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One major aim in quantitative and translational neuroscience is to achieve a precise
and fast neuronal counting method to work on high throughput scale to obtain reliable
results. Here, we tested the isotropic fractionator (IF) method for evaluating neuronal and
non-neuronal cell loss in different models of central nervous system (CNS) pathologies.
Sprague-Dawley rats underwent: (i) ischemic brain damage; (ii) intraperitoneal injection
with kainic acid (KA) to induce epileptic seizures; and (iii) monolateral striatal injection
with quinolinic acid (QA) mimicking human Huntington’s disease. All specimens were
processed for IF method and cell loss assessed. Hippocampus from KA-treated rats and
striatum from QA-treated rats were carefully dissected using a dissection microscope
and a rat brain matrix. Ischemic rat brains slices were first processed for TTC staining
and then for IF. In the ischemic group the cell loss corresponded to the neuronal
loss suggesting that hypoxia primarily affects neurons. Combining IF with TTC staining
we could correlate the volume of lesion to the neuronal loss; by IF, we could assess
that neuronal loss also occurs contralaterally to the ischemic side. In the epileptic
group we observed a reduction of neuronal cells in treated rats, but also evaluated
the changes in the number of non-neuronal cells in response to the hippocampal
damage. In the QA model, there was a robust reduction of neuronal cells on ipsilateral
striatum. This neuronal cell loss was not related to a drastic change in the total number
of cells, being overcome by the increase in non-neuronal cells, thus suggesting that
excitotoxic damage in the striatum strongly activates inflammation and glial proliferation.
We concluded that the IF method could represent a simple and reliable quantitative
technique to evaluate the effects of experimental lesions mimicking human diseases,
and to consider the neuroprotective/anti-inflammatory effects of different treatments in
the whole brain and also in discrete regions of interest, with the potential to investigate
non-neuronal alterations. Moreover, IF could be used in addition or in substitution to
classical stereological techniques or TTC staining used so far, since it is fast, precise
and easily combined with complex molecular analysis.
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INTRODUCTION
Since its introduction (Herculano-Houzel and Lent, 2005), the
isotropic fractionator (IF) method represented a significant
innovation in the field of quantitative neuroscience. The issue
of counting neurons and other cell types in the nervous system
has been fundamental in neuroscience since the past century.
Generating accurate and reproducible quantitative estimates
of both neuronal and non-neuronal populations is a crucial
requirement in a number of experimental setups aiming at
tracking developmental or neurodegenerative events in the
nervous system, yet available protocols are hampered by a
number of technical and procedural limitations.

A series of methods was developed in order to overcome the
problem of overestimating cell number due to double counting
of profiles in histological sections, because not all of the counted
objects are contained exclusively in one section (Abercrombie,
1946). The same nucleus, in this case, could lie partly within
one section, partly within the adjacent section(s). Therefore,
the bigger the nuclear dimension is, in relation to the section
thickness, the bigger the error could be.

A first attempt to overcome double counting was the
Abercrombie’s correction factor (Abercrombie, 1946; Clarke,
1992), by which the new concept of nuclear-point came to
light. A nuclear-point was for Abercrombie any geometrical
point of the same relative position in all nuclei. Through this
equation: P = A∗(M/L + M); where P is the average number
of nuclear points, A is the gross number of nuclei seen in
section, M the thickness of the section, and L the average
length of nuclei, the authors assumed that the error would be
negligible and estimated cell numbers more accurate. In the
last decade of the previous century, stereology emerged as the
method for cell counting. Stereology is a mathematical method
that derives global quantities (i.e., volume, surface area and
length, and also object number) from measurements obtainable
on sections of a given structure (Weibel, 1981; Cruz-Orive,
1987). In this field, for many years, the Optical Fractionator
method was considered the gold standard for counting neurons
and even synapses. The Optical Fractionator method involves
counting cells/neurons through optical dissectors in a uniform
and systematic sample that constitutes a fraction of the region
to be analyzed (Gundersen, 1986; West et al., 1991; West, 1999).
Several software tools (e.g., StereoInvestigator, Neurolucida)
were developed according to this method in order to assist
researchers in quantitative analysis (Tomasi et al., 2011; Apolloni
et al., 2014; Boido et al., 2014; Papageorgiou et al., 2014;
Deidda et al., 2015; Dudok et al., 2015; Kawagishi et al.,
2015). Nevertheless, the method remains complex and time-
consuming, and some authors (Clarke, 1992) still recommend
the Abercrombie’s correction factor when the profile is small
compared to the section thickness.

Stereological methods such as the optical dissector and
fractionator can estimate the number of cells and neurons in
discrete brain regions (Korbo et al., 1990; Andersen et al.,
1992). However, because these estimates are obtained from cell
densities, the estimates precision is related to the homogeneity
of neurons in the samples (West, 1999). Thus, these methods
result inaccurate to quantify for example the total cell numbers

in the brain. This could be done, however, but require the burden
of dividing the brain into numerous regions of homogeneous
cell density. Additionally, because stereological estimates are
necessarily achieved by multiplying cell density by volume, the
numbers obtained are not independent variables and therefore
cannot be used in statistical comparisons against volume
(Harrison et al., 2002).

