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It is well established that salicylic acid (SA) plays a critical role in the transcriptional
reprograming that occurs during the plant defense response against biotic and abiotic
stress. In the course of the defense response, the transcription of different sets of
defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms.
Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen
species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the
evidence that links SA, ROS, and GSH signals to the transcriptional control of defense
genes. We discuss how redox modifications of regulators and co-regulators involved in
SA-mediated transcriptional responses control the temporal patterns of gene expression
in response to stress. Finally, we examine how these redox sensors are coordinated with
the dynamics of cellular redox changes occurring in the defense response to biotic and
abiotic stress.

Keywords: glutathione, glutaredoxin GRXC9/GRX480, NPR1, reactive oxygen species, salicylic acid, thioredoxin
TRXh5, TGA transcription factors

Interplay between Salicylic Acid (SA) and Redox Signals in
the Defense Response to Stress

A feed-forward loop between salicylic acid (SA) and reactive oxygen species (ROS) production
in the defense response to stress was first reported at the early 1990s (Chen et al., 1993). This
early report was followed by a controversy on whether H2O2 was downstream or upstream of SA
in the pathway for induction of Pathogenesis-Related 1 (PR1) expression (Neuenschwander et al.,
1995; Chamnongpol et al., 1996). Later on, it was demonstrated that ROS signals are involved
both upstream and downstream SA signaling in response to stress. Interestingly, the evidence indi-
cates that SA does not only play a pro-oxidant role, but it also has an antioxidant role in concert
with glutathione (GSH) in the response to stress. In this first section we present a comprehen-
sive picture of the relationships between SA, ROS, and GSH in the response to stress signaling
(Figure 1).

ROS Bursts Trigger SA Signaling
It is well known that activation of SA signaling in stressed plants is preceded by oxidative
bursts originating in different cellular compartments (Wrzaczek et al., 2013). In the case of basal
(PTI) and induced (ETI) defense responses against pathogens infection, it has been extensively
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FIGURE 1 | Interplay between salicylic acid (SA), reactive oxygen
species (ROS), and glutathione (GSH) in defense responses to biotic and
abiotic stress. Stress conditions such as infection with pathogens, exposure to
microbe-associated molecular patterns (MAMPs), ozone, and UV-B treatments,
trigger ROS production mainly at the apoplast. This production of ROS is
mediated by plasma membrane NADPH oxidases (NADPH ox) and cell wall
peroxidases (PRXs). Other stresses, such as high light radiation, salinity,
drought, and temperature, trigger ROS production mainly at the chloroplasts

and peroxisomes. Mitochondria have been also described as an important
source of ROS during defense responses (Lam et al., 2001). A feed-forward
loop between H2O2 and SA synthesis occurs in response to stress, as
described in the text. SA also has an antioxidant role, increasing GSH levels and
reducing power, which in turn is involved in ROS scavenging. Finally, the
interplay between intracellular levels of SA, H2O2, and GSH determines
transcriptional reprogramming, programmed cell death, and stomata closure,
the three main outputs of the defense responses.

reported that increases in SA levels are preceded by apoplastic
H2O2 bursts mediated by NADPH oxidases and extracellular per-
oxidases (PRXs; Mackerness et al., 2001; Torres et al., 2002; Joo
et al., 2005; Tsuda et al., 2008; O’Brien et al., 2012; Mammarella
et al., 2014). Although PTI and ETI responses are activated in the
plant by recognition of different pathogens molecules, they share
several signals including ROS and SA. Differences in the timing
and levels at which these signals are produced in PTI and ETI
determine differences in the speed and strength at which these
immune reactions are established to be effective in counteracting

potential pathogens with low cost on fitness (Tsuda et al., 2008;
Katagiri and Tsuda, 2010).

Apoplastic H2O2 bursts also precede SA signaling in plant
responses to exposure to ozone and UV-B (Grant and Loake,
2000; Mackerness et al., 2001; Torres et al., 2002; Joo et al.,
2005; Ogawa et al., 2007; Garcion et al., 2008; O’Brien et al.,
2012). Pharmacological evidences supports that increases in
apoplastic H2O2 levels after UV-B trigger SA biosynthesis
(Mackerness et al., 2001). Noteworthy, in the case of ozone,
ROS signaling starts at guard-cells chloroplasts and then it
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propagates to the apoplast of neighbor cells (Joo et al.,
2005).

