
ORIGINAL RESEARCH
published: 28 July 2016

doi: 10.3389/fnbot.2016.00006

Edited by:
Quan Zou,

George Washington University, USA

Reviewed by:
Nicolas Van der Noot,

Université catholique de Louvain,
Belgium

Yuanfeng Zhu,
BorderX Lab Inc, USA

*Correspondence:
Horacio Rostro-Gonzalez

hrostrog@ugto.mx

Received: 08 April 2016
Accepted: 11 July 2016
Published: 28 July 2016

Citation:
Espinal A, Rostro-Gonzalez H,

Carpio M, Guerra-Hernandez EI,
Ornelas-Rodriguez M and

Sotelo-Figueroa M (2016) Design of
Spiking Central Pattern Generators for

Multiple Locomotion Gaits in
Hexapod Robots by Christiansen

Grammar Evolution.
Front. Neurorobot. 10:6.

doi: 10.3389/fnbot.2016.00006

Design of Spiking Central Pattern
Generators for Multiple Locomotion
Gaits in Hexapod Robots by
Christiansen Grammar Evolution
Andres Espinal1, Horacio Rostro-Gonzalez2*, Martin Carpio1, Erick I. Guerra-Hernandez2,
Manuel Ornelas-Rodriguez1 and Marco Sotelo-Figueroa3

1 Leon Institute of Technology, Leon, Mexico, 2 Department of Electronics, DICIS-University of Guanajuato, Salamanca,
Mexico, 3 Department of Organizational Studies, División de Ciencias Economico-Administrativas-University of Guanajuato,
Guanajuato, Mexico

This paper presents a method to design Spiking Central Pattern Generators (SCPGs)
to achieve locomotion at different frequencies on legged robots. It is validated through
embedding its designs into a Field-Programmable Gate Array (FPGA) and implemented on
a real hexapod robot. The SCPGs are automatically designed by means of a Christiansen
Grammar Evolution (CGE)-based methodology. The CGE performs a solution for the
configuration (synaptic weights and connections) for each neuron in the SCPG. This
is carried out through the indirect representation of candidate solutions that evolve to
replicate a specific spike train according to a locomotion pattern (gait) by measuring the
similarity between the spike trains and the SPIKE distance to lead the search to a correct
configuration. By using this evolutionary approach, several SCPG design specifications
can be explicitly added into the SPIKE distance-based fitness function, such as looking for
Spiking Neural Networks (SNNs) with minimal connectivity or a Central Pattern Generator
(CPG) able to generate different locomotion gaits only by changing the initial input stimuli.
The SCPG designs have been successfully implemented on a Spartan 6 FPGA board and
a real time validation on a 12 Degrees Of Freedom (DOFs) hexapod robot is presented.

Keywords: central pattern generator, spiking neural network, Christiansen grammar evolution, evolution strategy,
SPIKE-distance, legged robot locomotion, FPGA

1. INTRODUCTION

Since the early twentieth century, studies have been carried out to explain how the rhythms of
locomotor movements in living beings are created (Brown, 1911). It was proposed that the action
of walking is carried out by neural mechanisms, in which neurons are inhibiting each other to
achieve the control of muscles achieving a rhythmic movement (Brown, 1914). Nowadays there is
evidence supporting this idea, behavior-based studies of living beings have demonstrated that neural
mechanisms, known either as neural oscillators or CPGs, contribute to locomotion. Although it has
been experimentally demostrated that CPGs can endogenously produce rhythmic motor outputs,
they do not work isolatedly; CPGs also depend on the information interactionwith other parts of the
central nervous system (Arena, 2000). Moreover, afferent sensory inputs are used to shape the final
motor output (MacKay-Lyons, 2002). CPGs produce other rhythmic behaviors without conscious
effort besides locomotion, including respiration, heart beat, swallowing, etc. (Patel, 2009).

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 61

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://dx.doi.org/10.3389/fnbot.2016.00006
https://creativecommons.org/licenses/by/4.0/
mailto:hrostrog@ugto.mx
http://dx.doi.org/10.3389/fnbot.2016.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2016.00006&domain=pdf&date_stamp=2016-07-28
http://www.frontiersin.org/Journal/10.3389/fnbot.2016.00006/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2016.00006/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2016.00006/abstract
http://www.frontiersin.org/Journal/10.3389/fnbot.2016.00006/abstract
http://loop.frontiersin.org/people/253775/overview
http://loop.frontiersin.org/people/32588/overview
http://loop.frontiersin.org/people/263496/overview
http://loop.frontiersin.org/people/274247/overview
http://loop.frontiersin.org/people/353906/overview
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

Studies about CPGs have produced several mathematical mod-
els of such mechanisms, which have been used in both theo-
retical and practical fields for different purposes. Recently, in
robotics, there has been an increasing interest in the design and
implementation of biologically inspired CPG-based locomotion
systems (Russell et al., 2007; Crespi and Ijspeert, 2008;Wyffels and
Schrauwen, 2009; Barron-Zambrano and Torres-Huitzil, 2012;
Chen et al., 2012; Hong et al., 2014; Nassour et al., 2014; Park
et al., 2014; Rostro-Gonzalez et al., 2015) with rhythmic motions
instead of non-biologically plausible methods such as those based
on finite-state machines, sine-generators, pre-recorded reference
trajectories (Vukobratović and Borovac, 2004) or heuristic control
laws (Pratt et al., 2001). There are features of CPGs, which make
them suitable as locomotion systems in robotic controllers (Yu
et al., 2014); they ensure a uniform and steady rhythm over
course of locomotion, they possess stability that makes them
robust against disturbances, they can be modified by the sensory
feedback signals by means of their behavioral adaptability and
one of them can generate different motor behaviors by switching
between behaviors arising from changes in parameters.

Even though several implementations of CPG-based locomo-
tion systems for robots have been reported in the state of the
art [see Ijspeert (2008), Wu et al. (2009), and Yu et al. (2014)
for detailed reviews on CPG research], there is a lack of a well-
established design methods for CPG systems (Ijspeert, 2008);
however, a generic framework for designing CPGs is proposed in
Yu et al. (2014) based on three main aspects on which most CPG
studies have focused (see Figure 1):

1. CPG Modeling and Analysis: This task deals with choosing the
type of neuron or oscillator, the kind of coupling (unidirec-
tional or bidirectional connection), and the structure of the
connections.

2. Modulation of CPGs: In engineering, two components of CPG
modulation are used: the parameter tuning and the gait tran-
sition. The former is usually achieved by using trial-and-error
optimization methods (deterministic and stochastic). The lat-
ter component deals with methods for handling several gaits
generated by a CPG. Some common approaches implemented
to handle the generation of several gaits for CPGs are: chang-
ing the pattern of connectivity, varying the properties of the
oscillators (reconfiguration), altering the driving signal to the
CPG, and using a transient disturbance (environmental adapt-
ability).

3. System Implementation: CPG-based locomotion systems can
be programed in software and they can run on a micro-
controller or in a reconfigurable hardware, such as field-
programmable gate array (FPGAs) or neuromorphic systems.

