vagus and splanchnic nerves are present in the gastrointestinal
tract though it is not clear whether or not branches of those
nerves arrive to the liver (Burnstock, 1959; Seth and Axelsson,
2010).

Interestingly, in rainbow the HPI axis is also likely involved
in the counter-regulatory response of liver metabolism to a fall
of circulating FA levels, in order to restore the normal values
(Librán-Pérez et al., 2014b, 2015d), in a way comparable to that
described in mammals (Oh et al., 2012, 2014).

Central Nutrient Sensing and the Pancreatic

Counter-Regulatory Response
Central glucose detection is involved in mammals in the
pancreatic counter-regulatory response to hypoglycaemia in
order to restore normal blood glucose levels (Blouet and
Schwartz, 2010). The brain, especially the hypothalamus and
brain stem, receives and integrates this information to control
the counter-regulatory response by modulating pancreatic
insulin and glucagon secretion via the parasympathetic and
sympathetic efferent nerves that innervate pancreatic α- and
β-cells (Ogunnowo-Bada et al., 2014; Roh et al., 2016). This
response involves suppression of insulin secretion, activation
of glucagon secretion, activation of catecholamine secretion
from the adrenal glands, and the activation of hepatic glucose
production by the autonomic nervous system (Marty et al.,
2007). Conversely, central glucose administration suppresses
the counter-regulatory hormonal responses to hypoglycaemia
(Roh et al., 2016). In mammals, several studies demonstrate the
involvement of central glucosensors and their components in
the counter-regulatory response (Miki et al., 2001; Evans et al.,
2004; Sanders et al., 2004; Marty et al., 2005; McCrimmon et al.,
2005). These central glucosensors can modulate not only the
counter-regulatory response to hypoglycaemia in the pancreatic
cells by modulating the glucagon secretion, but also the glucose-
stimulated insulin secretion in the β-cells, through activation
and inhibition of the sympathetic or parasympathetic branches,
respectively (Thorens, 2011; Chan and Sherwin, 2012; Osundiji
et al., 2012).

Frontiers in Neuroscience | www.frontiersin.org 8 January 2017 | Volume 10 | Article 603

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Conde-Sieira and Soengas Fish Nutrient Sensing: A Review

In fish, central administration of glucose in rainbow trout
resulted in increased GK activity and expression in BB (Polakof
and Soengas, 2008). This may suggest an activation of the
glucosensor system in BB that could result in increased insulin
levels in plasma as part of the system trying to counter-regulate
the increase in plasma glucose levels elicited by ICV treatment
(Polakof and Soengas, 2008). Other studies carried out in
rainbow trout also support the connection between glucose levels
and pancreatic function (Polakof et al., 2012a,b). Indeed, plasma
insulin levels decrease and plasma glucagon levels increase in
fish subjected to natural or experimental deprivation of food
(Navarro and Gutiérrez, 1995). Moreover, in zebrafish exposed
to high glucose levels, insulin expression was also apparently
enhanced (Jurczyk et al., 2011).

Several studies in mammals suggest that not only glucose, but
also fatty acid detection in central nutrient sensing areas can
alter the pancreatic function through alterations of sympathetic
nervous activity (Migrenne et al., 2006; Blouet and Schwartz,
2010). Central administration of lipids that do not change
plasma fatty acid concentrations, induce increased glucose-
induced insulin secretion counteracted by the inhibition of
β-oxidation (Cruciani-Guglielmacci et al., 2004). Furthermore,
oleate injection leads to increments in plasma insulin levels
without altering glycaemia, suggesting that fatty acids per se can
regulate neural control of insulin secretion (Migrenne et al.,
2011).

In fish, ICV treatment with oleate or octanoate elicited several
changes in BB lipid metabolism (Librán-Pérez et al., 2015c),
which, in general, are different than those obtained after IP
administration using the same fatty acid (Librán-Pérez et al.,
2012) or to those described inmammals after ICV administration
of oleate (MacDonald et al., 2008). Therefore, contrary to that
observed in mammals, fatty acid sensing in BB of rainbow trout
appears to be mainly direct and probably not dependent on
previous central sensing. Furthermore, the action of peripheral
hormones is probably influencing sensing capacity since results
obtained after IP administration of fatty acid in vivo differed from
those obtained with the same tissue in vitro (Librán-Pérez et al.,
2013a).