Salicylic acid also functions as a signal of other types of abi-
otic stresses such as high light exposure, salinity, drought, and
temperature (Mateo et al., 2006; Lee and Park, 2010; Wan et al.,
2012; Miura and Tada, 2014). In contrast to the above men-
tioned stresses, these conditions generate ROS accumulation in
chloroplasts and peroxisomes (Apel and Hirt, 2004; Holuigue
et al., 2007). Although involvement of SA in these cases has been
demonstrated in SA-deficient and overproducer plants (Mateo
et al., 2006; Lee and Park, 2010; Wan et al., 2012; Miura and
Tada, 2014), direct evidence of increased SA levels has been only
reported in oat plants exposed to drought (Sánchez-Martín et al.,
2014). Interestingly, increased levels of SA have been detected in
plants with sustained ROS production in peroxisomes (catalase
2 knockout, cat2; Chaouch et al., 2010) and in chloroplast (thy-
lakoidal ascorbate PRX gene silencing, tAPX RNAi; Maruta et al.,
2012; Noshi et al., 2012). The evidence obtained using these mod-
els indicate that H2O2 originated in chloroplasts and peroxisomes
triggers SA biosynthesis, which is essential for main outputs of the
defense response: transcriptional reprogramming, cell death, and
stomatal closure (Figure 1).

The mechanisms by which H2O2 generated in the apoplast,
chloroplasts, and peroxisomes triggers SA biosynthesis remains
unknown. ICS1 and ICS2 are the twoArabidopsis genes coding for
isochorismate synthase, the key enzyme controlling SA biosyn-
thesis (Garcion et al., 2008). ICS1 upregulation was detected in
the ETI response to pathogens, in response to UV-B, ozone, and
drought stress (Wildermuth et al., 2001; Ogawa et al., 2007; Zhang
et al., 2010; Wan et al., 2012), as well as in cat2 plants (Chaouch
et al., 2010). In contrast, upregulation of ICS2 but not of ICS1was
detected in tAPX RNAi plants (Noshi et al., 2012). Transcription
factors that regulate ICS1 expression, such as CBP60, SARD1, and
WRKY8/28/48 (Zhang et al., 2010; van Verk et al., 2011; Gao
et al., 2013), or upstream PAD4/EDS1 genes expression, such as
CAMTA3/SR1 and ZAT6 (Du et al., 2009; Shi et al., 2014) rep-
resent potential candidates for ROS-mediated regulation of SA
biosynthesis.

Remarkably, it has recently been proposed that Ca+2 signal-
ing regulate SA production (Seyfferth and Tsuda, 2014), based
on evidence that the activity of CBP60, WRKY8/28/48, and
CAMTA3/SR1 factors are modulated by calcium dependent pro-
tein kinases (CDPKs) and calmodulin (CaM; Du et al., 2009; Gao
et al., 2013; Truman et al., 2013). Indeed, intracellular increase
of cytosolic Ca+2 was first described as an upstream signal that
controls apoplastic ROS production through the modification of
NADPH oxidase by CDPKs (Dubiella et al., 2013; Gao et al.,
2013). Recently, Ca+2 has been also proposed to act down-
stream ROS signaling (Wrzaczek et al., 2013), based on previous
evidence that exogenous treatments with H2O2 promote Ca+2

influxes (Price et al., 1994; Pei et al., 2000). Therefore, the pos-
sibility that a Ca+2 signal mediates activation of SA production
triggered by ROS, represents an interesting aspect to explore.

SA Modulates Redox Homeostasis
An ambivalent effect of SA in promoting ROS accumula-
tion (prooxidant) and ROS scavenging (antioxidant), has being

reported in several stress models, including the ETI response to
pathogens and responses to high light, drought, salinity, and cold
stress (Mou et al., 2003;Mateo et al., 2006; Miura and Tada, 2014).
On one hand, SA promotes ROS production during early events
of signaling, being these ROS essential for defense responses
(Garreton et al., 2002; Lee et al., 2010; Khokon et al., 2011).
Furthermore, high concentrations of SA (>100 µM) promote
ROS production, inducing oxidative stress, and reducing toler-
ance to drought and salinity (Lee et al., 2010; Miura and Tada,
2014). How can SA promote ROS accumulation? Early reports
showed SA-mediated inhibition of catalase and cytosolic ascor-
bate PRX, two main H2O2 detoxifying enzymes (Chen et al.,
1993; Durner and Klessig, 1995). Then, SA-promoted production
of ROS by extracellular PRXs was identified in stomatal closure
control in drought response (Khokon et al., 2011; Miura et al.,
2013).