Lately, a CPG development method for hexapod robot locomo-
tion systems, which defines the CPG modeling (network topol-
ogy) and the CPG parameter tuning by means of a reverse-
engineering approach to estimate the parameters of a neural
network has been developed (Rostro-Gonzalez et al., 2012); in
that study, gait transition is made by changing connectivity pat-
terns because a CPG is created for each gait and finally, they are
tested on hardware (Rostro-Gonzalez et al., 2015). In this study,
we propose a method based on the CPG design published in

FIGURE 1 | Workflow diagram of CPG design taken from Yu’s work (Yu
et al., 2014).

the aforementioned study. Our design methodology is based on
Christiansen Grammar Evolution (CGE) (Ortega et al., 2007), a
kind of optimization algorithm with indirect representation of
solutions, which can be used for the development of the Evolu-
tionary Artificial Neural Networks (Yao, 1999; Ding et al., 2013);
by usingCGE themethod dispenses with predefined topology and
avoids an explicit training process, which is a difficult task because
certain parameters need to be estimated to replicate locomotor
patterns (Ijspeert, 2008; Buschmann et al., 2015). CGE defines the
presynaptic connections and the weights of a spiking neuron (see
Section 2.2.1); once a spiking neuron is connected, its capability
of replicating a specific signal is valued by SPIKE-distance (Kreuz
et al., 2013). The methodology integrates all the individual design
to define awholeCPG.We are capable of generating compact CPG
topologies and to create a CPG which generate different gaits.

In legged robots, locomotion can be performed byCPGs, which
aremainly described by oscillators or artificial neurons with a lack
of biological plausibility, e.g., connectionist models, vector maps
and systems of coupled oscillators (Ijspeert, 2008). Recently, there
are few efforts to implement SCPGs as locomotion controllers in
robotics. SPCGs are built as Spiking Neural Networks (SNNs), the
third generation of Artificial Neural Networks (ANNs) (Maass,
1997); these are formed by spiking neurons, whosemodels are bio-
logically plausible and can process spatio-temporal information
naturally as required for rhythmic movements. Some SCPGs have
been designed and implemented for locomotion on biped and
hexapod robots; in Lewis et al. (2005), an architecture of spiking
neurons to generate walking gaits for a biped robot was proposed.
Later, Russell et al. (2010) proposed to implement a Genetic
Algorithm (GA) to reconfigure weights and network topology of
Lewis’ network online for changing the locomotion on the same
kind of robot. More recently in Rostro-Gonzalez et al. (2015),
SNNs are configured as CPGs based on an analysis of six-legged
insects’ gaits for hexapod robot locomotion. In this work, SCPG-
based locomotion systems are designed to imitate different gaits
observed in hexapod insects, which are implemented in an FPGA
Spartan 6 board and tested on hexapod robots.

There are reasons that encourage the study, design, and imple-
mentation of SCPGs, e.g. the advances on interfacing prosthetic

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 62

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

robotic devices to amputated humans and spinal injury patients;
and because SCPG are made of SNNs, which receive and process
the same kind of information as the CPGs on their biological
counterpart, they are a reliable and viable option (Russell et al.,
2007). The structure of the paper is as follows. In Section 2, the
proposed methodology is presented. In Section 3, we present the
experimental configuration and the numerical results. Finally, in
Section 4, the conclusions and highlights of this study are given.

2. MATERIALS AND METHODS

In this section, we introduce the design methodology of SCPGs
and all the required methods for their development. The proposal
is an off-line methodology, it is, the algorithm for SCPG design
was implemented using JAVA as its programing language then
we developed hardware architecture based on VHDL (VHSIC
Hardware Description Language) for FPGA targeting and real
time simulation on a hexapod robot. The design methodology
is a system of inputs, design process and output. The inputs are
sets of rhythmic patterns for locomotion of hexapods (see Section
2.1), each of them explicitly defining the periodic signal for each
spiking neuron into the SCPG. The design process is based on the
divide-and-conquer approach, where a problem is divided into
subproblems that are independently solved to be combined into
a solution of a whole (Puntambekar, 2008). Here, the problem is
to design an SNN (see Section 2.2) that endogenously replicates
the input rhythmic patterns. Since the SCPG is built as an SNN,
it needs to replicate specific rhythmic patterns to contribute to
locomotion, and thus it is very important that each neuron may
be able to replicate its expected signal periodically through the
connectionswith other neurons (or evenwith itself). The design of
an SNN for producing rhythmic patterns is achieved by dividing
the general design of the SNN into individual ones for each spiking
neuron. The spiking neuron design is created by using its initial
rhythmic signal’s state and the signals fromother neurons through
CGE (see Section 2.3), which codifies information into solutions
such as connections andweights; then, they are perturbed until the
spiking neuron replicates the expected signal. Several design spec-
ifications can be integrated into the fitness function of the CGE.
The output is an SCPG obtained by integrating all the individual
neuron designs. Finally, the designed SCPGs are implemented on
a Spartan 6 FPGA board and tested on an hexapod robot (see
Section 2.4).

2.1. Hexapod Locomotion Gaits
The locomotion of hexapods is achieved by designing SCPGs
that are periodically able to replicate rhythmic signals, which
contribute to imitate gaits observed in real hexapod insects. To
drive the SCPG designs, samples from the rhythmic signals are
required; here, three different gait patterns are used [proposed in
Rostro-Gonzalez et al. (2015)]. These biologically based patterns
are the result of a study about the inter-leg coordination of stick
insect (carausius morosus) on free walks (Grabowska et al., 2012);
in this study, two tetrapod gaits and one tripod gait were reported,
labeled in Rostro’s work as walking gait (Figure 2A), jogging
gait (Figure 2B), and running gait (Figure 2C), respectively. In
Figure 2, the three locomotion patterns are presented, where the x
and y axes show the scale of time (as reference) and neuron labels
(according with Figure 4), respectively. In such figure, each bar
represents the neural activity that stimulates a servomotor in the
robot, where Coxa-Left (CL) and Coxa-Right (CR) from 1 to 3
correspond to the servomotors for the coxa (hip joint) of the robot,
it is, the articulation in charge of themovement from back to front
and viceversa. On the other hand, Femur-Left (FL) and Femur-
Right (FR) from 1 to 3 correspond to the servomotors for the
femur of the robot, it is, the articulation in charge of themovement
from down to up and viceversa. The coordinate movements of
these two articulations perform the expected locomotion gaits
such as those shown in Figure 2.

2.2. Spiking Neural Network
Herein, the CPGs are built as SNNs, similar to other ANNs, and
can be defined around three aspects: neuron model, synaptic
connections, and message types (Judd, 1990). For this study, we
used the simplest form of the integrate-and-fire spiking neuron
model, which is based on the discrete-time representation of the
membrane potential of the neuron and called BMS neuron model
(Soula et al., 2006) (see Section 2.2.1), the synaptic connections are
both excitatory (positive values) and inhibitory (negative values)
and they are defined by the CGE (see Section 2.3) for each neuron,
and finally the message types are spike times.

2.2.1. BMS Neuron Model
The BMS spiking neuron model (Soula et al., 2006) is a discrete-
time version of the best-known and widely used generalized
Integrate-and-Fire model (gIF) (Gerstner and Kistler, 2002). In
the BMS model, the membrane potential Vi and the firing state

A B C

FIGURE 2 | Rhythmic patterns for hexapod locomotion. The black bars correspond to the gait patterns reported in Grabowska et al. (2012), used for moving
the femurs, while the gray bars are added in Rostro-Gonzalez et al. (2015) as additional information for moving the coxas and thus achieving the full locomotion in
hexapod individuals. (A) Walking gait. (B) Jogging gait. (C) Running gait.

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 63

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

Zi of the ith neuron at time k are given by equations (1) and (2),
respectively.

Vi[k] = γVi[k − 1](1 − Zi[k − 1]) +
N∑
j=1

WijZj[k − 1] + Iexti

(1)

Zi[k] =

{
1 if Vi[k] ≥ θ

0 otherwise
(2)

where γ ∈ [0, 1] defines the leak rate. N is the number of neu-
rons in the neural network. W is the matrix of synaptic weights.
Finally I(ext) represents an external stimulus, but here I(ext) = 0
because SCPGs endogenously generate the rhythmic patterns.
When Vi[k] reaches a given threshold θ, then a spike occurs in
Zi[k] equation (2), and the neuron i is reset by the term (1−Zi[k])
in equation (1).

