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MicroRNAs (miRNAs) have been implicated in the development of some if not all cancer
types and have been identified as attractive targets for prognosis, diagnosis, and therapy
of the disease. miRNAs are a class of small non-coding RNAs (20–22 nt in length) that
bind imperfectly to the 3′-untranslated region of target mRNA regulating gene expression.
Aberrantly expressed miRNAs in cancer, sometimes known as oncomiRNAs, have been
shown to play a major role in oncogenesis, metastasis, and drug resistance. Amplification of
oncomiRNAs during cancer development correlates with the silencing of tumor suppressor
genes; on the other hand, down-regulation of miRNAs has also been observed in cancer
and cancer stem cells (CSCs). In both cases, miRNA regulation is inversely correlated
with cancer progression. Growing evidence indicates that miRNAs are also involved in the
metastatic process by either suppressing or promoting metastasis-related genes leading
to the reduction or activation of cancer cell migration and invasion processes. In particular,
circulating miRNAs (vesicle-encapsulated or non-encapsulated) have significant effects on
tumorigenesis: membrane-particles, apoptotic bodies, and exosomes have been described
as providers of a cell-to-cell communication system transporting oncogenic miRNAs from
tumors to neighboring cells and distant metastatic sites. It is hypothesized that miRNAs
control cancer development in a traditional manner, by regulating signaling pathways and
factors. In addition, recent developments indicate a non-conventional mechanism of cancer
regulation by stem cell reprograming via a regulatory network consisting of miRNAs and
Wnt/β-catenin, Notch, and Hedgehog signaling pathways, all of which are involved in con-
trolling stem cell functions of CSCs. In this review, we focus on the role of miRNAs in the
Notch-pathway and how they regulate CSC self-renewal, differentiation and tumorigenesis
by direct/indirect targeting of the Notch-pathway.
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BACKGROUND
Cancer is a heterogeneous disease with cellular hierarchies and
many different phenotypes. Strong evidence points to the fact that
the majority of cells in solid tumors are of non-tumorigenic origin.
A small population of progenitor cells is thought to be responsi-
ble for tumor initiation, growth, metastasis, drug resistance, and
recurrence. These cells are known as cancer stem cells (CSCs), since
they possess stem cell characteristics such as self-renewal, asym-
metric cell division, differentiation, and chemoresistance (1, 2).
CSCs act via signaling pathways that mediate self-renewal, includ-
ing Notch and Wnt. It is becoming widely accepted that irregular
stem cell self-renewal is essential for cancer initiation, formation,
and relapse and that CSCs play a central role in cancer cell biol-
ogy. Thus the identification of specific markers of CSCs may be
important in the discovery and development of novel oncology
therapeutics.

NOTCH SIGNALING PATHWAY
The authors support the hypothesis that cancer initiation and
development involve the improper activation of developmental
signaling pathways. Normally such pathways control the growth of
tissues and organs by maintaining the balance between cell prolif-
eration, differentiation, senescence, and apoptosis. Notch signaling
pathway plays a key role in stem cell self-renewal, cell proliferation,
and differentiation. Consequently, it has important developmental
functions, and its aberrant activation leads to many diseases and
cancers (3–5). Notch genes encode large single pass transmem-
brane proteins that regulate cell fate determination (6). Previous
studies in Drosophila, Caenorhabditis elegans, and mammalian cell
cultures have shown that Notch act as receptors for the DSL (Delta,
Serrate, and Lag-2) family of ligands and signal through two down-
stream pathways. One of these is via the CSL (CBF1, Suppressor of
Hairless, Lag-1) family of transcription factors and the other via
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the cytoplasmic adapter protein Deltex. In mammals, the Notch
signaling pathway includes four receptors (Notch 1–4) and five lig-
ands (Delta-like 1, 3, and 4 & Jagged-1 and 2) (7). Notch signaling
is initiated through ligand–receptor binding between two neigh-
boring cells. Upon activation, Notch undergoes cleavage, releasing
its intracellular domain NICD and translocates into the nucleus
for transcriptional activation of its downstream target genes (8).