Peripheral Nutrient Sensing and Energy
Homeostasis
Metabolic Response of Liver to Changes in Nutrient

Abundance
In fish, as in mammals, the regulation of glucose levels in blood
depends on the balance between glucose utilization via glycolysis
or glycogenesis, and glucose production via gluconeogenesis
or glycogenolysis in liver. An imbalance in this regulation
could be responsible of glucose intolerance in some fish species
(Enes et al., 2009; Polakof et al., 2012a). This regulation
relies on the differential response to variations in glycaemia
of enzymes involved in hepatic metabolism. GK has been
shown to be essential in fish liver for induction by glucose of
key glycolytic and lipogenic enzymes and repression of genes
involved in gluconeogenesis (Vaulont et al., 2000) thus acting
as a glucosensor (Magnuson and Matschinsky, 2004; Polakof

et al., 2011d). Thus, many fish species increased GK activity
and/or expression as well as glycolytic potential in liver under
hyperglycaemic conditions induced by glucose administration or
by feeding diets with high contents of carbohydrates (Tranulis
et al., 1996; Panserat et al., 2000; Enes et al., 2006, 2009; Conde-
Sieira et al., 2010a, 2015b, 2016; Castro et al., 2016).

Changes in circulating levels of glucose also modulated other
components of the GK-dependent glucosensing machinery in
liver of different fish species (Hemre et al., 2002; Polakof
et al., 2008b, 2011d; Enes et al., 2009). These include variations
in glucose and glycogen levels, GLUT2 mRNA abundance,
glycolytic and glycogenic potentials, and in the activity of K+

ATP
occurred in the liver of hyperglycaemic rainbow trout (Conde-
Sieira et al., 2010a, 2012a). Moreover, in rainbow trout fed a
carbohydrate-enriched diet an up-regulation occurred in these
parameters while feeding a carbohydrate-free diet resulted in a
down-regulation (Polakof et al., 2008b). As for GK-independent
mechanisms, experimental results obtained in fish liver indicate
enhanced mitochondrial activity in response to increased levels
of glucose in rainbow trout (Craig et al., 2013; Otero-Rodiño
et al., 2016b). However, these responses were not reflected in
other fish species such as zebrafish (Seiliez et al., 2013), red
sea bream (Liang et al., 2003) or grass carp (Li et al., 2010).
Furthermore, experiments in vitro carried out in rainbow trout
did not confirm the presence of a glucosensing mechanism in
liver mediated by the mitochondrial activity (Otero-Rodiño et al.,
2016c). The mechanism based on sweet taste receptor appears
to be operative in liver of rainbow trout since the responses
obtained with this tissue in vitro (Otero-Rodiño et al., 2016c)
are compatible with the responses described in mammalian liver
(Treesukosol et al., 2011) although with some differences to those
presented in vivo (Otero-Rodiño et al., 2016b). A glucosensor
based on the hepatic LXR seems to work differentially in fish liver
compared with mammals since gluconeogenesis is not inhibited
by hyperglycaemia either induced by glucose administration or
by feeding fish with carbohydrate-enriched diets (Panserat et al.,
2001; Kirchner et al., 2008; Polakof et al., 2011d; Otero-Rodiño
et al., 2016b,c). However, in other fish species such as Senegalese
sole, gilthead sea bream or common carp a clear inhibition
of gluconeogenesis occurred under hyperglycaemic conditions
(Panserat et al., 2002b; Kamalam et al., 2013; Conde-Sieira
et al., 2015b, 2016) although no studies regarding glucosensing
mechanisms based on LXR are available in these species.

Other metabolic sensors regulate intermediary metabolism in
mammals through control of intracellular glucose use (Polakof
et al., 2012a), including AMPK (activated when the energy
level in the cell is low) or mTOR (activated when the levels of
nutrients increase). In fish, AMPK phosphorylation decreased
in liver and mTOR phosphorylation increased in liver and
muscle of rainbow trout under post-prandial conditions (Seiliez
et al., 2008; Lansard et al., 2010; Polakof et al., 2011e).
Furthermore, the pharmacological activation of hepatic AMPK
and the inhibition of mTOR pathway induce glucose catabolism
and increased gluconeogenesis besides decreased glycolysis in
trout liver, respectively (Lansard et al., 2010; Polakof et al.,
2011e). These findings suggest the existence in fish of a system
induced by feeding carbohydrates with similar consequences
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on glucose metabolism as those observed in mammals (Seiliez
et al., 2008; Lansard et al., 2010; Polakof et al., 2011e). Moreover,
under hyperglycaemic conditions a decrease in the mRNA
abundance of sirtuin-1 (another integrative nutrient sensor) is
observed in liver and BB of rainbow trout (Otero-Rodiño et al.,
2016b), similar to that described in mammals (Ruderman et al.,
2010; Velásquez et al., 2011). Therefore, evidences exist in fish
regarding the functioning of integrative energy and nutrient
sensors in response to changes in the levels of a nutrient like
glucose (Otero-Rodiño et al., 2016b).