2.3. Christiansen Grammar Evolution
TheChristiansenGrammar Evolution (CGE) (Ortega et al., 2007),
like the Grammatical Evolution (GE) (Ryan et al., 1998), is a
grammar-based form of Genetic Programing (GP) (Koza, 1992).
CGE extends the capabilities of GE in the sense that it can
generate both syntactically and semantically correct programs.
This is achieved by replacing the Context-Free Grammars with
Christiansen Grammars (CG) (Christiansen, 1985).

The CGE can be explained from the basis of GE as follows: the
genotypic representation of individuals is lineal, formed by strings
of numeric values. These are changed from their genotype repre-
sentation to their functional phenotypic representation through a
mapping process (Dempsey et al., 2009) (also known as indirect
representation), which uses a grammar to derive the phenotypic
representation of an individual. The search process ismade using a
search engine (usually ametaheuristic algorithm), whichmodifies
the genotype of the individual with only the knowledge of its
fitness value. Since CGE has been inspired from GE, their work
flows are similar with the exception of the kind of input grammars
and some extra steps on the mapping process (see Sections 2.3.1
and 2.3.2, respectively).

Recently, based on the fact that several algorithms have been
used as GE search engines [i.e., Genetic Algorithm (Ryan et al.,
1998), Differential Evolution (O’Neill and Brabazon, 2006a), Par-
ticle Swarm Optimization (O’Neill and Brabazon, 2006b)], a
generic methodology for implementing GE was suggested, which
points out their input conditions (problem instance, BNF gram-
mar, and search engine) and process cycle (output or individual’s
phenotypic representation given by the mapping process and its
evaluation by using a fitness function) (Sotelo-Figueroa et al.,
2014). From the relationship between GE and CGE, this proposal
can be easily adapted for CGE by changing the kind of input
grammar and the mapping process.

2.3.1. Christiansen Grammars
The Christiansen Grammars (CGs) (Christiansen, 1985) are
adaptable grammars, which can be modified on the fly while they
are being used. According to Shutt’s work (Shutt, 1993), CGs are

FIGURE 3 | Structure of the derived word for presynaptic connections
of a neuron.

very similar to Extended Attribute Grammars (Watt and Madsen,
1983); CGs are defined as a 5-tuple as follows: CG= {ΣT,ΣN, S, P,
K}, whereΣT is the set of terminals,ΣN is the set of non-terminals,
S ∈ ΣN is the axiom of the grammar, P is the productions set, and
K is the global information of the grammar.

The key features of the CGs syntax (Ortega et al., 2007) are:

• The non-terminal symbols are written between angled brackets
and they are followed by a parenthesized list of their attributes.
The value of any attribute can be computed while the grammar
is being used. The first attribute of each non-terminal is a
CG, which contains the applicable rules to the corresponding
symbol.

• The attributes can be either inherited (↓) or synthesized (↑).
• In the production rules, the semantic actions follow their

corresponding production rule in brackets, where {} stands
for non-semantic action. These actions are usually written in
pseudocode.

For this study, we propose a CG in order to derive words that
represent the presynaptic connectivity and configuration of a sin-
gle spiking neuron. The neuron can be connected with itself and
other neurons. However, a neuron can only allow one connection
per neuron in the network; this means that a neuron must have at
least one connection and the maximum number of connections is
the number of neurons in the network. Figure 3 shows the struc-
ture of a derivedword that represents the n configured presynaptic
connections of a postsynaptic neuron.

Next, the CG for defining presynaptic connections of a neuron
is introduced.

The set of terminalsΣT = {1, 2, . . . , 8, 9, . . . ,N − 1,N,+,−, :, |}
includes all the characters accepted for a valid word; numbers
from 1 to N (number of servomotors in the hexapod robot)
are used to define the number of connections or the index of a
presynaptic neuron (the labeled servomotors are associated to
an index for simplicity of the word), numbers from 1 to 9 are
used to define synaptic weights, symbols + and − are used for
excitatory and inhibitory weights respectively and symbols : and |
are auxiliary for parsing the word.

The set of non-terminals ΣN = {
<neuronSynapses> (↓ gi),
<connections> (↓ gi, ↑ go),
<neuronIdList> (↓ gi, ↑ n),
<synapses> (↓ gi),
<synapse> (↓ gi, ↑ go),
<weight> (↓ gi),
<sign> (↓ gi),
<digit> (↓ gi)

}

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 64

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

The axiom of the grammar S=<neuronSynapses> (↓ gi).

The production set P = {
<neuronSynapses> (↓ gi) |=<connections> (↓ gi, ↑go):
<synapses> (↓ go) {},
<connections> (↓ gi, ↑go) |=<neronIdList> (↓ gi, ↑n) {
↑go = ↓ gi ∪ <synapses> (↓gi) |=<synapse> (↓gi, ↑go1) |. . .|
<synapse>

(
↓ go↑n−1

, ↑ go↑n

)
{}

},
<neuronIdList> (↓ gi, ↑1) |= 1{},
. . .
<neuronIdList> (↓ gi, ↑N) |=N{},
<synapse> (↓ gi, ↑ go) |=<neuronIdList> (↓ gi, ↑ n),
<weight> (↓ gi) {
↑go = ↓ gi − {<neuronIdList> (↓gi, ↑n) |= ↑n{}}},
<weight> (↓ gi) |=<sign> (↓ gi)<digit> (↓ gi) {},
<sign> (↓ gi) |=+{},
<sign> (↓ gi) |=−{},
<digit> (↓ gi) |= 1{},
. . .
<digit> (↓ gi) |= 9{}

}

There is no global information for this CG, thus K = ∅.

2.3.2. CGE Mapping Process
The CGE Mapping Process is a deterministic method that trans-
forms individuals from their genotype form into their phenotype
form; this allows individuals to be evaluated in the problem
context through a fitness function. The genotype-to-phenotype
mapping process for the CGE is carried out as follows (Ortega
et al., 2007):

1. Choose the leftmost non-terminal symbol in the sentential
form being processed.
1.1. Evaluate the attributes.
1.2. Select the applicable rules from the first attribute in each

non-terminal.
2. Number the n right-hand sides of all the rules for this non-

terminal symbol (from 0 to n− 1), where the rules are in an
arbitrary order, which should be maintained during the whole
process.

3. If n> 1, select the right-hand side of the rule whose number
equals codon mod (number of right-hand sides for this non-
terminal). Else if n= 1, then the unique rule is selected, and
the codon is not consumed.

4. Derive the next word by replacing the non-terminal with the
selected right-hand side.

In Appendix A, there is an example of a derivation tree gener-
ated by the CGE mapping process and the proposed CG.

2.3.3. Search Engine: (1 + 1) – Evolution Strategy
The Evolution Strategies (ESs) (Rechenberg, 1973; Schwefel, 1977)
are optimization algorithms based on the concept of the evolu-
tion of evolution, because biological processes have been opti-
mized by evolution, and evolution is a biological process in itself
(Engelbrecht, 2007). This family of algorithms is part of Evolu-
tionary Algorithms (EAs).

In the literature, several variants of ES algorithms have been
proposed. They can be generally described by the following nota-
tion (µ/ρ+, λ) – ES. The µ is the size of the parent population,
ρ is the number of parents in the crossover, λ is the size of the
offspring population and (+,)-selection operators indicate from
which population (s) is (are) individuals selected for the next
generation of parents; the plus-selection (+) takes into account
both populations, while the comma-selection (,) only takes into
account the offspring population.