On the contrary, the available evidence supports that SA
promotes ROS scavenging being essential for the antioxidant
response that constrains ROS bursts in responses to avirulent bac-
teria (Grant and Loake, 2000), high light (Mateo et al., 2006),
ozone (Yoshida et al., 2009), salinity (Lee et al., 2010), and in
cat2mutants (Chaouch et al., 2010). Recent studies show that SA
and GSH interplay as redox signals, fostering a role for SA in the
antioxidant response (Dubreuil-Maurizi et al., 2011; Foyer and
Noctor, 2011; Dubreuil-Maurizi and Poinssot, 2012; Han et al.,
2013). Plants that over accumulate SA show increased GSH lev-
els and reducing power (ratio GSH/GSSG; Mateo et al., 2006)
while abolishment of SA accumulation in a cat2 background (cat2
sid2) reduces the GSH/GSSG ratio (Chaouch et al., 2010; Noctor
et al., 2014). Conversely, plants deficient in GSH biosynthesis
(phytoalexin-deficient mutant, pad2-1) have decreased levels of
SA and ICS1 transcripts (Dubreuil-Maurizi et al., 2011). This sug-
gests that SA can play an antioxidant role by modulating GSH
levels and reducing power (Figure 1), through still unknown
mechanisms.

The dual redox effect of SA is reflected by a biphasic redox
dynamics in plants treated with SA or INA (Mou et al., 2003;
Mateo et al., 2006). A first oxidative phase, characterized by
a transient increase in ROS levels and decline in GSH reduc-
ing power, is followed by a reductive phase characterized by
an increase in GSH levels and reducing power. This tempo-
ral dynamics determines a sequential activation of the redox-
regulated processes involved in the transcription of defense
genes.

Redox-Modulated Processes in the
SA-Mediated Control of Gene
Expression

Salicylic acid plays a pivotal role in the genetic reprogramming,
being responsible for transcriptional control of 100s of defense
genes that are sequentially turned on/off (Maleck et al., 2000;
Wang et al., 2006; Blanco et al., 2009). Interestingly, several
redox-regulated processes have been discovered in the tran-
scription of SA-regulated genes (Mou et al., 2003; Koornneef
et al., 2008; Tada et al., 2008). The evidence suggests that

Frontiers in Plant Science | www.frontiersin.org 3 March 2015 | Volume 6 | Article 171

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Herrera-Vásquez et al. Redox control in SA signaling

cellular redox changes occurring in response to stress are
translated into transcriptional responses, through redox modi-
fications of master regulators and co-regulators (Moore et al.,
2011). Here, we focus in the redox-modulated processes medi-
ated by SA that control the expression of three Arabidopsis
model genes: PR1, GRXC9 (glutaredoxin C9 or GRX480), and
ORA59 (Octadecanoid-Responsive AP2/ERF domain protein 59;

Figure 2). These genes have been studied in greater detail and
they respond to SA with particular temporal patterns and mech-
anisms, being therefore good models for different classes of
SA-regulated genes.

Members of the TGA and WRKY transcription factor fam-
ilies, that recognize the TGA box (TGACGTCA) and the W
box (TTGACT), respectively, have been involved in SA-mediated

FIGURE 2 | Redox-modulated processes in the SA-mediated control of
gene expression. Model for the transcriptional control of genes representing
three main groups of SA-regulated genes: SA-induced non-expressor of
pathogenesis-related (PR) genes 1 (NPR1) -dependent late genes (PR1, Left);
SA-induced NPR1-independent early genes [glutaredoxin C9 (GRXC9),
Medium]; and JA/ET-induced SA-repressed genes [Octadecanoid-Responsive
AP2/ERF domain protein 59 (ORA59), Right]. The temporal dynamics of the
redox changes (� Redox) occurring during the defense response to stress are
represented by the bar at the left, where blue indicates reductive states and red
indicates oxidative states. The temporal dynamics in the formation of
transcriptionally active and inactive complexes in the promoter of PR1, GRXC9,
and ORA59, according to redox changes dynamics, are included in each panel.
The places where ROS/SA, and JA/ET signals act in these pathways, is