Increased circulating fatty acid levels also induce metabolic
changes in liver of fish as in mammals, in order to restore normal
conditions. High content of lipids in the diet reduce lipogenic
potential and increases β-oxidation in the liver of many fish
species (Dias et al., 2004; Figueiredo-Silva et al., 2010; Borges
et al., 2013; He et al., 2015; Librán-Pérez et al., 2015b; Li et al.,
2016). Furthermore, dietary lipid level affects glucose metabolism
inducing hyperglycaemia, and reducing glycolytic capacity and
increasing gluconeogenic potential in liver, as described in several
fish species like rainbow trout (Gélineau et al., 2001; Panserat
et al., 2002a; Figueiredo-Silva et al., 2012a,b), other salmonids
(Mazur et al., 1992; Hemre and Sandnes, 1999), grouper (Cheng
et al., 2006), sunshine bass (Hutchins et al., 1998), and Senegalese
sole (Borges et al., 2014). The long-term use of lipid-enriched
diets in fish can compromise glucose homeostasis due to an
impairment on insulin signaling and a down regulation of the Akt
and mTOR pathways, as observed in rainbow trout or Senegalese
sole (Panserat et al., 2002a; Figueiredo-Silva et al., 2012b; Borges
et al., 2014).

Several of the putative components of fatty acid sensing
mechanisms are present in fish liver (Kolditz et al., 2008; Plagnes-
Juan et al., 2008; Lansard et al., 2009; Skiba-Cassy et al., 2009;
Polakof et al., 2010b). Moreover, the peripheral administration
of oleate or octanoate induces in rainbow trout enhanced fatty
acid catabolism as well as reduced lipogenic and glycolytic
potentials, suggesting a direct action of fatty acid administration
on hepatic glucose and lipid metabolism (Librán-Pérez et al.,
2013b). However, under in vitro conditions (Librán-Pérez et al.,
2013c), administration of oleate or octanoate induces changes
opposed of those observed in vivo, which indicates that fatty acid
sensing capacity in liver is indirect and probably be the result of
previous hypothalamic sensing. The finding that ICV treatment
in rainbow trout with the same fatty acid induced changes in fatty
acid sensing systems (Librán-Pérez et al., 2015c) similar to those
obtained after IP treatment supports this hypothesis.

Nutrient Sensing in BB and the Modulation of

Hormone Release
In mammals, the glucosensing mechanism based on GK present
in pancreatic β-cells is involved in modulation of insulin release
in response to changes in blood glucose levels (Rutter et al.,
2015), which therefore constitutes an essential mechanism for
the maintenance of glucose homeostasis (MacDonald et al., 2005;
Polakof et al., 2011d).

Experimental evidences suggest that a glucosensor system
linked to insulin secretion is present in pancreatic endocrine
cells in fish. Indeed, insulin release is stimulated by glucose

(Epple et al., 1987; Mommsen and Plisetskaya, 1991; Hrytsenko
et al., 2008; Jurczyk et al., 2011) as well as by 2-deoxyglucose,
mannose and K+ (Ronner and Scarpa, 1987; Ronner, 1991)
and inhibited under hypoglycaemia induced by food deprivation
(Navarro and Gutiérrez, 1995). These changes may relate to
those observed in the pancreatic glucosensor system in fish
under altered conditions of glycaemia. In rainbow trout BB these
include increased GK activity and expression, GLUT2 expression,
glycolytic capacity as well as glucose and glycogen levels in
hyperglycaemic fish (Polakof et al., 2007a,b). In the same species,
feeding fish with diets enriched in carbohydrates upregulates
glucosensing response in BB whereas feeding fish with diets poor
in carbohydrates resulted in a down-regulation of glucosensing
response in the same tissue (Polakof et al., 2008b,c). Some GK-
independent mechanisms also present in BB of rainbow trout
respond to increased levels of glucose with changes in parameters
related to mitochondrial activity, LXR, and sweet taste receptor
both in vivo (Otero-Rodiño et al., 2016b) and in vitro (Otero-
Rodiño et al., 2016c).