The possibility to overcome methodological and time
limitations of standard stereological cell counting techniques
led neuroscientists to get new insights into evolutionary and
developmental issues in different species (Collins et al., 2010;
Gabi et al., 2010; Lent et al., 2012; Herculano-Houzel et al.,
2015). Developed first by Herculano-Houzel et al. (2006) to work
on high-scale measurements and comparative studies (Santiago
et al., 2007; Azevedo et al., 2009, 2013), the IF method briefly
consists in transforming highly anisotropic brain structures into
homogeneous, isotropic suspensions of cell nuclei, which can be
identified immunocytochemically as neuronal or non-neuronal
nuclei, then counted. The method was recently applied also in
pathological contexts, such as: age-related neuronal deficit in rats
(Morterá and Herculano-Houzel, 2012); mouse model of autism
(Chen et al., 2015); mouse model of Alzheimer’s disease (AD;
Brautigam et al., 2012) and even on human specimens from AD
patients (Andrade-Moraes et al., 2013). The IF method has been
recently substantially improved by an automated machine for
large-scale fractionation (Azevedo et al., 2013).

This potentially ground-breaking method has not yet been
widely adopted mainly due to the lack in calibrating and/or
validating works that compare the IF with standard counting
techniques, except for the works of Bahney and von Bartheld
(2014) on human and macaque monkey samples and Miller et al.
(2014) in chimpanzee primary visual cortex. Because of its fast,
precise and reliable cell/neuron counts, the IF could be a good
strategy to investigate for example the neuroprotective effects of
different compounds in different central nervous system (CNS)
pathologies.

Here, we test the use of IF method in experimental models of
CNS diseases, showing that it is as precise as stereological counts,
but significantly faster. To our knowledge there are few papers
attempting to apply this method to investigate the neuronal loss
following (i) cerebral ischemia; (ii) epileptic seizures; and (iii)
striatal lesion in rat models (i.e., Lopim et al., 2016 for epilepsy
in rats).

Moreover, this procedure, in comparison to stereological
counts, could be implemented and optimized to work down-
stream of a Fluorescence-Activated Cell Sorting (FACS)
technique allowing further molecular investigations such as mic-
roarray RNA quantification or real time quantitative PCR. This
possibility has been recently explored by other groups (Guez-
Barber et al., 2012) by performing these molecular analyses on
NeuN-sorted cells from a cell suspension of adult rat striata.

MATERIALS AND METHODS

Animals
Two- to four-month-old Sprague-Dawley (SD) male rats
(Harlan-Italy, San Pietro al Natisone, Italy) were used for
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producing the cerebral ischemia, epilepsy and striatal lesion
models. All the experimental procedures involving live animals
were performed in strict accordance with European Community
Council guidelines 86/609/EEC (November 24, 1986), and
with the Italian Ministry of Health and University of Turin
institutional guidelines on animal welfare (law 116/92 on Care
and Protection of living animals undergoing experimental or
other scientific procedures; authorization number 17/2010-B,
June 30, 2010). Additionally, an ad hoc Ethical Committee of
the University of Turin approved this study. Animals were
maintained with a 12:12 light/dark cycle. Food and water
were provided ad libitum (standard mouse chow 4RF25-GLP,
Mucedola srl, Settimo Milanese, Italy) Particular care was taken
to minimize the number of animals, their discomfort and pain.

Cerebral Ischemia
Permanent middle cerebral artery occlusion (MCAo) was
performed according to Renolleau’s method (Renolleau et al.,
1998). Briefly, SD rats (N = 3) were anesthetized with 5%
isoflurane (Isoflurane-Vet 100%, Liquid, Merial Italy, Milan,
Italy) vaporized in O2/N2O 30:70, and maintained at 1.5–2.5%
isoflurane during surgery. The left MCA was exposed and
electrocoagulated with a bipolar forceps (Jeweler 30665, GIMA,
Milan, Italy). Then the ipsilateral common carotid artery (CCA)
was clamped during 90 min to avoid collateral perfusion.

After 24 h the animals were sacrificed with an overdose of
anesthetic, the brains were isolated and cut with a rat brain matrix
in coronal slices at a thickness of 2 mm. Then the samples were
processed for Triphenyl-Tetrazolium Chloride (TTC) staining.
The TTC reaction was stopped substituting the TTC solution
with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB,
pH 7.4) and the brain slices post-fixed for 2 weeks. In sequence,
the two hemispheres of each slice were separated and processed
with the IF method singly.

Control rats (N = 3) were sacrificed with an overdose of
anesthetic, the brains were isolated, cut, and processed for TTC
and IF method as above mentioned.