indicated by red arrows. The components identified (or suspected) as redox
sensors in these pathways, whose mechanisms of action are discussed in the
text, are indicated in color. TGA factors (red) are involved in the three pathways.
Homodimers or heterodimers of TGA2 and TGA3 (T2T3) or TGA2 and TGA5
(T2T5) factors act as platforms for the formation of transcriptionally inactive and
active complexes. Active complexes promote recruitment of RNA polymerase II
(RNAPII) and gene transcription (red arrows at promoters). NPR1 (yellow) is the
master co-activator for SA-inducible NPR1-dependent pathway and is
redox-regulated by oxido-reduction of Cys residues. TRXh5 and GRXC9 (green)
are oxidoreductases coded by SA-inducible genes, which catalyze reduction of
NPR1 and of a still unknown component in GRXC9 and ORA59 promoters.
Other transcriptional factors and co-factors not directly involved in redox
regulation are shown in gray tones.
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transcriptional regulation (Pandey and Somssich, 2009; Gatz,
2013). Furthermore, co-regulators including non-expressor of PR
genes 1 (NPR1), SCL14, and Med 18 control transcription of dif-
ferent groups of SA-regulated genes (Fu and Dong, 2013). In this
second section we will focus our attention onNPR1, TGA factors,
and two oxidoreductases, to discuss evidence that point them as
redox sensors in the expression of SA-regulated genes (Figure 2).

Non-Expressor of PR Genes 1 (NPR1), a
Master Redox Sensor
Non-Expressor of PR genes is the master co-activator for PR1
and most SA-induced genes, and was the first redox sensor
described for SA-regulated genes (Mou et al., 2003). Particularly
at the PR1 promoter, SA stimulates NPR1 interaction with TGA2
and TGA3, which enhances its binding to TGA boxes, form-
ing a trans-activating complex for RNA polymerase II (RNAPII)
recruitment (Figure 2, left panel; Lebel et al., 1998; Kesarwani
et al., 2007; Pape et al., 2010). Current knowledge indicates that
SA-promoted redox modification of Cys residues in NPR1 deter-
mines the levels of the active, reduced, and monomeric form of
NPR1 in the nucleus (Kinkema et al., 2000; Mou et al., 2003;
Tada et al., 2008; Lindermayr et al., 2010). The levels of nuclear
NPR1 are also regulated by other SA-mediated mechanisms,
such as proteasome-mediated degradation and phosphorylation
(Pajerowska-Mukhtar et al., 2013).

Salicylic acid is essential for NPR1 redox modification, but
how it controls this process is still not well understood. NPR1
reduction is catalyzed by thioredoxin TRXh5 (Tada et al., 2008;
Kneeshaw et al., 2014), coded by the only member of TRXh
gene class transcriptionally induced by SA and oxidative stress
(Laloi et al., 2004; Tada et al., 2008; Belin et al., 2014). Whether
NPR1 monomerization also occurs under oxidative stress, has
not been explored yet. Furthermore, evidence indicates that
both, oligomerization and monomerization of NPR1 involves S-
nitrosoglutathione (GSNO) mediated S-nitrosylation (Feechan
et al., 2005; Rusterucci et al., 2007; Lindermayr et al., 2010).

Non-Expressor of PR genes 1 reduction and therefore induc-
tion of NPR1-dependent genes, including WRKYs and PR1, cor-
relate with the reductive phase of the defense response (Mou
et al., 2003). Based on the evidence summarized here, we propose
a model for SA-mediated NPR1 redox control and its influence
on PR1 induction (Figure 2, left panel).

Interestingly, the discovery of the direct binding of SA to
NPR1 (Wu et al., 2012), and also to NPR3, and NPR4, which con-
trol NPR1 degradation (Fu et al., 2012), suggests the existence of a
direct mechanism by which nuclear NPR1 levels and activity can
be regulated according to the levels of SA, that in turn reflects the
cellular redox state.