In ES, the candidate solutions of a d-dimensional problem
are formed by the object parameter vector y and the endoge-
nous strategy parameters. The type of components of y depend
on the problem to solve (R, N, B or more complex structures
are allowed) (Beyer, 2013), and the number and type of strat-
egy parameters can vary according to the design of the candi-
date solutions; these strategy parameters are used to self adapt
the ES and they are not involved on the fitness calculation of
individuals.

For this work (1+ 1) – ES is used; this ES has one parent and
only one offspring is generated. It uses the plus-selection operator,
whereby the best individual from the parent and its offspring is
selected to form the parent population in the next generation.
The solutions are formed using the vector y and only one strategy
parameter σ. Algorithm 1 shows the implemented (1+ 1) – ES
[based on the theory of ES algorithms (Engelbrecht, 2007; Beyer,
2013)].

In Algorithm 1, line 1, the vector y is randomly initialized in
the search range for each y component (which depends on the
problem to solve) and the strategy parameter is set to be σ ~ 3.0
(Dortmund, 1995). In line 2, F(•) implies the evaluation of an
object parameter vector. In line 4, τ is a learning parameter used
to update σ, usually calculated from the dimensionality of the
problem τ = 1√

d
(Engelbrecht, 2007). Finally,N(0, 1) are random

numbers normally distributed with mean equals to 0 and a SD of
1 (Talbi, 2009).

2.3.4. SPIKE-Distance-Based Fitness Functions
Since there is no explicit model for fitness computation in the
search space of connectivity configuration, we have to explore
how to build up one. We have found that an important criteria to
achieve such a goal is to explore the aforementioned search space
to make a specific neuron replicated an input rhythmic signal. In
functional approximation, an alternate and explicit mathematical
expression is constructed for the objective function (Jin, 2005),
which in this case is unknown.

ALGORITHM 1 | (1+1) – ES.

1: initialize (y, σ)
2: Fy := F (y)
3: repeat
4: σ̃ := σeτ N(0,1)

5: ỹ := y + σ̃(N(0,1)1, . . . ,N(0,1)d)
T

6: Fỹ := F(ỹ)
7: if Fỹ < Fy then
8: y := ỹ
9: σ := σ̃

10: end if
11: until stop criterion

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 65

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

For this study, two fitness functions were designed as functional
approximations to improve in some aspect the topological design
of SCPGs; the fitness functions are based on the Bivariate SPIKE-
distanceDS(•,•) (Kreuz et al., 2013) (see Appendix B). In general,
both fitness functions have the same purpose, to drive the search
by measuring the similarity between a target spike train and a
generated spike train. But each fitness function takes into account
extra criteria, such as structural aspects or number of rhythmic
patterns to be replicated. Next, the designed fitness functions are
shown, in equation (3), st is the target spike train, and sg is the spike
train generated after the simulation of a presynaptic connection
design of a neuron. In equation (4), {sti} is a set of target spike
trains, and {sgi} is a set of the spike train generated after the
simulation of a presynaptic connection design of a neuron where
i = 1, . . . , |{sti}| and |{sti}| = |{sgi}|.

The function given by equation (3) is defined with the inten-
tion of achieving compact topologies; it takes into account struc-
tural information about the normalized number of connections
(num_conn

N , num_conn is the number of presynaptic neurons con-
nected to the current neuron andN is the total number of neurons
into the SCPG) required to replicate the input information plus
the similarity between spike trains to assign a fitness value to an
individual.

f1(st, sg) = DS(st, sg) +
num_conn

N (3)

The function given by equation (4) is definedwith the intention
of making SCPGs capable of generating several rhythmic patterns
(as mentioned in Section 1); it takes into account the accumu-
lation of similarities between spike trains of sets of target spike
trains and generated spike trains to assign a fitness value to an
individual.

f2({sti}, {sgi}) =
|{sti}|∑
i=1

DS(sti , sgi) (4)

2.4. Hardware
SCPGs have been implemented in hardware (on an FPGA Spartan
6 board) and successfully validated on a real hexapod robot. The
FPGA-based implementation is a fully reconfigurable hardware
architecture, which runs the different SCPGs in real time. The
FPGA controls all the servomotors (neurons) in the hexapod
robot in order to perform the gaits shown in Figure 2. The
hexapod robot configuration implemented is shown in Figure 4
(Rostro-Gonzalez et al., 2015); each leg is controlled by two ser-
vomotors, i.e., the motors for coxa and femur. Thus, the hardware
configuration requires twelve neurons to handle all the servomo-
tors on the implementation.

3. RESULTS

For this study, two experiments were carried out, one for each
fitness function, to design SCPGs. Next, the parameters for all the
experiments are reported.

The configuration parameters are the same for all experiments,
unless a particular case is explicitly specified. The configuration
was as follows:

• BMS model: a normalized BMS neuron was used, and thus
the threshold θ, in equation (2), was set at a value of 1. The
leak rate γ, in equation (1), was assigned to 0.5 for ease of
implementation on hardware.

• (1+ 1) – ES:
• The dimension of the search space was d= 75.
• The range of each component of the object parametor vector,

yj ∈ [0, 255] where j= 1, . . ., d. In the mapping process, each
component value is rounded to the closest integer.

• The function calls were the stop criteria of the algorithm; the
number of function calls for designing each neuron varies
according to the fitness function used. In the experiments of

FIGURE 4 | Hexapod robot with FPGA Spartan 6.

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 66

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

the first fitness function, given by equation (3), 50 function
calls were used. For the experiment of the second fitness
function, given by equation (4), 500 function calls were used.

To validate the design of the SCPGs, numerical tests based on
two different fitness functions were carried out, and the results are
now presented.

In the first experiment, we considered equation (3) as the fitness
function. In this case, we generated an SCPG for each gait; thus
the gait transition must be done by changing the connectivity
pattern. For this experiment, the expected fitness value on every
design is equal to 1; only one presynaptic neuron is expected to
stimulate the postsynaptic neuron to reproduce its input signal.
The results are given in the following order: walk, jog, and run
gaits, respectively. The generated words for presynaptic connec-
tivity and the final topologies resulting from the integration of
individuals designs for each gait are reported in Tables 1–3.
Finally, the weight matrices for each gait are given in equations
(15–17) (see Appendix C). As can be observed, the SCPGs were
successfully designed by using this fitness function. The number
of synaptic is N = 12 (the minimum expected), due to that fact
that there is a restriction on the number of these during the
computation.

TABLE 1 | Configuration of designed SCPG for walking gait by using
equation (3).

Neuron (ID) Presynaptic
connectivity

Topology

FL1 (1) 1:2, +4

FR1

FR2

FR3

CR1

CR2

CR3

CL1

CL2

CL3

FL1

FL2

FL3

CL1 (2) 1:11, +9
FL2 (3) 1:4, +3
CL2 (4) 1:5, +1
FL3 (5) 1:8, +7
CL3 (6) 1:9, +6
FR1 (7) 1:6, +1
CR1 (8) 1:1, +7
FR2 (9) 1:2, +6
CR2 (10) 1:3, +3
FR3 (11) 1:4, +6
CR3 (12) 1:7, +5

TABLE 2 | Configuration of designed SCPG for jogging gait by using
equation (3).