NOTCH IN TUMORIGENESIS MEDIATED BY CSCs
Modifications in the Notch-pathway and its associated genes
can result in ligand dysregulation having dramatic developmen-
tal effects in humans, thus implicating Notch signaling in sev-
eral inherited diseases such as Cerebral Autosomal Dominant
Arteriopathy with Subcortical Infarcts and Leukoencephalopa-
thy, Alagille syndrome, and Spondylocostal dysostosis. Since the
discovery of Notch1 gene alterations in T-cell acute lymphoblas-
tic leukemia/lymphoma, deregulated Notch signaling has been
connected to many solid tumor pathologies and different can-
cer types (leukemia, neuroblastomas, skin, cervical, lung, prostate,
and breast cancer) (4, 9, 10). The role of Notch signaling in
tumorigenesis is thought to be mainly oncogenic, although some
observations have suggested an anti-proliferative role in a small
number of cancers (hepatocellular carcinoma and skin cancer)
(11–13). The oncogenic function of Notch signaling is associated
with high levels of Jagged-1, mainly in prostate and breast can-
cer, as well as with loss of Numb activity – a negative regulator
of Notch-pathway – in 40% of breast cancers and 30% of lung
cancers (5, 14, 15). Thus, the deregulation of the Notch signal-
ing pathway has so far been linked to metastasis, recurrence, and
reduced overall survival. On the other hand, tumor aggressive-
ness has been linked to the cross-talk between Notch and other
oncogenic pathways such as Wnt/β-catenin, NF-kB, Ras, and Akt
(16–18).

Although irregular activation of a single pathway may result
in tumorigenesis, oncogenic pathways rarely operate in isola-
tion. Cross-talk between signaling pathways adds to the com-
plexity of the disease and are heavily influenced by the microen-
vironment. Recent studies have revealed that the interaction
between the Notch and Wnt/β-catenin signaling pathways dri-
ves the CSC uncontrolled self-renewal, resulting in CSC-related
tumor recurrence after treatment (19, 20). Notch signaling regu-
lates both the CSC formation and the epithelial-to-mesenchymal-
transition (EMT) phenotype during tumor progression. The
EMT process, which occurs during tumor progression, drives the
CSCs to become metastatic. Indeed, Notch-mediated EMT con-
verts polarized epithelial cells into motile, invasive cells due to
loss of E-cadherin – a membrane glycoprotein involved in the
adherence of adjacent cells – which results in β-catenin acti-
vation and dissemination of cancer cells and CSCs from the
primary tumor (21–23). Notch signaling pathway interacts with
several oncogenic pathways, transcription, and growth factors
(e.g., Snail, Slug, and TGF-β) regulating various biological and
pathologic processes during cancer development, progression,
and therapy. However, a growing body of evidence indicates
that Notch is regulated at molecular level via cross-talk with
miRNAs suggesting a critical role for these molecules in tumor
biology (24, 25).

MiRNA BIOGENESIS
MiRNAs are a class of small, non-coding RNAs that regulate
mRNA by acting at the post-translational level (26). The interac-
tion between miRNAs and mRNAs is highly complex; in particular
each miRNA can control hundreds of gene targets underlining the
extraordinary impact of miRNA on protein expression. We are just
beginning to understand how this novel class of regulators affects
processes, at least, in mammals. Processed from longer primary
transcripts by Drosha and Dicer, miRNAs bind through imper-
fect complementarity to their target genes at the seed sequence
(eight-base long), of the 3′ non-coding region leading to degra-
dation of target mRNA due to deadenylation/mRNA cleavage or
to repression of mRNA translation initiation (27, 28). MiRNAs
have been implicated in a wide range of cell functions – nor-
mal or pathological – comprising of cell proliferation, apoptosis,
differentiation, and self-renewal (2, 29). Therefore, dysregulation
of miRNAs is linked to a range of human pathologies including
cancer and its expression is associated with cancer development,
progression, and prognosis mainly because of their involvement
in cell proliferation and apoptosis (30). MiRNAs were shown
to be differentially expressed in cancer forming unique miRNA
patterns with some miRNAs to have oncogenic activity while
others have tumor suppressor activity (oncosuppressors). Thus,
oncogenic miRNAs are upregulated in cancer whereas tumor sup-
pressor miRNAs are downregulated (31). With regards to cancer
biology, miRNAs targeting oncogenes are often located in fragile
regions with a tension to be downregulated in tumors leading to
overexpression of their target oncogenes. A breakthrough study
showed that 50% of the annotated human miRNAs are positioned
in these unstable sites and are associated with cancer and function
in tumor progression (32).