Epileptic Seizures
Sprague-Dawley rats (N = 3) were intraperitoneally (i.p.) injected
with 11 mg/kg kainic acid (KA; Tocris Bioscience, Bristol, UK)
to induce epileptic seizures. One hour after the injection, rats
showed the first symptoms (immobility, facial myoclonus, and
head nodding), and only animals that reached the fourth and fifth
stages of the Racine scale (Racine et al., 1972) were included in the
study: stage 0, no seizures; stage 2, head nodding; stage 3, forelimb
clonus; stage 4, rearing in addition to severe forelimb clonus; and
stage 5, rearing and falling in addition to severe forelimb clonus.
To minimize suffering and prevent mortality, 2 h following the
symptoms onset a single i.p. injection of 4 mg/kg diazepam
(Valium; Roche, Monza, Italy) blocked epileptic seizures within
30 min of administration. Control rats (N = 3) were i.p. injected
with PBS.

Twenty-four hours after KA administration, the animals
were sacrificed with an overdose of ketamine and perfused
transcardially with 4% buffered PFA. Rat brains were isolated and
post-fixed in 4% PFA for 2 weeks and the hippocampus from

control and treated rats was carefully dissected and processed by
the IF method.

Striatal Lesion
The surgical protocol of quinolinic acid (QA) injection was
performed according to the procedure described by Figueredo-
Cardenas et al. (1994). SD rats (N = 3) were anesthetized with 5%
isoflurane vaporized in O2/N2O 30:70, placed in a rat stereotaxic
apparatus (Stoelting, Wood Dale, IL, USA) and maintained under
1.5–2.5% isoflurane during surgery. QA (210 nmol/2 µl; Sigma–
Aldrich, St. Louis, MO, USA) was injected into the right striatum
at the following coordinates: AP +0.6, MD +2.8, DV −5. The
hemisphere contralateral to the QA injection served as control.

The animals were killed 30 days later with an overdose of
ketamine and perfused transcardially with 4% buffered PFA.
Dissected rat brains were post-fixed in 4% PFA for 2 weeks.
The fixed brains were sliced in coronal sections with a rat brain
matrix and the single striatum portions carefully dissected under
a stereomicroscope with the help of a rat brain atlas (Paxinos and
Watson, 2016). Striata from both sides were processed by the IF
method.

Isotropic Fractionator Method
The IF was performed as in Herculano-Houzel and Lent
(2005). Briefly, after the neural tissue was properly fixed,
small fragments were collected and placed into a glass tissue
grinder, a saline-detergent solution (40 mM sodium citrate;
1% TritonTM X-100, Sigma–Aldrich, St. Louis, MO, USA) was
added, and through careful and constant translation and rotation
movements of a tightly coupled pestle, the tissue was disrupted
chemomechanically. This homogenization broke the cell but not
the nuclear membrane. The nuclear suspension obtained after
centrifugation and resuspension was stained with the fluorescent
DNA dye 4′-6-diamino-2-phenylindole dihydrochloride (DAPI;
DAPI, dilactate, D9564, Sigma–Aldrich, St. Louis, MO, USA).
Aliquots from the isotropic suspension were charged into
a hemocytometer (Neubauer chamber) and observed under
fluorescence microscopy (Nikon Eclipse 80i). The average nuclei
density was determined by counting the number of nuclei within
sectors of the coverslipped hemocytometer (1 mm2 area; 0.1 mm
depth) for four aliquots. The total number of cells originally
present in the analyzed region was then obtained by multiplying
density by the total volume of the suspension. To identify the
fraction of neuronal nuclei among the total number of DAPI-
stained nuclei, another aliquot of the isotropic suspension was
collected and immunostained with mouse primary antibody
against neuronal nuclear protein (NeuN, MAB377, Chemicon,
Single Oak Drive, Temecula, CA, USA, 1:200 in PBS, overnight
incubation at room temperature). Then, the samples were washed
in saline and incubated at room temperature for at least 2 h
with the secondary antibody (Cy3 conjugated anti-mouse donkey
IgG, Chemicon, Single Oak Drive, Temecula, CA, USA; 1:200 in
PBS) and normal donkey serum (1:10; D9663, Sigma–Aldrich,
St. Louis, MO, USA). The percentage of neurons was obtained
by counting the number of NeuN-labeled nuclei among at least
500 DAPI-stained nuclei. The non-neuronal cells were quantified
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as the difference between the total number of cells and the total
number of neurons.

Data Analysis
The values from each specimen were averaged and compared
to achieve the p-value as follows: ischemia and striatal lesion
specimens by paired Student’s t-test, two tails; epileptic seizure
specimens by unpaired Student’s t-test, two tails. Data for
Student’s t-test significance were performed in Microsoft Excel.
Data were expressed as mean± SEM (standard error of the mean)
and differences were considered significant when p ≤ 0.05.

RESULTS

Cerebral Ischemia
We first assessed the ischemic volume of the lesioned rats
through TTC staining. Taking into account the formula for
edema correction (Dohare et al., 2008), the ischemic lesion was
15.65% ± 0.44% of the whole brain, and the edema volume
estimated to have an average value of 86.97± 20.43 mm3 affecting
the 7.34± 1.58% of the whole brain (Figure 1).