Neuron (ID) Presynaptic
connectivity

Topology

FL1 (1) 1:2, +5

FR1

FR2

FR3

CR1

CR2

CR3

CL1

CL2

CL3

FL1

FL2

FL3

CL1 (2) 1:3, +5
FL2 (3) 1:8, +1
CL2 (4) 1: 9, +7
FL3 (5) 1:10, +9
CL3 (6) 1:11, +8
FR1 (7) 1:4, +2
CR1 (8) 1:5, +5
FR2 (9) 1:6, +9
CR2 (10) 1:1, +8
FR3 (11) 1:2, +2
CR3 (12) 1:7, +4

In the second experiment, we considered equation (4) as the
fitness function. Here, we generated a single SCPG for the three
gaits. Thus, the gait transition can be performed by altering the
driving signal (switching the state of the SNN for the initial state
of the desired gait). For this experiment, the expected fitness value
for every design is 0. The generated words for presynaptic connec-
tivity and the final topologies generated by the integration of indi-
viduals designs are reported in Table 4. Finally, the weight matrix
is given in equation (18) (see Appendix C). As can be observed,
the SCPGwas successfully designed by using this fitness function.
In terms of hardware design, this method is highly suitable to be
provided of sensory information as the driving signal.

Finally, in Figure 5, we also present the results of a real-
time simulation on the hexapod robot. In this case, we show

TABLE 3 | Configuration of designed SCPG for running gait by using
equation (3).

Neuron (ID) Presynaptic
connectivity

Topology

FL1 (1) 1:6, +1

FR1

FR2

FR3

CR1

CR2

CR3

CL1

CL2

CL3

FL1

FL2

FL3

CL1 (2) 1:7, +9
FL2 (3) 1:12, +7
CL2 (4) 1:9, +4
FL3 (5) 1:6, +5
CL3 (6) 1:7, +6
FR1 (7) 1:4, +4
CR1 (8) 1:9, +5
FR2 (9) 1:6, +1
CR2 (10) 1:3, +5
FR3 (11) 1:8, +9
CR3 (12) 1:1, +9

TABLE 4 |Configuration of designed SCPG for all gaits by using equation (4).

Neuron
(ID)

Presynaptic
connectivity

Topology

FL1 (1) 1:2, +8

FR1

FR2

FR3

CR1

CR2

CR3

CL1

CL2

CL3

FL1

FL2

FL3

CL1 (2) 7:5, −2|7, +1|8,
+2|1, −7|11, +2|3,
+4|4, +2

FL2 (3) 7:6, +1|8, −2|5,
+4|9, +4|2, −5|1,
−9|4, +8

CL2 (4) 1:5, +8

FL3 (5) 1:6, +5

CL3 (6) 5:9, +3|5, −9|11,
+3|12, −1|1, +6

FR1 (7) 1:8, +5

CR1 (8) 1:9, +4

FR2 (9) 1:10, +8

CR2 (10) 1:11, +9

FR3 (11) 5:8, −2|2, −4|12,
+9|11, +3|6, −3

CR3 (12) 7:5, +8|2, +1|9,
−4|6, −1|4, −3|7,
+5|11, −4

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 67

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

A

C

E

G

B

D

F

H

FIGURE 5 | Spike trains generated for all gaits; Figures (A–F) were obtained by equation (3) and Figures (G,H) were obtained by equation (4). In the left
side we present numerical simulations in software and on the right side oscilloscope signals in a real time simulation of the hexapod robot. The oscilloscope signals
are directly taken from the FPGA. (A) Spike trains for walking gait. (B) Oscilloscope reading of walking gait. (C) Spike trains for jogging gait. (D) Oscilloscope reading
of jogging gait. (E) Spike trains for running gait. (F) Oscilloscope reading of running gait. (G) Spike trains for all gaits. (H) Oscilloscope reading of all gaits.

both the simulation in software (left side) and the oscilloscope
signals (right side) generated during the performance of a loco-
motion pattern (walking, jogging, and running) in the robot.

In order to get the real time signals, we used an MSO5204B
Mixed Signal Oscilloscope, which has 16 digital channels. We
only used 12 of the 18 available servomotors in the robot out

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 68

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

of the 16 digital channels, which was enough to perform the
measures.

4. CONCLUSION

In this study, an automatic design methodology involving CPGs
built as SNNs for hexapod locomotion has been presented.
The proposal follows the divide-and-conquer approach to design
the SNNs for given input rhythmic signals. Instead of designing
the SNN as a whole, the methodology integrates the individual
presynaptic configuration (connectivities and weights) of each
locomotor neuron to create the final SNNs. The individual presy-
naptic configuration is carried out by CGE, which modifies the
solutions over the search space of connections and weights. The
CGE allows to dispense with a predefined architecture to avoid
the explicit learning process for a neuron when replicating a spe-
cific rhythmic signal. The aforementioned advantage is possible
because the solution indirectly represents the number of presy-
naptic connections, the indexes of these connections and their
respective weights. The quality of the solutions is given by fitness
functions that are mainly based on SPIKE-distance.

The proposed methodology has been successfully validated by
generating SNNs to replicate rhythmic signals. The two fitness
functions used in this work allow us to implement the hexapod
gaits transitions in two ways: by changing the pattern connectivity
when each gait is produced by one designed SNN and by altering
the driving signal when an SNN can produce several rhythmic
signals. The designed SCPGs were validated in both computer
simulations and hardware implementation running on an FPGA
to control an hexapod robot and, all of them showed the desired
behaviors. Moreover, this study has reached the results reported
in Rostro-Gonzalez et al. (2015) by generating one SCPG for each
gait and their implementations, and it has managed to generate
SCPGs capable of producing several rhythmic signals taking as
basis the proposal of Rostro et al.; this was possible due to the
characteristics of the EAs and the SPIKE-distance based fitness
function definitions.

Our proposal was used for hexapod gaits and their imple-
mentation over hexapod robots; however it can be tested on

designing SCPGs for other gaits and different legged robots when
target spikes are provided for the optimization process. Other
criteria can be also added to the fitness functions based on SPIKE-
distance, considering aspects of hardware implementation, for
example.

AUTHOR CONTRIBUTIONS

AE has contributed on the conception and design of the work
in the grammar design and software implementation phases, has
acquired and analyzed the CPG’s topologies for hexapod loco-
motion, and has been involved on the draft process. HR-G has
contributed on the conception and design of this work in the
SNNs and locomotion gaits phases, has analyzed the resulting
CPG topologies, and hasworked on the draft process, contributing
to a critical revision on the paper’s content and given his approval
for the results. MC andMO-R have contributed on the conception
of this work; they have been involved on the draft process, aiding
with their critical revision and giving their final approval. EG-H
has contributed on the conception and design of the work in the
hexapod robot’ configuration and implementation of designed
CPG over FPGAs phases, has analyzed the designed topologies
over real hexapod robots, and has been involved on the draft pro-
cess. MS-F has contributed on the conception and design of this
work in the design part supporting the optimization phase and
has been implicated from draft process, to the critical revisions
for improving the content.

ACKNOWLEDGMENTS

This research has been supported by the CONACYT project
“Aplicación de la Neurociencia Computacional en el Desarrollo
de Sistemas Robóticos Biológicamente Inspirados” (No 269798).

FUNDING

This work has been partially funded by the SEP-PRODEP project
(Apoyo a la incorporación de NPTC).

REFERENCES
Arena, P. (2000). The central pattern generator: a paradigm for artificial locomo-

tion. Soft Comput. 4, 251–266. doi:10.1007/s005000000051
Barron-Zambrano, J. H., and Torres-Huitzil, C. (2012). CPG Implementations

for Robot Locomotion: Analysis and Design. Rijeka: INTECH Open Access
Publisher.