CANCER AND miRNAs
Tissue-specific/tissue-enriched miRNAs, often deregulated, play a
major role in cancer progress functioning as both oncosuppressors
and oncogenes. For example, upregulated miR-21 is associated
with breast and lung cancer, glioblastoma, leukemia, neuroblas-
toma, and liver metastasis (33, 34). Brain-specific neuromiR-124
is downregulated in glioblastoma resulting in increased CSC num-
bers and oncogenic capacity (35). On the other hand, let-7, nor-
mally expressed in lung, is downregulated in lung cancer and
associated with poor survival (36), lung-specific pneumomiR-
29 suppresses tumorigenicity in non-small cell lung cancer cells
and miR-143 and miR-145 have been shown to be downregu-
lated in breast, cervical, and colorectal cancers (37, 38). Moreover,
loss of miR-15 and miR-16 has been related to chronic lymphoid
leukemia by negatively regulating the anti-apoptotic gene BCL2,
supporting a role in the immune system (39, 40). Similarly, many
other miRNAs have been related to Notch signaling pathway, by
regulating Notch-associated genes and affecting many types of
cancer (Table 1).

IMPORTANT miRNAs CONTROLLING CANCER VIA
REGULATION OF NOTCH SIGNALING PATHWAY
MiR-34 FAMILY
MiR-34 family is composed of miR-34a, miR-34b, and miR-34c
and has been connected to the regulation of p53 and Notch
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Table 1 | Important miRNAs regulating Notch signaling pathway and

Notch-associated genes.

miRNA Cancer type/

cancer cells

Notch-related

target

miR-34 family Pancreatic CSCs Bcl-2/Notch (42, 46)

miR-34a Pancreas, melanoma, lung,

breast, and glioma

p53/Notch1/Notch2/

Jagged-1/Hes-1 (24, 57)

miR-34a Prostate and colon CSCs Notch1 (47, 58)

miR-34b/c Melanoma and glioma Notch1/Notch2 (45, 59)

miR-34c-3p Glioma Notch2 (45)

miR-200 family Prostate Jagged-1/Notch (49)

miR-200 Squamous esophangeal ZEB-1/Notch3 (51)

miR-200b Pancreatic cancer cell line Jagged-1/2, Hes-1,

Heg2, Bcl-2 (50)

miR-200c/

miR-141

Pancreatic adenocarcinoma

and basal type of breast

cancer

ZEB-1/Notch (Jagged-1,

Maml2, Maml3) (48)

miR-199-5p Medulloblastoma and

osteosarcoma

Notch1/Jagged-1/Hes-1/

Dll-1 (25)

miR-146a Breast Notch/Numb (53)

miR-1 Colorectal NOTCH3 (55)

miR-143 Glomus tumors NOTCH1-3 (56)

signaling pathway. Low levels or no expression of miR-34 cor-
responds to higher probability of breast, brain, pancreatic, and
non-small cell lung cancer suggesting a tumor suppressor role (24,
41, 42). Repression of miR-34a was identified in a panel of tumor-
derived cancer cell lines such as pancreas, melanoma, lung, breast,
and glioma (43, 44). However, miR-34b/c have been identified
in malignant melanoma cases and glioma patients’ tissues (45).
The involvement of miR-34 family has now been shown to affect
major properties of CSCs. For example, it has been revealed that
restoration of miR-34 inhibits CD44+/CD133+ pancreatic CSCs
self-renewal capacity through direct down-regulation of Bcl-2 and
Notch signaling pathways (46). Furthermore, transfection with
miR-34c-3p in U251 and U87 glioblastoma cell lines inhibited cell
proliferation, induced cell apoptosis, and obstructed glioma cell
invasion. Therefore, it was established that miR-34c-3p overex-
pression reduced the levels of Notch 2 (Figure 1) indicating that
cell proliferation inhibition occurred via the Notch signaling path-
way (45). On the other hand, it is well recognized that Notch 1 is
linked to CSCs “stemness” characteristics and promotes the EMT
phenotype, which is closely linked to many types of metastatic
cancer. In prostate cancer for instance, upregulated levels of Notch
1 are highly associated with prostate cancer development, metas-
tasis, and progression. Re-expression of miR-34a in C4-2B and
CWR22rv1 prostate cancer cells reduced the expression of Notch1,
decreased the self-renewal capacity and inhibited the growth of
prostate cancer cells (47). Taken together, miR-34 family directs
the regulation of Notch 1 and 2 protein expression in glioma cells,
pancreatic, and prostate cancer cells mediating the suppression of

self-renewal and differentiation properties of CSCs. Restoration
of miR-34 levels could be eventually used as cancer therapeutic by
down-regulating the Notch family members.