We found a significant difference in the number of 4′-6-
diamino-2-phenylindole dihydrochloride (DAPI) positive cells in
ischemic brains compared to the controls (1.06∗108

± 3.95∗106

vs. 1.33∗108
± 7.42∗106, p = 0.04). Our cell counts in control

FIGURE 1 | Cerebral Ischemia. TTC representative slices at different brain
levels of the lesioned group. The percentage of ischemic volume was
measured with Neurolucida software as described in the “Materials and
Methods” section.

brains are similar to cell/neuronal numbers observed in rats
(Herculano-Houzel and Lent, 2005).

The percentage of NeuN positive cells was 27.44% ± 2.06
in lesioned rats as compared to 39.73% ± 1.94 in control
rats (p = 0.01). That difference results in a 2.34∗107 neuronal
cell loss in ischemic brains as compared to the controls
(2.91∗107

± 9.89∗105 vs. 5.25∗107
± 8.75∗105, p = 0.00006) and

furthermore results in a significant reduction in neuronal density
(2.22∗104

± 8.46∗102 neurons/mg vs. 4.31∗104
± 3.59∗103

neurons/mg, p = 0.02). There were no statistically significant
differences in total number or density of non-neuronal cells
between groups (7.70∗107

± 4.93∗106 vs. 8.04∗107
± 6.95∗106

p = 0.71; 5.88∗104
± 4.42∗103 vs. 6.52∗104

± 3.75∗103 non-
neurons/mg p= 0.33; Figure 2).

We also analyzed in more detail the difference between
ipsilateral and contralateral sides of lesioned brains. We observed
a tendency for a decrease in total cell number loss on
the side ipsilateral to the medial cerebral artery obstruction
(MCAo), reaching 5.92∗106 DAPI positive profiles reduction
as compared to the contralateral side (5.01∗107

± 2.82∗106

vs. 5.6∗107
± 1.14∗106, p = 0.07). When we considered the

percentage of NeuN positive nuclei, we found no differences

FIGURE 2 | IF quantification after cerebral ischemia. Histograms
representing the total number of DAPI positive cells (A), the percentage of
NeuN positive nuclei upon DAPI+ cells (B), the total number of neurons (C),
and the neuron density, as cells/mg (D), as well as the total number of
non-neuronal cells (E) and non-neuronal density (F). Data are presented as
mean ± SEM and control vs. ischemic group (T-test, ∗p ≤ 0.5, ∗∗∗p ≤ 0.001,
n = 3).
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between groups (24.74% ± 3.04 vs. 30.14% ± 1.51, p = 0.16).
This corresponded to a depletion in the number of neuronal
profiles after ischemia on the ipsilateral side (1.23∗107

± 8.45∗105

vs. 1.69∗107
± 6.35∗105, p = 0.05). Moreover, we found a

statistically significant reduction in neuronal density (8.52∗103

neurons/mg) on the ipsilateral side (1.81∗104
± 1.32∗103 vs.

2.66∗104
± 4.32∗102, p = 0.01). There were no statistically

significant differences of the total number or density of
non-neuronal cells between ipsilateral and contralateral sides
(3.78∗107

± 3.47∗106 vs. 3.92∗107
± 1.54∗106 p = 0.74;

5.59∗104
± 5.29∗103 vs. 6.20∗104

± 4.34∗103 non-neurons/mg;
p= 0.41; Figure 3).

Epileptic Seizures
The overall number of DAPI stained nuclei was unchanged
after epileptic seizures induced by KA (9.29∗106

± 1.16∗105

vs. 9.79∗106
± 1.03∗106, p = 0.65). If we consider instead the

number of NeuN+ nuclei, we observe a significant loss in the
lesioned group following KA injection (2.04∗106

± 2.56∗105

FIGURE 3 | IF quantification after cerebral ischemia, differences
between ipsilateral and contralateral side after lesion. Histograms
representing the total number of DAPI positive cells (A), the percentage of
NeuN positive nuclei upon DAPI+ cells (B), the total number of neurons (C),
and the neuron density, as cells/mg (D), as well as the total number of
non-neuronal cells (E) and non-neuronal cells density (F). Data are presented
as mean ± SEM and contra vs. ipsilateral side (T-test, ∗p ≤ 0.5, ∗∗p ≤ 0.01,
n = 3).

vs. 3.61∗106
± 1.26∗105, p = 0.005). This caused a significant

decrease of 46% of the number of neurons in the lesioned
hippocampus (21.01% ± 2.1% vs. 38.91% ± 1.69%, p = 0.002).
Also, neuronal density was significantly reduced (9.22∗103

neurons/mg) following KA injection (1.53∗104
± 2.09∗103 vs.

2.46∗104
± 1.30∗103 p = 0.02). Concerning non-neuronal

cells there was a tendency for an increase of the total non-
neuronal cell number in lesioned rats as compared to controls
(7.74∗106

± 8.68∗105 vs. 5.68∗106
± 2.14∗105 p = 0.08),

while we observed a significant increase in non-neuronal cell
density in lesioned hippocampus (5.73∗104

± 3.67∗103 vs.
3.85∗104

± 7.31∗102 non-neurons/mg p = 0.007; Figures 4
and 5).