In mammals, lipid metabolism in the β-cell is also critical for
the normal regulation of insulin secretion (MacDonald et al.,
2008) and fatty acids directly regulate insulin release from
pancreatic β-cells (Nolan et al., 2006). In fish, the available
experimental results also demonstrate enhanced insulin release
in response to increase levels of fatty acid (Barma et al., 2006).
Moreover, insulin treatment in rainbow trout enhances the
potential of lipogenesis and decreases the potential of fatty acid
oxidation in several tissues (Plagnes-Juan et al., 2008; Lansard
et al., 2010; Polakof et al., 2010b, 2011d; Caruso and Sheridan,
2011). In rainbow trout, the decreased mRNA levels of FAS and
CPT1c in BB after treatment with oleate or octanoate (Librán-
Pérez et al., 2012) suggest that components of putative fatty acid
sensing systems respond in BB to increased fatty acid levels.
This response could modulate insulin secretion from this tissue,
as reported in mammals (Keane and Newsholme, 2014), with
the main difference that in fish fatty acid sensing systems are
also responsive to a MCFA like octanoate. This mechanism
appear to be mainly the result of a direct action of fatty acid
in β-cells (Librán-Pérez et al., 2013a) though an indirect action
by previous hypothalamic sensing mediated by vagal and/or
splanchnic outflow cannot be discarded (Librán-Pérez et al.,
2015c).

Glucosensing Capacity in Gut
The gastrointestinal tract in mammals has an important role
in the complex signaling network that controls food intake,
metabolism and energy homeostasis since it releases several
energy-related gastrointestinal hormones that send nutritional
information to the control areas in the brain through afferent
nerves (Schwartz et al., 2000; Roh et al., 2016). Accordingly, the
presence of nutrient sensing mechanisms have been proposed
in mammalian enteroendocrine cells (Miguel-Aliaga, 2012) and
enterocytes (Pfannkuche and Gäbel, 2009). Glucose can be
sensed in the gastrointestinal tract by mechanisms dependent
on sweet taste receptors and gustducin, which are activated
by glucose leading to the release of glucagon-like peptide 1
(GLP-1) and gastric inhibitory polypeptide (Kokrashvili et al.,
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2009; Miguel-Aliaga, 2012). Other glucosensing mechanisms
controlling hormonal release inmammalian gastrointestinal tract
involve electrogenic or metabolic processes mediated by SGLT-1
and GLUT2/GK (Miguel-Aliaga, 2012).

In fish intestine, histochemical studies evidence the presence
of components of different glucosensing systems (SGLT-1 and
GK) in enterocytes and enteroendocrine cells of rainbow
trout (Polakof et al., 2010a). Furthermore, molecular evidence
also pointed to the presence in fish intestine of glucosensing
mechanisms involving components of metabolic (GK/GLUT2),
electrogenic (SGLT-1), nuclear (LXR) and sweet taste receptor
systems (Ishimaru et al., 2005; Geurden et al., 2007; Hashiguchi
et al., 2007; Kirchner et al., 2008; Cruz-García et al., 2009;
Polakof et al., 2010a). However, only few studies characterized
the response of these systems in intestine to increased levels
of glucose. In black bullhead enterocytes enhanced glucose
uptake through SGLT-1 occurred in fish fed a diet rich in
carbohydrates (Soengas and Moon, 1998) whereas in zebrafish
GLUT2 mRNA abundance in intestine changed in parallel with
changes in glucose levels (Castillo et al., 2009). In rainbow trout,
increased glycogen levels, GK activity, glycolytic capacity, and
transcript levels of GK, SGLT-1, and LXR, as well as decreased
transcript levels of T1R and gustducin occurred in intestine of
hyperglycemic trout (Polakof et al., 2010a; Polakof and Soengas,
2013). These systems seem to operate in fish in a different way
compared with other vertebrate species (Polakof and Soengas,
2013) but certainly appear to be functional, and thus presumably
involved in fish gastrointestinal physiology, especially through
production and release of gastrointestinal hormones.

