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Estrogen-signaling pathways are implicated in the development of breast cancer and
prostate cancer. Various studies have focused on additional signaling pathways, medi-
ated by estrogen-related receptors (ERRs). ERRs are constitutively active receptors that
share a high degree of homology with the classical estrogen receptors (ERs). However,
they do not bind to estrogen, while ERs do. ERRs are involved in the development
of alternative pathways that lead to the development of cancer and are regarded as
potential therapeutic targets for the treatment of breast cancer and prostate cancer that
do not respond to conventional therapies. In this review, we first present general structural
features of ERRs. Then, we focus on breast cancer and prostate cancer, which are
primarily hormone-dependent cancers, and summarizes recent progress in elucidating
the involvement of each ERR in these two types of malignancies.
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Introduction

Among the 48 members of the nuclear receptor superfamily, the estrogen receptor (ER)-like
subfamily (NR3) is one of the seven subfamilies and is composed of three groups: ERs(NR3A),
estrogen-related receptors (ERRs or NR3B), and 3-ketosteroid receptors (NR3C), which include the
androgen receptor (AR), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralo-
corticoid receptor (MR). ERRs were initially thought to share a common biological function with
ERs, but unexpectedly, they do not bind to estrogen or endogenous ER ligands and are considered
orphan nuclear receptors (1).

Estrogens are natural hormones considered to play a major role in promoting the proliferation
of both the normal and neoplastic breast epithelium. Growing evidences suggest that estrogen-
signaling pathways are implicated in not only in the development of breast cancer but also in
that of prostate cancer, which are both hormone-dependent cancers (2). ER-positive breast cancers
are preferentially treated with antiestrogens such as selective ER modulators known as SERMs
(including tamoxifen which is the most commonly used) or selective ER down-regulators known
as SERDs (ICI 182,780) (3). Aromatase inhibitors are used in postmenopausal women to block
the enzyme aromatase, which is involved in the final step of estrogen synthesis from circulating
androgens (4). Androgen deprivation therapy (ADT) is used for the treatment of locally advanced,
biochemically recurrent, and metastatic prostate cancer. However, after the initial response, these
therapies for breast and prostate cancer fail and cancer will inevitably recur (5–7). The mechanisms
underlying recurrence have not been fully clarified, but the acquisition of alternative intracellular
ER signaling may be involved in hormonal therapy resistance.

Various studies have focused on additional estrogen-related signaling pathways, mediated by
ERRs (8–10). Sequence analysis reveals that ERRs and the classical ERs share a high degree of
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homology within their DNA and ligand-binding domains (LBDs)
(11). The ERR family consists of three closely related members:
ERRα, ERRβ, and ERRγ (Figure 1). ERRs, like other nuclear
receptors, consist of six conserved regions (A–F): A/B domain
containing the N-terminal domain (NTD), C domain with a
DNA binding domain (DBD), D domain, which corresponds to
the hinge region, E domain containing a putative LBD, and the
F domain or C-terminal region. The transcriptional activation
function-1 (AF-1) site is located in the N-terminal A/B domain,
and its activity does not depend on the presence of activating
ligands. The ligand-regulated activation function-2 (AF-2) site is
located at E domain and it is known to synergize with AF-1 to
regulate gene expression (12, 13). These receptors are constitu-
tively active due to the structure of the LBD that leaves the AF-2
exposed and capable of binding coregulators in the absence of
ligand binding.

ERR Action Mechanisms

Like other nuclear receptors, the transcriptional activity of ERRs
is dependent on the presence of coregulatory proteins, either
corepressors or coactivators. Steroid receptor coactivator (SRC)-
1, -2, and -3, which regulate hepatic metabolism, fat storage, and
energy balance, have been shown to interact with one ormore ERR
isoform stimulating their transcriptional activity (14, 15). PPARγ
coactivator (PGC)-1α and PGC-1β, which play essential roles in
metabolic programs, have been shown to directly interact with
ERRs, positively regulating the expression and activity or these
nuclear receptors (16). The activity of the ERRs as transcription
factors is generally inhibited through physical interaction with

receptor interacting protein 140, RIP140, also known as nuclear
receptor interacting protein 1, NRIP1, a corepressor that com-
petes for interaction with PGC-1α for ERRs binding negatively
regulating gene expression (17).