Striatal Lesion
The number of DAPI positive nuclei in striata lesioned
through parenchymal injection of QA was reduced by 5.81∗105

(8.00∗106
± 5.67∗105 vs. 8.59∗106

± 8.63∗105, p = 0.76), a
non-significant difference. Neuronal nuclei were significantly
depleted in the QA-lesioned striatum (1.4∗106

± 1.46∗105

vs. 3.33∗106
± 3.63∗105, p = 0.04). This corresponded to a

21.5% reduction in the percentage of NeuN+ cells, statistically
significant (17.5% ± 2.75% vs. 38.99% ± 4.7%, p = 0.003).
Moreover, we observed a significant reduction of 3.04∗104

neurons per mg in neuronal density of the QA lesioned striatum
by (2.16∗104

± 1.54∗103 vs. 5.2∗104
± 4.91∗103, p= 0.02). There

were no statistically significant differences for the number or
density of non-neuronal cells in lesioned rats as compared to
controls (6.61∗106

± 5.03∗105 vs. 5.25∗106
± 6.25∗105 p = 0.16;

1.02∗105
± 5.88∗103 vs. 8.40∗104

± 1.66∗104 non-neurons/mg,
p= 0.35; Figures 6 and 7).

DISCUSSION

The aim of this study was to test the use of the IF method
for the study of CNS diseases in order to provide a novel
tool to assess quantitative parameters related to the effects of
therapeutic strategies. The IF method was previously adopted
for determining age-related neuronal loss in rats (Morterá and
Herculano-Houzel, 2012), synucleinopathy (Aldrin-Kirk et al.,
2014), in a mouse model of AD (Brautigam et al., 2012) and
even on AD human patients (Andrade-Moraes et al., 2013). Here,
we used it to detect changes in cell numbers occurring after

FIGURE 4 | Hippocampal degeneration. Representative images of
Nissl-stained sections of the hippocampus in control (A) and KA-treated (B)
mice showing neuronal degeneration after KA injection.
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FIGURE 5 | IF quantification after KA administration. Histograms
representing the total number of DAPI positive cells (A) in the hippocampus,
the percentage of NeuN positive nuclei upon DAPI+ cells (B), the total
number of neurons (C), and the neuron density, as cells/mg (D), as well as the
total number of non-neuronal cells (E) and non-neuronal cells density (F).
Data are presented as mean ± SEM and control vs. ischemic group (T-test,
∗p ≤ 0.5, ∗∗p ≤ 0.01, n = 3).

FIGURE 6 | Striatal astrogliosis. Representative images of the striatum
showing reactive astrogliosis after QA injection. Astrocytes were labeled with
GFAP. In lesioned rats (B,D) there is a remarkable increase in GFAP
immunoreactivity compared to the control group (A,C).

cerebral ischemia, epileptic seizures and striatal lesion mimicking
Huntington’s Disease (HD).

A major goal in the field of clinical neuroscience is to
develop and characterize neuroprotective agents which could

FIGURE 7 | IF quantification after QA injection. Histograms representing
the total number of DAPI positive cells (A); the percentage of NeuN positive
nuclei upon DAPI+ cells (B), the total number of neurons (C), and the neuron
density, as cells/mg (D), as well as the total number of non-neuronal cells (E)
and non-neuronal cells density (F). Data are presented as mean ± SEM and
control vs. QA group (T-test, ∗p ≤ 0.05, ∗∗p ≤ 0.01, n = 3).

either reduce or delay brain damage, or modulate regenerative
responses in the parenchyma (e.g., neurogenesis, angiogenesis,
axonal sprouting, and synaptogenesis) which are directly
stimulated by a lesion such as an ischemic insult (Zhang and
Chopp, 2009).

In general, there are three major types of cell death induced by
a pathogenic process: necrosis, apoptosis, and autophagic death.
The characteristic features of apoptosis are cellular shrinkage
and blebbing, nuclear fragmentation, and formation of apoptotic
bodies (Kerr et al., 1972). Apoptosis is involved in neuronal
cell loss in the penumbra of an ischemic brain injury (Mehta
et al., 2007); in epileptic seizures (Cole-Edwards et al., 2006)
and in Parkinson’s disease (PD; Ciechanover and Brundin, 2003;
Olanow, 2007). Such a cellular death alters the morphology of cell
nuclei and in turn the number of viable/not viable neurons that an
automatic counting method for IF (Collins et al., 2010) can detect
(i.e., counting a picnotic nucleus like a vial nucleus), causing a
bias in particular in studies focused on neuronal cells rescue or
replacement.