Beyer, H. (2013). The Theory of Evolution Strategies. Berlin, Heidelberg: Springer.
Brown, T. G. (1911). The intrinsic factors in the act of progression in

the mammal. Proc. R Soc. Lond. B Biol. Sci. 84, 308–319. doi:10.1098/rspb.1911.
0077

Brown, T. G. (1914). On the nature of the fundamental activity of the nervous
centres; together with an analysis of the conditioning of rhythmic activity in
progression, and a theory of the evolution of function in the nervous system.
J. Physiol. 48, 18. doi:10.1113/jphysiol.1914.sp001646

Buschmann, T., Ewald, A., von Twickel, A., and Büschges, A. (2015). Control-
ling legs for locomotion – insights from robotics and neurobiology. Bioinspir.
Biomim. 10, 041001. doi:10.1088/1748-3190/10/4/041001

Chen, W., Ren, G., Zhang, J., and Wang, J. (2012). Smooth transition between
different gaits of a hexapod robot via a central pattern generators algorithm.
J. Intell. Robot. Syst. 67, 255–270. doi:10.1007/s10846-012-9661-1

Christiansen, H. (1985). “Syntax, semantics, and implementation strategies for pro-
gramming languages with powerful abstraction mechanisms,” in The Eighteenth
Hawaii International Conference on System Sciences, Hawaii.

Crespi, A., and Ijspeert, A. J. (2008). Online optimization of swimming and crawling
in an amphibious snake robot. IEEE Trans. Robot. 24, 75–87. doi:10.1109/TRO.
2008.915426

Dempsey, I., O’Neill, M., and Brabazon, A. (2009). Foundations in Grammatical
Evolution For Dynamic Environments, Vol. 194. Springer.

Ding, S., Li, H., Su, C., Yu, J., and Jin, F. (2013). Evolutionary artificial neural net-
works: a review. Artif. Intell. Rev. 39, 251–260. doi:10.1007/s10462-011-9270-6

Dortmund, T. (1995). Evolutionary Algorithms in Theory and Practice: Evolu-
tion Strategies, Evolutionary Programming, Genetic Algorithms: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. New York, NY: Oxford
University Press.

Engelbrecht, A. (2007). Computational Intelligence: An Introduction. Chichester:
Wiley.

Gerstner, W., and Kistler, W. (2002). Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge: Cambridge University Press.

Grabowska, M., Godlewska, E., Schmidt, J., and Daun-Gruhn, S. (2012).
Quadrupedal gaits in hexapod animals – inter-leg coordination in free-walking
adult stick insects. J. Exp. Biol. 215, 4255–4266. doi:10.1242/jeb.073643

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 69

http://dx.doi.org/10.1007/s005000000051
http://dx.doi.org/10.1098/rspb.1911.0077
http://dx.doi.org/10.1098/rspb.1911.0077
http://dx.doi.org/10.1113/jphysiol.1914.sp001646
http://dx.doi.org/10.1088/1748-3190/10/4/041001
http://dx.doi.org/10.1007/s10846-012-9661-1
http://dx.doi.org/10.1109/TRO.2008.915426
http://dx.doi.org/10.1109/TRO.2008.915426
http://dx.doi.org/10.1007/s10462-011-9270-6
http://dx.doi.org/10.1242/jeb.073643
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

Hong, Y.-D., Park, C.-S., andKim, J.-H. (2014). Stable bipedal walkingwith a vertical
center-of-mass motion by an evolutionary optimized central pattern generator.
IEEE Trans. Ind. Electron. 61, 2346–2355. doi:10.1109/TIE.2013.2267691

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in ani-
mals and robots: a review.Neural Netw. 21, 642–653. doi:10.1016/j.neunet.2008.
03.014

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary
computation. Soft Comput. 9, 3–12. doi:10.1007/s00500-003-0328-5

Judd, J. S. (1990).Neural Network Design and the Complexity of Learning. A Bradford
book. Cambridge: MIT Press.

Koza, J. R. (1992). Genetic Programming: on the Programming of Computers by
Means of Natural Selection. A Bradford book, Vol. 1. Cambridge: MIT press.

Kreuz, T., Chicharro, D., Houghton, C., Andrzejak, R. G., and Mormann, F. (2013).
Monitoring spike train synchrony. J. Neurophysiol. 109, 1457–1472. doi:10.1152/
jn.00873.2012

Lewis, M. A., Tenore, F., and Etienne-Cummings, R. (2005). “CPG design using
inhibitory networks,” in Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, 2005. ICRA 2005 (Barcelona: IEEE), 3682–3687.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural net-
workmodels.Neural Netw. 10, 1659–1671. doi:10.1016/S0893-6080(97)00011-7

MacKay-Lyons, M. (2002). Central pattern generation of locomotion: a review of
the evidence. Phys. Ther. 82, 69–83.

Mulansky, M., Bozanic, N., Sburlea, A., and Kreuz, T. (2015). “A guide to time-
resolved and parameter-free measures of spike train synchrony,” in Interna-
tional Conference on Event-based Control, Communication, and Signal Processing
(EBCCSP) (IEEE), 1–8.

Nassour, J., Hénaff, P., Benouezdou, F., and Cheng, G. (2014). Multi-layered multi-
pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108,
291–303. doi:10.1007/s00422-014-0592-8

O’Neill, M., and Brabazon, A. (2006a). “Grammatical differential evolution,” in
International Conference on Artificial Intelligence (ICAI’06) (Las Vegas, Nevada:
CSEA Press).

O’Neill, M., and Brabazon, A. (2006b). Grammatical swarm: the generation of pro-
grams by social programming. Nat. Comput. 5, 443–462. doi:10.1007/s11047-
006-9007-7

Ortega, A., De La Cruz, M., and Alfonseca, M. (2007). Christiansen grammar
evolution: grammatical evolution with semantics. IEEE Trans. Evol. Comput. 11,
77–90. doi:10.1109/TEVC.2006.880327

Park, C.-S., Hong, Y.-D., and Kim, J.-H. (2014). Evolutionary-optimized central
pattern generator for stable modifiable bipedal walking. IEEE/ASME Trans.
Mechatronics 19, 1374–1383. doi:10.1109/TMECH.2013.2281193

Patel, L. N. (2009). “Central pattern generators: optimisation and application,” in
Nature-Inspired Algorithms for Optimisation, ed. R. Chiong (Berlin; Heidelberg:
Springer-Verlag), 235–260.

Pratt, J., Chew, C.-M., Torres, A., Dilworth, P., and Pratt, G. (2001). Virtual model
control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20,
129–143. doi:10.1177/02783640122067309

Puntambekar, A. (2008).Advanced Data Structures and Algorithms. Pune: Technical
Publications.

Rechenberg, I. (1973). Evolutions Strategie: optimierung technischer Systeme nach
Prinzipien der biologischen evolution. Problemata, 15. Stuttgart: Frommann-
Holzboog Verlag.

Rostro-Gonzalez, H., Cerna-Garcia, P., Trejo-Caballero, G., Garcia-Capulin, C.,
Ibarra-Manzano, M., Avina-Cervantes, J., et al. (2015). A CPG system based
on spiking neurons for hexapod robot locomotion.Neurocomputing 170, 47–54.
doi:10.1016/j.neucom.2015.03.090

Rostro-Gonzalez, H., Cessac, B., and Vieville, T. (2012). Parameter estimation
in spiking neural networks: a reverse-engineering approach. J. Neural Eng. 9,
026024. doi:10.1088/1741-2560/9/2/026024

Russell, A., Orchard, G., Dong, Y., Mihalas, S., Niebur, E., Tapson, J., et al. (2010).
Optimization methods for spiking neurons and networks. IEEE Trans. Neural
Netw. 21, 1950–1962. doi:10.1109/TNN.2010.2083685

Russell, A., Orchard, G., and Etienne-Cummings, R. (2007). “Configuring of spiking
central pattern generator networks for bipedal walking using genetic algorthms,”
in IEEE International Symposium on Circuits and Systems, 2007. ISCAS 2007
(New Orleans: IEEE), 1525–1528.