TGA Factors, a Potential Node for
Integrative Cellular Redox Regulation?
TGA factors have been postulated as redox sensors (Spoel and
Loake, 2011), based on evidence showing that modification of
Cys residues in TGA1 and TGA4modulate their binding to NPR1
and to DNA (Despres et al., 2003; Lindermayr et al., 2010). TGA1
and TGA4 compose class I TGA and their function is not crit-
ical for the expression of SA-regulated genes (Kesarwani et al.,

2007; Shearer et al., 2012; Wang and Fobert, 2013; Herrera-
Vásquez et al., 2014). In contrast, the evidence supports that class
II TGAs (TGA2, TGA5, and TGA6), and to a lesser extent TGA3,
are the essential factors for SA-regulated expression of defense
genes (Johnson et al., 2003; Zhang et al., 2003; Kesarwani et al.,
2007; Herrera-Vásquez et al., 2014). Intriguingly, there is still no
direct evidence of regulation of these factors through redox mod-
ification. Nevertheless, a potential for TGA2/5/6 as a node for
general redox regulation in response to stress, is supported by the
evidence described below.

TGA2 represses PR1 basal expression but can also activate
it upon SA-mediated stress challenge by interacting with neg-
ative and positive TGA boxes at the PR1 promoter (Johnson
et al., 2003; Zhang et al., 2003; Kesarwani et al., 2007; Pape
et al., 2010). The essential role of TGA2/5/6 in PR1 expression
can be extrapolated to the group of NPR1-dependent genes with
overrepresentation of the TGA box (Maleck et al., 2000).

We have shown that TGA2/5/6 are also essential for early SA-
dependent and NPR1-independent induction of a set of genes
with antioxidant and detoxifying activities (Blanco et al., 2009).
GRXC9, which codes for a glutaredoxin of the plant-specific CC
subfamily, is used here as a model for this pathway (Figure 2,
medium panel; Ndamukong et al., 2007; Blanco et al., 2009;
Herrera-Vásquez et al., 2014). SA-induced expression of GRXC9
requires two as-1 promoter elements that constitutively bind
TGA2 and TGA3 factors (Herrera-Vásquez et al., 2014). as-1 ele-
ments, consisting of two TGA boxes separated by four base pairs
(Krawczyk et al., 2002), confer early and transient induction by
SA through ROS (Qin et al., 1994; Johnson et al., 2001; Garreton
et al., 2002). Two as-1 elements were also found in the TRXh5
promoter, although its functionality has not been explored yet
(Laloi et al., 2004). We propose that early induction of GRXC9,
and probably of TRXh5 also, occurs during the oxidative phase of
the defense response mediated by ROS signals (Figure 2; Mou
et al., 2003; Herrera-Vásquez et al., 2014). TGA2/5/6 are also
essential for the induction of as-1-containing genes involved in
chemical detoxification (Mueller et al., 2008; Stotz et al., 2013).

Furthermore, the well-recognized antagonistic effect of SA
on JA/ET-mediated transcriptional responses (Pieterse et al.,
2009), is also mediated by class II TGAs (Ndamukong et al.,
2007; Zander et al., 2010). SA inhibits expression of a group of
JA/ET-induced genes, including PDF1.2, through repression of
ORA59, which codes for a master transcription factor from the
AP2/ERF family (Zander et al., 2010; Van der Does et al., 2013).
Interestingly, ACC-induced and SA-repressed ORA59 expres-
sion depend of TGAs class II factors, through their binding to a
TGA box present in the ORA59 promoter (Figure 2, right panel;
Zander et al., 2014). Kinetic and pharmacological studies indicate
that SA suppresses JA-responsive genes only within a specific time
frame requiring SA-mediated increase in GSH levels (Koornneef
et al., 2008). Therefore, SA-mediatedORA59 repression occurs in
the reductive phase of the defense response, which is consistent
with evidence indicating that NPR1 is required for SA-mediated
repression of JA/ET-induced genes (Spoel, 2003).