Noteworthy, preclinical research has a low translational
success rate. Even if related to a specific pathology (e.g., stroke),
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the update of Stroke Therapy Academic Industry Roundtable
(STAIR) recommendation pointed out (Fisher et al., 2009) that
it is mandatory to improve sample size, rigor, standardization,
and minimize bias within the experimental protocols. We think
that especially for the first point, the IF is appealing for stroke
studies because of its capability to obtain reliable results in
short time over a large number of samples. Moreover, it would
be useful not only for stroke research but also for the most
of neuroprotection/neurorestorative studies upon different CNS
diseases.

We believe that IF done by manual counting can give more
consistent results than an automatic counting procedure based on
FACS; nevertheless, within the flow-cytometry-based techniques
for cell counting, the FAST-FIN could be the more promising
especially for the capability to discriminate not only neuronal-vs.
non-neuronal nuclei but also glial vs. neuronal cells (Marion-Poll
et al., 2014), even if this characterization is made only on nuclear
size.

Of great interest, especially for disease-related investigations,
could be understanding whether a disease (such as stroke or
epilepsy) could differentially affect different types of glial cells
rather than neurons. There is a growing body of evidence
supporting the notion that glial cells play a crucial role in
pathogenesis and progression of CNS disorders (Takeuchi, 2013).

Unfortunately, even if a nuclear marker for oligodendrocytes
is reliable and well characterized (the transcriptional factor
SOX10, Kuhlbrodt et al., 1998) there are not so far appreciable
nuclear markers for the other glial cell types that work upon
this protocol. There are some unpublished data exploring the
use of Olig2 in the IF method as a marker for specific type
of oligodendrocytes in mouse models of psychiatric diseases,
but the main issue to solve is whether it is universal (stains
all oligodendrocytes in a brain region) and specific (stains only
oligodendrocytes in that brain region). This issue has been solved
for neuronal markers such as NeuN (Mullen et al., 1992; Wolf
et al., 1996; Sarnat et al., 1998) but still not for those of glial
subtypes.

Cerebral Ischemia
In cerebral ischemia induced by a permanent MCAo in adult
rats, we observed a significant reduction in the total number of
nuclei in ischemic brains as compared to the controls. In fact,
the decrease in the number of DAPI+ nuclei on ischemic brains
(2.67∗107) is very close to that of NeuN+ nuclei (2.34∗107).
During our examination we found that the percentage of NeuN+
nuclei in control brains was almost 40% of the total number of
nuclei. This percentage is similar to that observed by Herculano-
Houzel and Lent (2005). Slight differences may derive from
different post-fixation times in the two papers. In fact, it is
known that a longer fixation time could mask NeuN epitope
retrieval (Gill et al., 2005). Also, since we used a different
rat strain (SD instead of Wistar in Herculano-Houzel and
Lent, 2005), it is possible that this could be a source of some
difference in numbers. On the other hand, our neuronal counts
are consistent with those from Aldrin-Kirk et al. (2014) in
adult SD rat forebrains, especially regarding neuronal density
(neurons/mg).

In the ischemic brains, we counted separately the ipsilateral
side to the MCAo and the contralateral side. Interestingly, beside
a significant reduction of 17.93% of NeuN stained cells in the
ipsilateral side as compared to the contralateral, we found a
significant difference also in the percentage of NeuN between
the control hemispheres and contralateral side (39.73% ± 1.94%
vs. 30.14% ± 1.51%, p = 0.019), suggesting an impact of the
ischemic procedure beyond the directly affected hemisphere. In
fact, these data are consistent with the well-known influence of
a focal ischemia on the whole brain, causing neuronal damage
also in the contralateral hemisphere through neuroinflammation
and blood brain barrier (BBB) leakage (Garbuzova-Davis et al.,
2013).

Therefore, we confirmed that neurons are more sensitive to
a hypoxic insult than other cell types in the cerebral cortex. It
is known that astrocytes, especially in the ischemic boundary
zone (IBZ), may resist to a slight reduction in glucose and
oxygen delivery, with a prolonged survival compared to neurons
(Swanson et al., 2004; Zhao and Rempe, 2010). In addition,
astrocytes are more resistant to oxygen and glucose deprivation
in vitro (Panickar and Norenberg, 2005). Microglial cells seem
to be resistant to an increase of Ca2+ influx into the cell
membrane due to excitotoxicity reactive expression of the GluA2
subunit of α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid (AMPA) receptors (Beppu et al., 2013).

An important advantage of our protocol employing the IF
method in cerebral ischemia is highlighted by the percentage of
NeuN positive cells between groups. Neuronal loss was found to
be 44.54%, much higher than expected by an ischemic volume
lesion assessed with TTC on 15.65% of the whole brain. Thus, IF
was able to detect cell death out of the ischemic core, beyond the
penumbra, reaching as far as the contralateral hemisphere. Even
though apoptotic nuclei can be detected by stereological analysis
even outside the ischemic core, its occurrence and quantification
was hardly explored before probably due to the complex and
time-consuming protocols.