Ryan, C., Collins, J., and O’Neill, M. (1998). “Grammatical evolution: evolving
programs for an arbitrary language,” in Proceedings of the First European Work-
shop on Genetic Programming Lecture Notes in Computer Science 1391, eds W.
Banzhaf, R. Poli,M. Schoenauer, and T. C. Fogarty (Berlin; Heidelberg: Springer-
Verlag), 83–96.

Schwefel, H. P. (1977).Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, Vol. 1. Basel: Birkhäuser.

Shutt, J. N. (1993). Recursive Adaptable Grammars. Master’s thesis, Worchester
Polytechnic Institute.

Sotelo-Figueroa, M. A., Puga Soberanes, H. J., Carpio, J. M., Fraire Huacuja, H.
J., Cruz Reyes, L., and Soria-Alcaraz, J. A. (2014). Improving the bin packing
heuristic through grammatical evolution based on swarm intelligence. Math.
Prob. Eng. 2014, 12. doi:10.1155/2014/545191

Soula, H., Beslon, G., and Mazet, O. (2006). Spontaneous dynamics of asym-
metric random recurrent spiking neural networks. Neural Comput. 18, 60–79.
doi:10.1162/089976606774841567

Talbi, E.-G. (2009).Metaheuristics: From Design to Implementation, Vol. 74. Hobo-
ken, NJ: John Wiley & Sons.

Vukobratović, M., and Borovac, B. (2004). Zero-moment point – thirty five years of
its life. Int. J. Humanoid Robot. 1, 157–173. doi:10.1142/S0219843604000083

Watt, D. A., andMadsen, O. L. (1983). Extended attribute grammars. Comput. J. 26,
142–153. doi:10.1093/comjnl/26.2.142

Wu, Q., Liu, C., Zhang, J., and Chen, Q. (2009). Survey of locomotion control
of legged robots inspired by biological concept. Sci. China F 52, 1715–1729.
doi:10.1007/s11432-009-0169-7

Wyffels, F., and Schrauwen, B. (2009). “Design of a central pattern genera-
tor using reservoir computing for learning human motion,” in Advanced
Technologies for Enhanced Quality of Life, 2009. AT-EQUAL’09 (Iasi: IEEE),
118–122.

Yao, X. (1999). Evolving artificial neural networks. Proc. IEEE 87, 1423–1447.
doi:10.1109/5.784219

Yu, J., Tan, M., Chen, J., and Zhang, J. (2014). A survey on CPG-inspired control
models and system implementation. IEEE Trans. Neural. Netw. Learn Syst. 25,
441–456. doi:10.1109/TNNLS.2013.2280596

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2016 Espinal, Rostro-Gonzalez, Carpio, Guerra-Hernandez, Ornelas-
Rodriguez and Sotelo-Figueroa. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordancewith
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 610

http://dx.doi.org/10.1109/TIE.2013.2267691
http://dx.doi.org/10.1016/j.neunet.2008.03.014
http://dx.doi.org/10.1016/j.neunet.2008.03.014
http://dx.doi.org/10.1007/s00500-003-0328-5
http://dx.doi.org/10.1152/jn.00873.2012
http://dx.doi.org/10.1152/jn.00873.2012
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1007/s00422-014-0592-8
http://dx.doi.org/10.1007/s11047-006-9007-7
http://dx.doi.org/10.1007/s11047-006-9007-7
http://dx.doi.org/10.1109/TEVC.2006.880327
http://dx.doi.org/10.1109/TMECH.2013.2281193
http://dx.doi.org/10.1177/02783640122067309
http://dx.doi.org/10.1016/j.neucom.2015.03.090
http://dx.doi.org/10.1088/1741-2560/9/2/026024
http://dx.doi.org/10.1109/TNN.2010.2083685
http://dx.doi.org/10.1155/2014/545191
http://dx.doi.org/10.1162/089976606774841567
http://dx.doi.org/10.1142/S0219843604000083
http://dx.doi.org/10.1093/comjnl/26.2.142
http://dx.doi.org/10.1007/s11432-009-0169-7
http://dx.doi.org/10.1109/5.784219
http://dx.doi.org/10.1109/TNNLS.2013.2280596
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

APPENDIX

A. Connectivity Word Derivation Example
This appendix shows an example of the generation of a word
that represents the presynaptic connections and their weight
configuration through the CGE mapping process and the pro-
posed grammar. The input numeric string is [121, 203, 5,
254, 50, 78, 91, 17, 31], Figure A1 shows the generated
derivation tree for the input numeric string; the sequence
of the derivation tree is marked by numerated up/down
arrows.

According to the numeration of the arrows, the full process can
be described as follows:

1. The axiomof theCGE,<neuronSynapses> (↓ gi) is processed.
It only has one production, thus the axiom is replaced by
its unique production and no codon is used. The status of
the word until now is<connections> (↓ gi, ↑ go):<synapses>
(↓ go).

2. The non-terminal <connections> (↓ gi, ↑ go) is processed,
due that is the leftmost non-terminal. As it has only one
production, it is replaced by its production. The status of the
word until now is <neuronIdList> (↓ gi, ↑ n): <synapses>
(↓ go).

3. Processing <neuronIdList> (↓ gi, ↑ n), it is necessary to
choose one of the twelve productions. To select the production
that replaces the current leftmost non-terminal, we consider
the first number of the numeric string to applythe rule 121
mod 12= 1; thus the second production is used to replace
this non-terminal. The status of the word until now is 2:
<synapses> (↓ go).

4. The non-terminal <neuronIdList> (↓ gi, ↑ n) synthesizes a
numeric value of 2 from the selected production which
replaced it. This value will be used in an upper level of the
derivation tree.

5. In this step, we apply the semantic rule of the non-terminal
<connections> (↓ gi, ↑ go). This rule carries out the synthesis
of a new CG called go, which contains all the information
of the CG gi plus an unique production to the non-terminal
<synapses> (↓ go). The production contains the elements to
generate the presynaptic configuration neuron. The number
of elements is indicate by the synthesized number in previous
steps.

6. The non-terminal<synapses> (↓ go) is processed by using the
synthesized CG go, which already contains a unique produc-
tion of this non-terminal. The status of the word until now is
2: <synapse> (↓ go, ↑ go1) | <synapse>(↓ go1 , ↑ go2).

7. Processing <synapse>(↓ go, ↑ go1), it is replaced by its
unique production. The status of the word until now
is 2: <neuronIdList> (↓ go, ↑ n), <weight> (↓ go) |
<synapse>(↓ go1 , ↑ go2).

8. The non-terminal <neuronIdList> (↓ go, ↑ n) is processed
by choosing one of its twelve productions. Applying the
rule 203 mod 12= 11, its last production is selected.
The status of the word until now is 2:12, <weight>
(↓ go)|<synapse>(↓ go1 , ↑ go2).

9. The non-terminal <neuronIdList> (↓ go, ↑ n) synthesizes a
numeric value of 11 from the selected production which
replaced it. This value will be used in an upper level of the
derivation tree.

10. The leftmost <weight> (↓ go) is processed. It has only one
production, thus it is replaced by its production. The status
of the word until now is 2:12, <sign> (↓ go) <digit> (↓ go) |
<synapse>(↓ go1 , ↑ go2).