Estrogen-related receptors can bind to DNA on ERR response
elements (ERREs) designated by the sequence 5′-TNAAGGTCA-
3′ as well as the classical ER response elements (EREs) 5′-
AGGTCANNNTGACCT-3′, where N represents any nucleotide
(18–20). These orphan nuclear receptors play a central role in
regulating cellular metabolism through the regulation of genes
involved in glycolysis, oxidative phosphorylation, and tricar-
boxylic acid cycle (21). ERRα is present in tissues with high
metabolism, such as the heart, kidney, intestinal tract, skeletal
muscle, and brown adipose tissue (22). The expression of ERRβ
and ERRγ is more restricted, being mainly expressed in the
heart and kidney (22, 23). Both ERRα and ERRγ are upregu-
lated in preadipocytes and pluripotent mesenchymal cells under
adipogenic conditions, positively regulating lipid accumulation
(24, 25). ERRβ and ERRγ are also expressed during the early
embryonic development and in the central nervous system and
spinal cord. Although ERRs have structural and functional simi-
larities, mice deficient for each ERR exhibit different phenotypes,
suggesting that these ERRs have specific and unique functions.
ERRα-deficient mice are viable, but exhibit a phenotype char-
acterized by reduced body weight, peripheral fat deposits, and
resistance to high-fat diet-induced obesity (26). They also exhibit a
loss of normal mitochondrial biogenesis (27). On the other hand,
ERRβ-deficient mice are lethal due to impaired placenta forma-
tion (28). Interestingly, an important role of this orphan receptor
in embryonic stem (ES) cells maintenance has been suggested,

FIGURE 1 | Domain structure and protein length of ERRs and ERs. DBD, DNA binding domain; LBD, ligand-binding domain; AF-1, activating function-1; AF-2,
activating function-2. The percentage conservation between ERRα and the other two ERRs is shown for each of the five domains.
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as it is able to regulate self-renewal in ES cells in cooperation
with octamer-binding protein 4, Oct4, and sex determining region
Y-box 2, Sox2, replacing kruppel-like factor 4, Klf4, and conse-
quently enhancing the transcription of reprograming factors (29).
ERRγ-deficient mice also die during the early postnatal period
due to abnormal heart function (30). It has been reported that
ERR overexpression increases glycolysis, while depletion results
in the opposite effect, reducing aerobic glycolysis (31). Further-
more, ERRα and ERRγ were found to form heterodimers and
bind to the promoters of the same target genes to regulate genes
controlling both the glycolytic and the oxidative mitochondrial
respiration phenotypes (32). These findings suggest that ERRs
might contribute to a shift in cellular metabolism from normal
mitochondrial oxidative phosphorylation to an aerobic glycolysis
typical of cancer cells, known as the Warburg effect, increas-
ing glucose consumption, and ATP production (33). However, a
number of evidence suggest that ERRα and ERRγ have opposite
functions in regulating cellular metabolism. ERRα could assist in
setting a glycolytic profile required for the proliferation of rapidly
dividing cells in normal tissues with high-energy demand and
tumors consequently promoting cellular proliferation (34–39).
By contrast, ERRγ high expression has been detected in tumors
with better prognosis (36), and inhibition of this orphan receptor
by a microRNA (miR-378*) induces a metabolic switch by pro-
moting a Warburg-like phenotype (40). These findings illustrates
the complexity of metabolic reprograming by ERRs in cancer
cells, where ERRα and ERRγ could cooperate or play an opposite
role in the metabolic transcriptional pathway depending on the
cellular environment and the expression of distinct coregulators
(41) (Table 1).

ERRs in Breast Cancer

Breast cancer is the leading cause of cancer-related death in
women worldwide (50). It is primarily a hormone-dependent
disease that can be regulated by the status of steroid hormones
such as estrogen and progesterone. Unfortunately, the emergence
of hormone-resistant tumor cells after years of treatment is a
major issue affecting patientswith breast cancer (7). Breast cancers
can be divided into five subtypes that vary in their treatment
options and survival outcomes based on gene expression profiles
(51–54). ERα positive (ERα+) and progesterone receptor pos-
itive (PR+) tumors account for approximately 70% of all cases
(55, 56). These ERα+/PR+ tumors can be further classified into
HER2+ and HER2− subtypes depending on epidermal growth
factor receptor 2, ErbB-2, or HER2 gene expression. Blocking
the estrogen production or estrogen binding to the receptor by
tamoxifen or aromatase inhibitors is the standard treatment for

both early and advanced ERα+ breast cancer (57, 58). For ERα
negative (ERα−), progesterone receptor negative (PR−), and
HER2+ (ERα−/PR−/HER2+) breast tumors, a combination of
pertuzumab, trastuzumab, and docetaxel has been effective (59).
However, there are still no approved targeted therapies for triple
negative ERα−/PR−/HER2− breast tumors (10–17% of all breast
cancer cases) (60, 61), or the normal breast-like or basal-like
cancer subtype (15% of the cases) (62, 63), which are mostly triple
negative and frequently have TP53mutations (64).