Possible Glucosensing Capacity in Head Kidney and

Its Role on Cortisol Release
One study using head kidney perifused cultures in rainbow
trout demonstrated that in the presence of ACTH, cortisol
release increased in parallel with the increase of glucose in the
medium (Conde-Sieira et al., 2013). These changes could relate
to the presence of a glucosensing system in putative interrenal
cells in head kidney that would respond to glucose levels in
a way similar to that of pancreatic β-cells for insulin release.
Accordingly, immunohistochemical studies indicate the presence
of GK protein in interrenal cells and SGLT-1 protein in both
interrenal and chromaffin cells of rainbow trout (Conde-Sieira
et al., 2013). However, metabolite levels and enzymes activities
involved in glucosensing mechanisms did not show a clear
response to changes in circulating glucose levels in head kidney
of rainbow trout, probably due to the high cellular heterogeneity
of the tissue assessed (Conde-Sieira et al., 2013). A further
study in rainbow trout (Gesto et al., 2014) supports that cortisol
release under stress conditions in rainbow trout might relate to
hyperglycemia previously elicited by catecholamine action.

As a whole, the nutrient sensing systems characterized in fish
are involved in the regulation of energy homeostasis through
mechanisms other than regulation of food intake. The evidence
obtained in recent years pointed to a role of these systems in
counter-regulatory mechanisms as well as in the regulation of
hormone release, though the evidence is preliminary in some
cases.

ENDOCRINE MODULATION OF NUTRIENT
SENSING

Several hormones modulate the response of nutrient sensing
systems in mammals to changes in the levels of nutrients. These
hormones provide information about homeostasis, status of
energy stores, and the presence of food and its composition in
the gastrointestinal tract. These include ghrelin, insulin, leptin,
cholecystokinin (CCK), GLP-1, adiponectins, cannabinoids, and
glucocorticoids (Diéguez et al., 2009; Blouet and Schwartz, 2010;
Morton et al., 2014).

Results obtained in recent years in fish provide evidence for
the modulatory role of several of these hormones in the activity
of nutrient sensing systems as well as in the mRNA abundance
of neuropeptides related to the control of food intake. Moreover,
several of these hormones modulate peripheral nutrient sensing
systems.

As in other vertebrates, insulin administration modifies
glucose and lipid metabolism in fish, by enhancing the glucose
uptake in liver and muscle, increasing hepatic glycolytic and
lipogenic potentials, and depressing gluconeogenesis and fatty
acid oxidation (Mommsen and Plisetskaya, 1991; Plagnes-Juan
et al., 2008; Jin et al., 2014). The effects on lipid metabolism
depend on the dose of insulin administered as well as the feeding
status of fish (Polakof et al., 2010b, 2011f). Insulin is present
and synthesized in fish brain (Caruso et al., 2008) where insulin
receptors are also present (Gutiérrez and Plisetskaya, 1994;
Leibush et al., 1996). Insulin treatment resulted in contradictory
effects in food intake in fish. In rainbow trout IP administration
of insulin inhibited (Librán-Pérez et al., 2015a) or activated
(Polakof et al., 2008a; Conde-Sieira et al., 2010b) food intake
whereas ICV treatment with insulin inhibited food intake in
rainbow trout (Soengas and Aldegunde, 2004) but not in catfish
(Silverstein and Plisetskaya, 2000). The putative anorectic effects
of insulin would be in agreement with the increased anorexigenic
potential elicited by insulin treatment as demonstrated increased
mRNA abundance of CART in rainbow trout (Librán-Pérez
et al., 2015a) and catfish (Subhedar et al., 2011) as well as
decreased NPY mRNA abundance in rainbow trout (Librán-
Pérez et al., 2015a). As for insulin capacity to modulate
the activity of nutrient sensing systems, its administration in
rainbow trout inhibits glucosensing response in hypothalamus,
hindbrain, BB, and intestine (Polakof et al., 2007a, 2008a,
2010b; Conde-Sieira et al., 2010b). As for fatty acid sensing
systems, no clear effects of insulin treatment were observed
in rainbow trout hypothalamus (Librán-Pérez et al., 2015a), in
contrast to mammals (Duca and Yue, 2014). However, in liver
and BB insulin treatment potentiates the effect of oleate and
octanoate on fatty acid sensing systems (Librán-Pérez et al.,
2015a).