11. Processing <sign> (↓ go) based on the rule 5mod2= 1, its
second production is selected to replace it. The status of
the word until now is 2:12, −<digit> (↓ go) | <synapse>
(↓ go1 , ↑ go2).

12. Processing <digit> (↓ go) by applying the rule 254mod9= 2,
the third production is selected to replace it. The status of the
word until now is 2:12, −3|<synapse>(↓ go1 , ↑ go2).

13. In this step, it is applied the semantic rule of the non-terminal
<synapses> (↓ go). The rule synthesizes a new CG called
go1 , which contains all the information of the CG go less the
production of<neuronIdList> (↓ go, ↑ n) that synthesized the
value of 12.

14. Processing <synapse> (↓ go1 , ↑ go2) by using the
recently sinthetized CG go1 , it is replaced by its unique
production. The status of the word until now is 2:12,
−3|<neuronIdList> (↓ go1 , ↑ n), <weight> (↓ go1).

15. The non-terminal <neuronIdList> (↓ go1 , ↑ n) is processed
by choosing one of its eleven productions. Applying the rule
50mod11= 6, its seventh production is selected. The status of
the word until now is 2:12, −3|7, <weight> (↓ go1).

16. The non-terminal <neuronIdList> (↓ go1 , ↑ n) synthesizes a
numeric value of 7 from the selected production which
replaced it. This value will be used in an upper level of the
derivation tree.

17. The leftmost <weight> (↓ go1) is processed. It has only
one production, thus it is replaced by its production.
The status of the word until now is 2:12, −3|7,
<sign> (↓ go1)<digit> (↓ go1)).

18. Processing <sign> (↓ go1) based on the rule 78mod2= 0, its
first production is selected to replace it. The status of the word
until now is 2:12, −3|7, +<digit> (↓ go1)).

19. Processing <digit> (↓ go1) by applying the rule 91mod9= 1,
the second production is selected to replace it. The status of
the word until now is 2:12, −3|7, +2.

20. In this step, it is applied the semantic rule of the non-terminal
<synapses> (↓ go1). The rule synthesized a new CG called
go2 , which contains all the information of the CG go1 less
the production of<neuronIdList> (↓ go, ↑ n) that synthesized
the value of 7. But the derivation ends here and the rest of
codons are not used.

B. Bivariate SPIKE-Distance

The SPIKE-Distance (Kreuz et al., 2013) is a parameter-free and
timescale-adaptive measure for estimating the degree of syn-
chrony between spike trains. In general, the distance is defined as
a temporal average of the spike trains’ dissimilarity profiles. There
are several variants of SPIKE-distance, for this study the Bivariate

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 611

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

FIGURE A1 | Example of a derivation tree by the CGE’s mapping process. For the input numeric string [121, 203, 5, 254, 50, 78, 91, 17, 31] the CGE’s
mapping procees generates the word 2:12, −3|7, +2.

SPIKE-distance is used. The Bivariate SPIKE-distance is defined
by equation (A1).

DS(s1, s2) =
1
T

∫ T

t=0
S(t)dt (A1)

where T is the overall length of the spike trains; for this study,
it is 24 times (from time 0 to 23) for each spike train in all
experiments. And S(t) is the dissimilarity profile between two
spike trains. Before starting the dissimilarity profile calculations,
the spike trains must be formatted as follows:

1. To add auxiliary leading spikes at time t= 0 and auxiliary
trailing spikes at time t=T to each spike train; this is to avoid
ambiguities in some calculations.

2. To label the spike times in the spike trains n= 1, 2 by tni ,
i= 1, . . . ,Mn; the maximum number of spike times of the nth
spike train is given byMn.

The computation of S(t) is based on four corner spikes sur-
rounding the current time t (Mulansky et al., 2015), the preceding
spikes t(n)P (t) and the following spikes t(n)F (t) where n= 1, 2; they
are computedby using equations (A2) and (A3), respectively.

t(n)P (t) = max
(
t(n)i |t(n)i ≤ t

)
(A2)

t(n)F (t) = min
(
t(n)i |t(n)i > t

)
(A3)

The inter-spike interval x(n)ISI (t), is given by equation (A4).

x(n)ISI (t) = t(n)F (t) − t(n)P (t) (A4)

For each corner spikes, the distance to the closest spike of the
other spike train is computed. Equations (A5) and (A6) show the
distances for the spike train n= 1, this is similarly made with
∆t(2)P (t) and ∆t(2)F (t) for the spike train n= 2.

∆t(1)P (t) = min
(
|t(1)P (t) − t(2)i |

)
(A5)

∆t(1)F (t) = min
(
|t(1)F (t) − t(2)i |

)
(A6)

Next, the distance of the corner spikes to the current time is
calculated by equations (A7) and (A8).

x(n)P (t) = t − t(n)P (t) (A7)

x(n)F (t) = t(n)F (t) − t (A8)

The weighted distance of each spike train n= 1, 2 is given by
equation (A9).

Sn(t) =
∆t(n)P (t)x(n)F (t) + ∆t(n)F (t)x(n)P (t)

x(n)ISI (t)
(A9)

Finally, the disimilarity profile S(t) is calculated by equation
(A10).

S(t) =
S1(t)x(2)ISI (t) + S2(t)x(1)ISI (t)

2
(
x(1)ISI (t) + x(2)ISI (t)

)2 (A10)

The Bivariate SPIKE-distance is not a metric as such, but it has
useful features such as: it is bound to 0≤DS ≤ 1, if s1 = s2 then
DS(s1, s2)= 0 and the distance between s1 and s2 is symmetric
DS(s1, s2)=DS(s2, s1).

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 612

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Espinal et al. Design of SCPG by CGE

C. Weight Matrixes

Ww =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 9 0
0 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 7 0 0 0 0
0 0 0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 5 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A11)

Wj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 5 0 0 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 7 0 0 0
0 0 0 0 0 0 0 0 0 9 0 0
0 0 0 0 0 0 0 0 0 0 8 0
0 0 0 2 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0
0 0 0 0 0 9 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A12)

Wr =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 9 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0
0 0 0 0 0 0 6 0 0 0 0 0
0 0 0 4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 5 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 9 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(A13)

Waio =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 8 0 0 0 0 0 0 0 0 0 0
−7 0 4 2 −2 0 1 2 0 0 2 0
−9 −5 0 8 4 1 0 −2 4 0 0 0
0 0 0 0 8 0 0 0 0 0 0 0
0 0 0 0 0 5 0 0 0 0 0 0
6 0 0 0 −9 0 0 0 3 0 3 −1
0 0 0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 0 0 0 0 9 0
0 −4 0 0 0 −3 0 −2 0 0 3 9
0 1 0 −3 8 −1 5 0 −4 0 −4 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A14)

Frontiers in Neurorobotics | www.frontiersin.org July 2016 | Volume 10 | Article 613

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Design of Spiking Central Pattern Generators for Multiple Locomotion Gaits in Hexapod Robots by Christiansen Grammar Evolution
	1. Introduction
	2. Materials and Methods
	2.1. Hexapod Locomotion Gaits
	2.2. Spiking Neural Network
	2.2.1. BMS Neuron Model

	2.3. Christiansen Grammar Evolution
	2.3.1. Christiansen Grammars
	2.3.2. CGE Mapping Process
	2.3.3. Search Engine: (1+1) – Evolution Strategy
	2.3.4. SPIKE-Distance-Based Fitness Functions

	2.4. Hardware

	3. Results
	4. Conclusion
	Author Contributions
	Acknowledgments
	Funding
	References
	Appendix
	A. Connectivity Word Derivation Example
	B. Bivariate SPIKE-Distance
	C. Weight Matrixes