Almost all recent works on neuroprotective/neurorestorative
agents for cerebral ischemia use TTC staining (i.e., Yu et al.,
2014; Zhu et al., 2014) or standard stereological techniques (i.e.,
Liu et al., 2014; Morris et al., 2014) in order to evaluate the
ischemic damage. Even though all these analyses were followed
by neurologic scores derived from different behavioral tasks, the
use of IF to these methods could have brought more precise data
on the outcome of treatment, with a reasonable time investment.
With IF, any amelioration on behavioral tasks could be attributed
to the number of neurons in extra core lesion areas, even in the
contralateral hemisphere, which in turn could suggest whether
an improvement is the result of physiological/induced plastic
changes in the lesioned area/contralateral side (Takatsuru et al.,
2013) or is a specific effect of the candidate neuroprotective agent
administration.

Epileptic Seizures
Kainic acid is an analog of glutamic acid that acts on both
AMPA/kainate receptors. Experimentally, an i.p. KA injection
is currently used to induce excitotoxic cell death (Yang et al.,
1997; Wang et al., 2005; Chihara et al., 2009). In rodents, KA
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leads to recurrent seizures, behavioral changes, and subsequent
degeneration of selective populations of neurons in the brain
(McKhann et al., 2003; Tripathi et al., 2009; Spigolon et al., 2010;
Zhao et al., 2012; Grande et al., 2014). Here, we observed that, in
spite of a critical loss in neuronal nuclei (1.57∗106), the overall
number of nuclei is unchanged. This can be explained by the
occurrence of massive reactive gliosis and astrocyte proliferation
which mask neuronal loss. KA-induced neuronal death in fact
activates microglia and astrocytes (Chen et al., 2005; Ravizza
et al., 2005). In KA-induced hippocampal injury, microglial
activation is believed to contribute to neuroinflammation and
neurodegeneration, thus, a reduction in glial cells activation is
followed by a reduction in neuronal cell death (Cho et al., 2008).
Our findings suggest that the total number of nuclei counted
by use of the IF is not changed. This could be due the increase
in the number of non-neuronal nuclei (Figure 5). Astrocytes
are the most prominent glial cell population in the CNS and
a proliferative response of astrocytes to KA administration was
already observed almost 35 years ago (Murabe et al., 1982).
Recently, an increase in glial fibrillary acidic protein (GFAP)
expression was shown from 1/3 days up to 1 month after KA
intra-hippocampal injection (Bendotti et al., 2000). By contrast,
GFAP expression in the hippocampus was not affected 1 day after
KA systemic administration, while a 20% decrease was observed
in the amygdala/pyriform cortex (Ding et al., 2000). However,
our previous experiments showed a 20% increase of GFAP
immunostaining 1 day after i.p. administration (Spigolon et al.,
2010). The massive reduction of the number of hippocampal
neuronal cells (43%) in KA treated group observed here with
IF is similar to the one observed by our previous experiments
with histological counts (40%, Spigolon et al., 2010). However,
this neuronal reduction is different from the one observed by
Lopim et al. (2016) with IF in Wistar rats (26% at 30 days post
lesion), but it is important to point out that, rather then the rat
strains, both the model (pilocarpine vs. KA) and the time points
(1 day vs. 30 days) were different. From the translational point of
view, the IF method applied to epileptic seizures could be used
as a control for the number of glial cells that can be changed
following anti-oxidant, anti-inflammatory/proliferative therapies
(Chung and Han, 2003; Takemiya et al., 2006; Miyamoto et al.,
2008; Gupta et al., 2009). Finally, regarding the histological type
of neuronal death following epileptic seizures, sometimes the
TUNEL staining for apoptotic death fails to show any significant
increase (Spigolon et al., 2010) and the Fluoro-Jade B (FJB)
staining used by other groups (Cole-Edwards et al., 2006) is not
directly related to neuronal death. Even in this case, the IF could
be helpful to rapidly control the KA-induced neuronal death,
occurring by apoptosis rather than necrosis.

Striatal Lesion
Huntington’s Disease is an autosomal dominantly inherited
neurodegenerative disease, in which an expansion of the
cytosine–adenine–guanine (CAG) repeat in the gene encoding
for the N-terminal region of the huntingtin protein (htt)
leads to the formation of a polyglutamine stretch (mhtt;
Bano et al., 2011). The behavioral symptoms are typically
involuntary choreiform movements, cognitive impairment, and