Leptin treatment is usually anorectic in fish as demonstrated
studies in rainbow trout (Murashita et al., 2008; Kling et al.,
2009; Aguilar et al., 2010; Gong et al., 2016a), goldfish (Volkoff
et al., 2003; de Pedro et al., 2006; Vivas et al., 2011) and
striped bass (Won et al., 2012). This anorectic effect occurred
in parallel with changes in the expression of neuropeptides
generally indicating an enhanced anorexigenic potential. Thus,
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leptin treatment induced a decrease in NPY mRNA levels
in hypothalamus of rainbow trout (Murashita et al., 2008;
Aguilar et al., 2011), hypothalamus and telencephalon of goldfish
(Volkoff et al., 2003), and in whole brain in grass carp (Li
et al., 2010). POMC mRNA abundance increased in response to
leptin treatment in rainbow trout (Murashita et al., 2008; Aguilar
et al., 2011; Gong et al., 2016a). Leptin treatment also increased
CART mRNA levels in hypothalamus of goldfish (Volkoff and
Peter, 2001), catfish (Subhedar et al., 2011), and rainbow trout
(Murashita et al., 2008; Aguilar et al., 2011; Gong et al., 2016a).
Furthermore, leptin receptor knockout for medaka displayed
(compared with the wild type) a higher food intake, as well as
decreased POMC mRNA abundance, and increased NPY and
AgRP mRNA abundance (Chisada et al., 2014) whereas zebrafish
knockout for leptin displayed changes in mRNA abundance of
genes related to glucose but not to lipid metabolism (Michel
et al., 2016). The anorectic effects of leptin could relate, at
least in part, to the activation of nutrient sensing systems.
In fact, leptin treatment clearly activates central glucosensing
systems in rainbow trout (Aguilar et al., 2010, 2011). There
is little evidence for the action of leptin on nutrient sensing
systems in peripheral tissues of fish. The only available study
showed that ICV leptin treatment in rainbow trout did not affect
liver glucosensing capacity, although an increased glycogenolytic
potential possibly mediated by the activation of the sympathetic
nervous system occurred in rainbow trout liver (Aguilar et al.,
2010).

Few studies have assessed the effects of GLP-1 on food intake
in fish to date. GLP-1 treatment resulted in an inhibition of food
intake in catfish (Silverstein et al., 2001) and coho salmon (White
et al., 2016) but not in channel catfish (Schroeter et al., 2015).
In rainbow trout GLP-1 treatment (Polakof et al., 2011b) elicited
in hypothalamus and hindbrain the activation of glucosensing
systems with increased mRNA abundance of CART and POMC,
and decreased mRNA abundance of NPY, i.e., changes clearly
indicative of enhanced anorexigenic potential. In the same
species, GLP-1 IP treatment also resulted in the activation of
GK-mediated glucosensing mechanism in liver (Polakof et al.,
2011b).

Treatments with CCK produce anorectic responses in fish as
demonstrated in rainbow trout (Gélineau and Boujard, 2001;
Jönsson et al., 2006), coho salmon (White et al., 2016), goldfish
(Himick and Peter, 1994; Kang et al., 2010), catfish (Silverstein
and Plisetskaya, 2000), sea bass (Rubio et al., 2008), and winter
flounder (MacDonald and Volkoff, 2009). Furthermore, CCK
treatment in rainbow trout activated glucosensing capacity in
hypothalamus and hindbrain (Polakof et al., 2011a), and this is
accompanied by decreased NPY mRNA levels in hindbrain and
hypothalamus, thus supporting increased anorexigenic potential.
In liver of rainbow trout IP administration of CCK also activated
glucosensing capacity (Polakof et al., 2011a).