Taken together, we can conclude that class II TGAs (par-
ticularly TGA2) are essential in different mechanisms of tran-
scriptional control mediated by SA and ROS signals, which
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operate at different times in the defense response to stress
(Figure 2). Accordingly, a strong phenotype of stress sensitiv-
ity is detected in tga2/5/6 triple mutant plants (Zhang et al.,
2003; Mueller et al., 2008). The question is how TGA2 activity
is controlled by SA and ROS signals? The only clue for a redox
control of TGA2 is that it interacts with GRXC9 in the nucleus
(Ndamukong et al., 2007). Interestingly, GRXC9 overexpression
represses the expression of its own gene and of ORA59 while
GRXC9 forms part of the complex bound to the as-1-containing
region of the GRXC9 promoter (Herrera-Vásquez et al., 2014;
Zander et al., 2014). These findings are integrated in the model
shown in Figure 2. This model shows that SA, by inducing
expression of GRXC9, controls the expression of antioxidant
genes and at the same time represses JA/ET-mediated responses.
We speculate that GRXC9 catalyzes the reduction of a pro-
tein from the transactivating complex in both genes, triggering
their inactivation. Although evidence for functional associations
of TGA factors and CC-type GRXs suggests that TGAs can be
redox-modified (Murmu et al., 2010), there is still no evidence of
this modification.

Oxidoreductases as Redox Sensors in the
SA-Mediated Control of Gene Expression
The involvement of TRX/GRX oxidoreductases in SA-mediated
transcription was first proposed some years ago (Fobert and
Despres, 2005). As described above, two Cys-containing oxi-
doreductases, TRXh5, and GRXC9, were later on recognized
as important elements for redox control in SA-mediated tran-
scriptional responses. TRXh5 and GRXC9 genes are induced by
SA during the oxidative phase of the defense response. TRXh5
reduces NPR1, which is essential for NPR1-dependent transcrip-
tional responses (Tada et al., 2008). Instead, GRXC9 probably
reduces a still unknown protein that represses the expression of
genes from SA-dependent NPR1-independent as well as JA/ET-
dependent SA-repressed pathways. These processes occur dur-
ing the reductive phase of the defense response (Figure 2).
Considering that TRXh5 and GRXC9 are in turn reduced and
regenerated at the expense of the reducing power of NADPH and
GSH, respectively (Meyer et al., 2012), these enzymes become key
redox sensors that coordinate transcription and the cellular redox
state.

Conclusion and Future Directions

The evidence discussed here indicates that redox-modulated pro-
cesses are critical for the fine-tune regulation of gene expression
mediated by SA. These processes occur in a temporaly controlled

manner, coordinated with the cellular redox changes occurring
during the defense response. Although important advances have
occurred during the last years, we still have a fragmented knowl-
edge of the network of redox processes that allows a coordi-
nated transcriptional response to stressful conditions. Focusing
on SA–ROS interplay, one important challenge is to under-
stand how ROS generated in different cell compartments and
cell types triggers SA biosynthesis. Furthermore, considering that
all stress conditions generate oxidative bursts, but not all lead
to SA accumulation, how is the specificity of ROS signals for
triggering SA biosynthesis established? A point of convergence
of the responses to different stresses mediated by SA, such as
the PAD4/EDS1/SAG101 complex located upstream in the SA-
signaling pathway (Wiermer et al., 2005), can be explored as a
node for redox regulation of SA biosynthesis in response to stress.

In relation to the redox mechanisms that control the SA-
mediated transcriptional response, the evidence discussed here
supports the involvement of NPR1, TGA factors, and the oxidore-
ductases TRXh5 and GRXC9 as redox sensors. Several intriguing
aspects about these sensors are pending, such as the promiscuous
and essential role of TGA2 in the control of genes that respond to
oxidant and reducing cellular redox states. Whether TGA2 itself
can be redox modified, particularly reduced by GRXC9 to trig-
ger gene repression during the reductive phase of the defense
response, is a critical point that still needs to be answered. In
this context, an interesting target to explore for redox regula-
tion is MED18. The MED18 protein is a member of the Mediator
Complex that interacts with the Ying Yang 1 transcription fac-
tor (YY1; Lai et al., 2014). This complex co-represses three genes
coding for oxidoreductases involved in defense: GRXC9, TRXh5,
and GRXS13 (La Camera et al., 2011; Laporte et al., 2012).

Finally, an important challenge for the future is to incorpo-
rate the temporal and spatial perspective in the analysis of the
redox processes associated to transcriptional activity. New tech-
nical approaches that allow to record cell-specific changes in ROS
levels, the redox state of GSH and new markers for gene expres-
sion will help in unraveling the sequential events occurring in
different groups of cells exposed to stress during the time course
of the defense response.
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