mood disorders, eventually compromising daily functional
abilities (Walker, 2007; Paulsen et al., 2008). Unilateral QA
induced striatal lesions are highly reminiscent of histological
(selective loss of GABAergic and cholinergic neurons) and
neurochemical characteristics of HD in experimental animals
(Delli Carri et al., 2013; Kumar et al., 2013; Pérez-Severiano et al.,
2013; Serrano Sánchez et al., 2014). Overexcitation of N-methyl-
D-aspartate (NMDA) receptors following QA administration
results in: profound oxidative damage; lipid peroxidation;
mitochondrial dysfunction; and apoptosis (Estrada Sánchez et al.,
2008; Pérez-De La Cruz et al., 2012). In fact, we observed that
the neuronal loss consists of 44.87% of NeuN+ nuclei after
lesion. Furthermore, 30 days after QA injection we found a
difference of 6.77% of DAPI+ nuclei. Also in this case, similarly
to KA experiments on the hippocampus, the reduction in the
number of neuronal nuclei is higher than the difference in
the number of total nuclei. We can ascribe this finding to an
important reactive gliosis, as suggested by an increase in the
number of non-neuronal nuclei (Figure 7). Microglial activation
in the pathogenesis of HD has been addressed by clinical
studies demonstrating a direct correlation between abnormal
microglial activity and disease progression (Tai et al., 2007).
While microglial activation is unlikely to be the initiating event
in these neurodegenerative diseases, it may cause cell death via
various pathways. When activated, microglia produce cytotoxic
substances including pro-inflammatory cytokines (e.g., TNF-α
and IL-1β) and reactive oxygen species (e.g., hydrogen peroxide
and superoxide). During acute inflammatory reactions there is
also a rearrangement of the extracellular matrix, and matrix
metalloproteinases (MMPs) involved in this process have a
prominent role in microglial genesis (Kierdorf et al., 2013).

Besides, QA can alter the BBB (Guillemin, 2012), leaving the
brain parenchyma permissive to the infiltration of inflammatory
responsive cells. The importance of microglial activation was
underlined, moreover, by an excellent paper by Neher et al.
(2012), who found that inflamed microglia could phagocyte
viable neurons. QA administration also leads to an intense
astrogliosis (Björklund et al., 1986; Dihné et al., 2001).

All these mechanisms could contribute to explain our finding
by a proliferation of glial-cells following excitotoxicity-induced
neurodegeneration. Most studies on HD treatment use complex
stereological counting techniques to assess the parenchymal
damage in the striatum (Mazurová et al., 2014; Southwell et al.,
2015). The IF method for analyzing a discrete region such as
the corpus striatum could be an additional/substitute strategy to
obtain lesion specific information of induced neuronal loss, and
even an indirect quantification of reactive gliosis (when using
anti-inflammatory/glial genesis compounds), by observing the
difference among different cell populations between experimental
groups.

In another interesting context, when injected into the striatum
of adult rodents to model HD, QA strongly stimulates the
subventricular zone (SVZ) and striatal neurogenesis (Tattersfield
et al., 2004; Collin et al., 2005). An adult reactive neurogenic
process was also obtained in zebrafish with a telencephalic
administration of QA (Skaggs et al., 2014). Neural progenitor
cells (NPCs) in the SVZ have been proposed as an endogenous
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source of new neurons that could be mobilized to repair brain
circuits damaged due to injury or disease (Kernie and Parent,
2010). The high percentage (80%) of newborn neurons that
succeed to differentiate (NeuN expression) 6 weeks after the
lesion, as found by Collin et al. (2005), rises a question to our
quantification analysis. To what extent our NeuN+ percentage
is influenced by newly born neurons in the striatum vs. pre-
existing neurons escaped from excitotoxicity-induced neuronal
death?

Recently, Deierborg et al. (2009) labeled newborn cells by
i.p. injection of bromo–deoxy–uridine (BrdU), or by green
fluorescent protein (GFP)-expressing lentiviral vectors injected
into the SVZ. They did not detect any GFP+ cells that co-
labeled with NeuN into the lesioned striatum at any time
point studied (1, 2, and 3 weeks post lesion; Deierborg et al.,
2009). Despite evidence that a certain amount of reactive
neurogenesis occurs after an ischemic insult in particular in
the acute phase (Yamashita et al., 2006; Liu et al., 2009; Wei
et al., 2011), the potential of the newborn cells to replace dying
medium spiny neurons is controversial (Arvidsson et al., 2002;
Luzzati et al., 2006). In fact, in the mouse model of slow
progressive degeneration (Creb1Camkcre4Crem−/− double mutant
mice) newborn neuronal cells show a transient existence and they
do not express any specific marker of striatal projection neurons
(Luzzati et al., 2011).

CONCLUSION

Our results (summarized in Supplementary Table S1) support
the use of IF as a simple and reliable method to evaluate
the effects of experimental lesions mimicking human diseases
and the outcome of therapeutic measures. Moreover, we
have shown that IF can provide additional information about
neuronal death and glial proliferation: the finding of new
specific markers for detecting astroglial and microglial nuclei
could further improve the method. The IF method in fact
can miss some details when the cell loss is type- or even
subtype-specific. Nevertheless, the IF allows to count quickly
the amount of cell loss, and it can easily discriminate neurons
and glia by NeuN IHC. In cerebral ischemia, this is a valid
complement to the evaluation of the volume of the infarct, and
also allows to detect cell loss in the surrounding penumbra

and in the contralateral hemisphere avoiding time consuming
stereological counts. This holds true also for more discrete
structures, such as the hippocampus and the striatum, where the
inhomogeneity of the areas and the tissue (with myelin fascicles
intermingled to neurons), respectively, make stereological counts
complicated.
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