Much attention has been paid to the role of ERRs in breast
cancer, as they are orphan nuclear receptors closely related to
ERs. ERRα expression in breast tumors is often high, and it is
expressed in tumors with poor prognosis (36). In samples from
various cohorts of patients with breast cancer, ERRα mRNA pos-
itively correlates with the expression of the oncogene ERBB2 and
inversely correlates to that of ERα and PR, which are considered
as good prognostic markers for patients with breast cancer (36).
The expression of ERRα mRNA and protein positively correlates
with the coactivator amplified in breast cancer 1 (AIB1), also
known as SRC-3 (65). However, ERRα is able to act as both a
transcriptional activator and repressor depending on the cellular
context, promoting or inhibiting tumor growth in breast cancer
(42). In ER− breast cancer cells, ERRα functions as a transcrip-
tional activator constitutively interacting with coactivators and
binding to EREs independently of any ligands. Consequently,
ERRα competes with ER in the regulation of estrogen-responsive
genes such as the estrogen-regulated trefoil factor 1 (TFF1) (65,
66) and vascular endothelial growth factor (VEGF) (34, 43). In
ER+ breast cancer cells, ERRα functions as a transcriptional
repressor, interacting with corepressors and binding to nega-
tive EREs (42).

ERRα also plays a role in bone metastasis, which occurs in up
to 70% of patients with advanced breast cancer (44). In a mouse
xenograft model of metastatic human breast cancer, overexpres-
sion of wild-type ERRα-reduced metastasis and breast cancer cell
growth in the bone, likely by upregulating the osteoclastogen-
esis inhibitor, osteoprotegerin (OPG). By contrast, ERRα over-
expression increases breast cancer cell growth in the mammary
gland and the expression of VEGF. Thus, ERRα plays dual roles,
promoting the progression and invasion of primary tumors by
decreasing osteolytic lesions in the bone (44).

It has been suggested that the induction of c-myc expres-
sion by estrogen occurs through the “non-classical” pathway –
without binding of ERα to its promoter (67). Another study
demonstrated a positive correlation between ERRα, c-myc, and
aromatase (37), an enzyme that may enhance estrogen produc-
tion and stimulate breast cancer progression (38). These studies
propose that ERR could play an important role in alternative

TABLE 1 | Expression of ERR isoforms and implication in breast cancer and prostate cancer.

Receptor Breast cancer Prostate cancer

Expression Implication Reference Expression Implication Reference

ERRα (NR3B1) High Transcriptional activator or repressor (42) High Promotion of cell growth (39)
Promotion of cell growth and metastasis (34, 39, 43, 44)

ERRβ (NR3B2) Uncertain Uncertain (36, 45) Low Inhibition of cell growth (46)
ERRγ (NR3B3) High/low Promotion or inhibition of cell growth (36, 47, 48) Low Inhibition of cell growth (49)
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pathway to classical ERs-dependent pathway in cell signaling
through aromatase and c-myc.

ERRα participates in the enhancement of estrogen production
by the activation of steroid sulfotransferase (SULT2A1), which
maintains high level of peripheral dehydroepiandrosterone sul-
fate (DHEAS), an important dehydroepiandrosterone (DHEA)
metabolite in estrogen synthesis in certain tissues (68). It has also
been reported that SULT2A1 inactivates tamoxifen and raloxifene
(69). Thus, SULT2A1 activation by ERRα can partly explain
the resistance of breast cancer cells expressing ERRα to SERM
therapy.

A clinical study analyzing 102 breast cancer samples revealed
that the expression of ERRα in more than 10% of malignant
cells was associated with a 20% decrease in overall disease sur-
vival at 13 years (70). In this work, association between ERα and
ERE-containing estrogen-responsive genes was markedly altered
according to ERRα status in breast cancer tissues, suggesting that
ERRα possibly modulates ERα-mediated and ERE-dependent
transcription, and changes the expression of estrogen-responsive
genes in breast cancer cells. In a previous clinical study, high
levels of ERRα mRNA correlated with ERα-tumor status in 38
tumor specimens (36). These two studies suggest that ERRα
mRNA and protein expression are associated with an unfavor-
able prognosis, and increase the risk of recurrence of breast
cancer.

ERRγ also acts differently depending on ER expression. In
breast tumors co-expressing ER andPR, ERRγ induces E-cadherin
expression and promotes the mesenchymal-to-epithelial (MET)
transition, resulting in the inhibition of tumor growth (36, 47).
It has been shown that an AAAG tetranucleotide polymorphism
in the untranslated region of the ERRγ gene is associated with
breast cancer predisposition (71), and that ERRγ mediates tamox-
ifen resistance in invasive lobular breast cancer. In human breast
cancer specimens, both ERRγ mRNA and protein expression are
upregulated compared with normal samples, and exogenously
transfected ERRγ increased breast cancer cell proliferation (36,
48). Tumors overexpressing ERRγ are also frequently steroid
receptor positive, which may reflect hormonal sensitivity and
a preferable clinical outcome. Thus, ERRγ mRNA expression
is associated with a favorable prognosis of patients with breast
cancer (36).