MiR-200 FAMILY
MiR-200 family consists of five members: miR-200a, miR-200b,
miR-200c, miR-141, and miR-429. Recent studies have shown
that the miR-200 family is highly implicated in the regulation
of CSCs with examples involving breast, colorectal, prostate, and
brain CSCs. Low levels of miR-200c and miR-141 are correlated
with high expression of ZEB-1 – an EMT activator – which in
turn activates Notch signaling pathway by targeting the Notch lig-
and Jagged-1 and Notch co-activators Maml 2 and 3. Reduced
expression of miR-141 and miR-200c affects stem cell proper-
ties and drug resistance in two human cancer types’ pancreatic
adenocarcinoma and basal type of breast cancer (48). Moreover,
re-expression of miR-200 family including miR-141 and miR-429
directly inhibits Jagged-1 in human metastatic prostate cancer cells
suggesting a new way to control the fate of Notch-pathway (49).
Similarly, in another study transfection of miR-200b in Rink-1
cells (pancreatic cell line) have reduced the levels of Jagged-1/2
and these of their target genes Hes-1, Hey-2 (Figure 1), and Bcl-
2 leading to cell growth inhibition (50). Another critical study
connects NOTCH3 in the regulation of ZEBs and the miR-200
family revealing how critical is Notch in EMT, invasion and tumor
formation in squamous esophageal cancers (51). However, more
in-depth investigation is required in order to understand how the
miR-200 family regulates the Notch signaling pathway.

MiR-199 FAMILY
MiR-199-5p has been linked to the transcription factor Hes-1
in medulloblastoma tumors where it regulates cell growth and
several CSC genes via Notch signaling pathway. In metastatic can-
cer patients’ miR-199-5p expression is lost, yet re-expression of it
blocks the Notch signaling pathway (Figure 1) and the population
of medulloblastoma stem cell like cells is decreased (25). Zollo’s
group went a step further by developing stable nucleic and lipid
particles (SNALPs) to deliver miR-199-5p in different tumorigenic
cell lines such as colon,breast, glioblastoma,and medulloblastoma.
Impairment of cell proliferation and CSC-associated markers was
due to effect of miR-199-5p delivery via SNALPs however, differ-
ent efficacies due to cell type cannot be excluded and the efficiency
of these carriers can be limited by their instability and non-specific
targeting in vivo (52).

SINGLE miRNAs REGULATING NOTCH
Recently, miR-146a was also found to interact with Notch via
regulation of Numb in breast carcinomas (53) and to stimulate
NF-κB activity through Notch 1 [reviewed in Ref. (54)]. Another
miRNA involved in Notch-pathway is miR-1, which it was reported
that directly regulates Notch via Dll-1 protein in mouse embry-
onic stem cells. MiR-1 has been linked to human hepatocellular
carcinoma, lung, prostate, and head and neck cancers; therefore
it is only a matter of time for Notch to be associated with the
above through miR-1 [reviewed in Ref.(54)]. A recent study by
Furukawa (55) demonstrated the association of miR-1 in colorec-
tal tumors and the potential to suppress NOTCH3 expression,
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FIGURE 1 | Examples of miRNA re-expression therapy using miR-34, miR-200, and miR-199 family, in glioblastomas, pancreatic, and
medulloblastomas cancer cells, all affecting the Notch signaling pathway.

which in turn results in reduction of Asef regulating the growth,
migration, and invasion potential of cancer cells. Other reports,
show an association of MIR143 gene with NOTCH1-3; suggest-
ing that the mechanism of MIR143–NOTCH1-3 tumorigenesis is
through oncogenic activation of NOTCH driven by the very strong
MIR143 promoter in malignant glomus tumors (56).

THERAPEUTIC APPLICATIONS OF miRNAs IN CANCER
The development of therapies against cancer and CSCs has dri-
ven toward a new generation of cancer therapeutics. RNA-based
approaches promise to be one of the next major classes of cancer
therapeutics. Advancements in genetics relating to the role of RNA
in an ever-expanding range of cellular pathways and processes have
shown that RNA has many of the genetic and regulatory proper-
ties formerly attributed only to DNA and proteins. Current work
is based on modified mRNA regulating the expression of thera-
peutic proteins and on RNAi variants such as siRNA and miRNA,
which can either block oncogenes or amplify oncosuppressor genes
in cancer cells. The success of RNAi therapeutics hinges on their
effective and safe delivery to their molecular targets inside can-
cer cells and tumors. However, targeted delivery remains a major
challenge in miRNA therapy because naked ribonucleic acids are
subject to rapid degradation by serum nucleases and miRNAs
cannot diffuse freely into cells. To deliver the new class of tar-
geted drugs, several technologies are under development including
nanocapsules and nanocarriers, micro/nanoparticles, liposomes,
and PEGylated vesicles. Delivery of miRNAs or miRNA inhibitors
requires a flexible and efficient delivery system, for example, miR-
34a has being encapsulated in stable-acid-lipid particles used
to target Dll-1 in vitro (52). Other delivery approaches involve
the use of agents such as polyethylenimine (PU-PEI) to medi-
ate miRNA delivery. PU-PEI-mediated miR-145 delivery vehicle
has been used successfully for miR-145 delivery to glioblastoma
cells (60). Another candidate for the successful miRNA therapeu-
tic approach is the vector-mediated overexpression of miRNAs to
tumor tissues in vivo using adenoviral or lentiviral delivery. Of
note, miR-26a expression in normal liver and liver tumor cells
succeeded via adenoviral delivery in order to inhibit tumor cell
proliferation and to lead in apoptosis (61). However, the use of