The effects of ghrelin treatment on food intake in fish
are controversial. Increases were noted in goldfish (Miura
et al., 2006), brown trout (Tinoco et al., 2014), rainbow trout
(Velasco et al., 2016a,b), striped sea bass (Picha et al., 2009)
or cavefish (Penney and Volkoff, 2014) whereas decreases
occurred in rainbow trout (Jönsson et al., 2010), channel

catfish (Schroeter et al., 2015), and tilapia (Peddu et al.,
2009). In rainbow trout ghrelin treatment activates central
glucosensing systems (Polakof et al., 2011c), an effect opposed
of that in mammals (Wang et al., 2008). In contrast ghrelin
treatment induces an inhibition of fatty acid sensing systems
in rainbow trout hypothalamus and hindbrain (Velasco et al.,
2016a,b) in a way similar to that described in mammals,
and these changes agree with those of mRNA abundance of
neuropeptides that decreased for POMC/CART and increased
for AgRP/NPY. Increased mRNA abundance of NPY occurred
in hypothalamus of ghrelin-treated goldfish (Miura et al.,
2006). Central ghrelin treatment also modulates indirectly
hepatic liver metabolism resulting in increased potential for
lipogenesis and decreased potential for fatty acid oxidation, as
indicative of inhibition of fatty acid sensing (Velasco et al.,
2016c).

A reduction in food intake is a typical response to stress in
fish, and at least part of this response might depend on changes
in the ability of stress to alter nutrient sensing systems regulating
food intake. A readjustment in the activity of hypothalamic
glucosensing mechanisms occurred in stressed rainbow trout
(Conde-Sieira et al., 2010a; Otero-Rodiño et al., 2015). This effect
might relate to any of the components of the HPI axis such
as corticotropin releasing factor (CRF), which is involved in
the effects of stress on food intake in mammals (Evans et al.,
2004; McCrimmon et al., 2006). Accordingly, the treatment of
rainbow trout hypothalamus with CRF altered functioning of
glucosensing mechanisms (Conde-Sieira et al., 2011) in a way
similar to that observed under stress conditions (Conde-Sieira
et al., 2010a).

Finally, melatonin is mainly involved in fish in the timing
of rhythmic events, but also in growth, endocrine function,
and metabolism (Falcón et al., 2010). In rainbow trout,
melatonin in vitro treatment in hypothalamic tissue activated
glucosensing mechanisms and elicited a response in the
expression of neuropeptides compatible with an enhancement
of orexigenic potential (Conde-Sieira et al., 2012a). In contrast,
in liver a clear down-regulation of glucosensing potential
occurred in response to melatonin treatment (Conde-Sieira
et al., 2012b). This differential tissue response to melatonin
treatment might relate to the day-night differences in
glucosensing capacity observed in liver of rainbow trout
(Conde-Sieira et al., 2012b).

In summary, several hormones involved in the regulation
of energy homeostasis are involved in the modulation of
glucose and fatty acid sensing systems in fish. Despite most
studies were carried out with glucosensing systems, few with
fatty acid sensing systems and none with putative amino acid
sensing systems, a preliminary conclusion can be obtained in
a way that anorexigenic/anabolic hormones demonstrated to
activate nutrient sensing systems whereas orexigenic/catabolic
hormones inhibit them. There are differences in the direction
and magnitude of the responses compared with the mammalian
model, which among other reasons might relate to the high
degree of hormone variants present in fish (as a result of their
additional genome duplication), and/or to the clear difference in
dietary habits between both models.
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FIGURE 4 | Schematic drawing summarizing functions of nutrient sensing systems in central and peripheral tissues of fish.

CONCLUSIONS

Research carried out in recent years provided information for the
presence and functioning of putative nutrient sensing systems
either in peripheral or central areas of the few fish species assessed
to date regarding this issue, mainly rainbow trout, as summarized
in Figure 4.

The main role of these systems is to participate in the control
of homeostasis through modulation of feeding behavior or other
processes such as energy expenditure or hormone secretion. The
known mechanisms are comparable to those of mammals in
several aspects but clear differences arise in others, such as the
fish capacity of detecting changes in circulating levels of MCFA
or PUFA. These differences between fish and mammals might
relate to at least three different reasons, among others. A first
reason might relate to the large importance of amino acids for
metabolic purposes in fish, not only in carnivorous but also in
herbivorous and omnivorous species. A second reason may be
due to the high variety of dietary fish habits resulting in large
differences in gastrointestinal morphology and function. A third
reason may rely on the existence in fish of multiple gene variants

in neuropeptides, hormones, and metabolic effectors resulting
from the additional gene duplication of actinopterygians. The
assessment of these topics, together with the possible presence
and functioning of amino acid sensing systems in fish, as well as
the elucidation of signaling pathways linking activity of sensors
with the effectors controlling homeostasis, such as expression
of neuropeptides controlling food intake, hormone secretion
or metabolic changes, are open questions demanding further
research in the near future.
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