ERRβ expression has also been detected in breast tumors. It
has been shown that ERRβ expression is associated with that of
ERβ, and that ERRβ levels inversely correlate with the S-phase
fraction, suggesting that this orphan receptor inhibits cellular
proliferation, or possibly promotes cellular differentiation (36).
However, another report found that it acts as a proliferative gene
(45). Thus, the potential role of ERRβ in breast cancer remains
unclear.

ERRs in Prostate Cancer

Prostate cancer, which is dependent on androgens for prolifera-
tion and survival, is the second-leading cause of cancer-related
mortality, after lung cancer, in men from developed countries
(72). With early diagnosis, radical prostatectomy and/or radia-
tion therapy are potentially curative. For advanced or metastatic

prostate cancer, hormonal therapies, reducing androgen levels
by surgical or chemical castration or inhibiting the AR pro-
tein by small molecules, are used (57). However, after an initial
response, the cancer eventually recurs in an incurable, castration-
resistant form (5, 6), as a result of amplification of AR pro-
tein, mutations of AR gene, and elevated production of AR
variants (73).

In addition to androgen-signaling pathways, estrogen-
signaling pathways are implicated in the development of prostate
cancer (1), and estrogen has been used for the treatment of
advanced prostate cancer (74). The direct effect of estrogens on
normal and malignant prostate tissues is assumed to be mediated
through ERα and ERβ (75, 76).

ERRα mRNA has been detected in prostate cancer cell lines
and human prostate cancer tissue (77). Although a heterogeneous
ERRα staining was found in immunohistochemical analysis using
prostate cancer tissues with low Gleason score (GS), increased
ERRα protein expression was detected in human prostate tis-
sue from 106 surgical resected prostate samples in a study that
showed a positive correlation between ERRα expression and GS
(78). The enhanced expression of ERRα might play a role in the
development of human prostate cancer and serve as a significant
prognostic factor for the disease.

By contrast, reduced ERRβ and ERRγ expression in some
prostatic carcinomas has been reported (77), and overexpression
of ERRβ or ERRγ results in the suppression of cell proliferation
in both androgen-sensitive and insensitive prostate cancer cells,
suggesting that these receptors present antiproliferative or tumor-
suppressing functions in prostate cancer (46, 49). Furthermore,
it has been shown that ERRβ directly transactivates a promoter
upstream of the cyclin-dependent kinase inhibitor, p21 gene,
resulting in the inhibition of the cell cycle progression (46). Clini-
copathological studies for the expression of both orphan receptors
in human prostate tissues have been performed using immuno-
histochemical analysis (79). Cancerous lesions and benign foci
obtained from radical prostatectomywere stained and immunore-
activity scores (IR scores) were evaluated from the proportion of
immunoreactive cells and staining intensity, revealing that ERRβ
and ERRγ IR scores are significantly lower in cancerous tissues.
In the same study, patients with high ERRα IR score, but low
ERRγ IR score, presented a poorer cancer-specific survival when
compared to the other group, suggesting that the expression of
ERRβ and ERRγ could be a useful prognostic indicator of prostate
cancer (79).

ERRs Agonists and Antagonists

Although no endogenous ligands have been identified for these
receptors several natural phytoestrogens (three isoflavones: genis-
tein, daidzein, and biochanin A, and one flavone: 6, 3, 4-
trihydroxyflavone) have been identified as potential ligands of
these receptors with agonistic activities, by structure-based virtual
screening and biological functional assays (80, 81). Phytoestro-
gens are produced by plants, and represent the major natural
exogenous sources of estrogenic compounds. DY131 is another
ERR agonist, specific to ERRβ and ERRγ that was shown to
enhance growth inhibition, which was caused by overexpression

Frontiers in Endocrinology | www.frontiersin.org May 2015 | Volume 6 | Article 834

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Misawa and Inoue Estrogen-related receptors and cancer

of these nuclear receptors (46, 49). Inhibition of ERRα with
the inverse agonist XCT790 reduces cell proliferation of various
cancer cell lines, including prostate and breast cancer cells (39).

On the other hand, diethylstilbestrol (DB00255) and the
tamoxifen metabolite, 4-hydroxytamoxifen, have been shown to
interact with ERRβ and ERRγ and act as antagonists (82, 83).
SR16388, a novel steroidal antiestrogen, inhibits the interaction
between its coactivator peroxisome proliferator-activated receptor
γ coactivator-1 α to inhibit ERR α activity (84).

Conclusion

Although the role of orphan nuclear receptors in cancer is becom-
ing clearer as a result of advances in previous studies, their func-
tion still remains to be elucidated. A better understanding of ERRs
in breast and prostate cancer will provide new insights into cancer
biology as well as the discovery of novel small molecules that bind
to these orphan receptors. This knowledge will be helpful for the

identification of novel hormonal therapeutic strategies and cancer
treatments.
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