this approach can only be employed in systemic local delivery.
As the early clinical trial failures in the field have demonstrated,
delivery of RNAi therapeutics to their molecular targets inside
cancer cells is crucial. The authors have developed a novel sys-
tem for miRNA delivery applicable for both local and systemic
administration with the use of mesenchymal stem cell (MSC)-
derived microparticles (MPs). The idea was based on the fact
that miRNAs are released in the blood-stream via a controlled
and active process through MPs, exosomes, and apoptotic bod-
ies. MiRNAs associated with cellular particles were found to be
resistant from nuclease degradation and able to be transferred
in a variety of cells and alter the gene expression of the recipi-
ent cells (62–64). The novel technology designs for MSC-derived
MPs programed to enclose and deliver specific miRNAs that
affect the action of genes associated with cancer growth, neo-
vascularization, and metastasis (65). MSC-derived MPs retain
the membrane receptors that allow MSCs to home selectively
into tumor sites and target malignant cells, thus avoiding the
targeting of healthy cells. MSC-derived MPs home and engraft
in solid tumors via specific chemokine receptors, fuse to tumor
cell membranes, and incorporate miRNA directly into the target
cancer cell, thus exerting their therapeutic effect while minimiz-
ing side effects associated with conventional therapies (65, 66).
MSC-derived MPs offer enhanced therapeutic potential due to
their ability to target multiple molecules in malignant cells when
compared with approaches targeting single genes and induce
immunosuppression through cytokine signaling inhibition mak-
ing this approach useful in therapy of recurring cancer disease
(65, 67).

CONCLUDING REMARKS
As miRNA expression seems to be altered in many human dis-
eases, including cancer, the miRNA revolution has already begun
and has set the stage for “miRNA re-expression therapy.” Among
the many genes that miRNAs can regulate are oncogenes and
tumor suppressors, targets of drugs currently used in the clinic.
Although a few miRNAs are overexpressed in cancer and seem
to function as oncogenes themselves, a greater number of miR-
NAs have been shown to be downregulated in cancer and have

Frontiers in Oncology | Cancer Molecular Targets and Therapeutics February 2015 | Volume 4 | Article 389 | 4

http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics
http://www.frontiersin.org/Cancer_Molecular_Targets_and_Therapeutics/archive


Prokopi et al. miRNAs in Notch signaling pathway

the potential to act as tumor suppressors. MiRNA re-expression
and down-regulation have both been shown to have antitumor
effects while re-expressing a tumor suppressor miRNA could
downregulate multiple oncogenes. Re-expression, to physiolog-
ical levels, of tissue-specific miRNAs that are lost in cancer
can induce the de-differentiation of cancer cells. Re-expressing
lost miRNA in a cell can deliver a dramatic effect, because
miRNAs regulate a vast number of genes and pathways. How-
ever, similar to other RNA-related therapies the key challenge
remains the inadequate delivery and stability of the therapeu-
tic agents to the tumor site. MiRNA antagonists and mimics
are already available in the market but limited to local admin-
istration applicable to only a few target tissues. On the other
hand, miRNA therapeutics could follow similar approaches to
siRNA chemistry, vector-based systems as in gene therapy, and/or
vehicle-based delivery systems. Understanding miRNA biology
and how it contributes to cancer development it will provide
for new diagnostic and therapeutic tools. MiRNA-based therapy
is not a traditional approach and will need further develop-
ment and improvements in composition, stability, and delivery
to the target areas. Nevertheless, miRNA profiling will open a
new era in cancer biology providing a new and improved cancer
classification system.
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