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In the last 15  years, increasing evidences demonstrate a strong link between sphin-
gosine-1-phosphate (S1P) and both normal physiology and progression of different 
diseases, including cancer and inflammation. Indeed, numerous studies show that tissue 
levels of this sphingolipid metabolite are augmented in many cancers, affecting survival, 
proliferation, angiogenesis, and metastatic spread. Recent insights into the possible 
role of S1P as a therapeutic target has attracted enormous attention and opened new 
opportunities in this evolving field. In this review, we will focus on the role of S1P in 
cancer, with particular emphasis in new developments that highlight the many functions 
of this sphingolipid in the tumor microenvironment. We will discuss how S1P modulates 
phenotypic plasticity of macrophages and mast cells, tumor-induced immune evasion, 
differentiation and survival of immune cells in the tumor milieu, interaction between can-
cer and stromal cells, and hypoxic response.

Keywords: sphingosine-1-phosphate, tumor microenvironment, inflammation, metastasis, macrophage 
polarization

SPHiNGOSiNe-1-PHOSPHATe

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates several physi-
ological processes, including cell growth, survival, migration, differentiation, activation, and immune 
responses. Considering the diversity of the actions of S1P, it is predictable that deregulation of its many 
functions may result in the development of pathological conditions. Certainly, S1P plays important 
roles in cancer and disorders of the immune system. Intracellular S1P levels are tightly regulated by 
the equilibrium between its formation, catalyzed by sphingosine kinases (SphKs), and degradation, 
catalyzed by S1P lyase (SPL) and S1P phosphatases (SPPs). Two isozymes of mammalian SphK have 
been cloned and characterized, SphK types 1 and 2 (SphK1 and SphK2) (1). Interestingly, S1P can be 
exported out of the cell either by the specific transporter Spinster 2 (Spns2) (2) or by several members 
of the ABC transporter family (3). In turn, S1P exerts extracellular functions through the binding 
to five specific G-protein-coupled receptors (GPCR), named S1P receptors (S1PR) 1–5 (1, 4). This 
autocrine and/or paracrine action of S1P is known as “inside-out signaling” (1, 5) and is critical for 
a great variety of cellular responses. Although most of the known actions of S1P are mediated by 
S1PRs, in the last few years, it has become evident that S1P also exerts intracellular functions by 
targeting different molecules (Figure 1).
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FiGURe 1 | S1P metabolism and inside-out signaling. Many agonists stimulate cytosolic sphingosine kinase 1 (SphK1), which translocates to the plasma 
membrane and uses sphingosine as a substrate to generate Sphingosine-1-phosphate (S1P). S1P may be irreversibly degraded by S1P lyase (SPL) or 
dephosphorylated by S1P phosphatases (SPPs). After being secreted out by specific transporters, S1P binds and activates S1P receptors (S1PR1–5) in an 
autocrine or paracrine manner and regulates many cellular functions (inside-out signaling). S1P may also function as an intracellular second messenger through the 
binding of different intracellular partners. Abbreviations: PI3K, phosphatidylinositol 3-kinase; MAPK, mitogen-activated protein kinases; PLC, phospholipase C.
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THe COMPLeXiTY OF S1P SiGNALiNG

Many distinct agonists, including cytokines, growth factors, 
and hormones, among others, induce translocation of SphK1 to 
the plasma membrane, where its substrate sphingosine resides, 
leading to the activation of the enzyme. SphK1 translocation 
depends on its phosphorylation at Ser 225 by ERK1/2 (6) and 
interaction with calcium and integrin-binding protein 1 (CIB1) 
(7). Indeed, a mutation of SphK1 on Ser225 residue behaves as 
a dominant negative, although the protein maintains its kinase 
activity (6). SphK1 translocation also results in the production 
of S1P in a location that allows its extracellular export, making 
it readily available for ligation of S1PRs to trigger the “inside-
out” signaling. On the other hand, SphK2 is located in several 
organelles, including the nucleus and endoplasmic reticulum 
(Figure 1). Although much less is known about SphK2 activation 
(8), it is also phosphorylated and activated by ERK1 (9). Likewise, 
SphK2 is phosphorylated by protein kinase D (PKD) in HeLa 
cells, leading to nuclear export and cytoplasm accumulation of 
the enzyme (10).

S1P receptors are coupled to distinct heterotrimeric G proteins 
leading to downstream activation of diverse effector pathways, 
including phospholipase C (PLC), phosphatidylinositol 3-kinase 
(PI3K), and mitogen-activated protein kinases (MAPK), among 
others (11). The functional response of each cell to S1P varies 
depending on its S1P receptor repertoire that is also modulated 
by several signals (12).

S1P receptor-1 has a central role in cell migration and it is 
undoubtedly involved in angiogenesis and immune cell traffick-
ing. A gradient of S1P characterizes physiological conditions, 
where S1P levels are elevated in blood and lymph and low in tis-
sues. This gradient is important for vascular integrity and allows 
immune cell egress from lymphoid organs to the circulation (13). 
Furthermore, high S1P levels produced during inflammatory 
processes drive immune cell recruitment to inflamed tissues. 
During embryonic development (14) and tumor progression, the 
S1P/S1PR1 axis promotes endothelial precursor recruitment and 
vascular development. The crucial role of S1PR1 in lymphocyte 
migration culminated by the rapid development of FTY-720 (fin-
golimod) as an immunosuppressive drug, approved by the Food 
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and Drug Administration (FDA) for the treatment of recurrent 
form of multiple sclerosis (MS). FTY-720 induces S1PR1 endo-
cytosis and degradation, thus preventing lymphocyte egress and 
inflammation, a hallmark of MS (15).

For the most part, binding of S1PR1 has been shown to 
promote migration of several cancer cell lines (16–19), while 
S1PR2 exerted opposite effect (20–22). Indeed, stimulation (16) 
or inhibition (23) of S1P-induced migration in melanoma cells 
depends on expression of S1PR1 or S1PR2, respectively. However, 
some reports also established a positive role of S1PR2 in migra-
tion (24, 25), indicative of a complex role of S1PRs in cell motility. 
Similar to S1PR1, engagement of S1PR3 promotes migration. 
Certainly, a role of S1PR3 in cell motility has been described for 
bone marrow-derived mesenchymal stem cells (26), human breast 
cancer cells (27), and endothelial progenitor cells (28), which are 
important in tumor angiogenesis. Furthermore, in gastric cancer 
cells, the balance between S1PR3 and S1PR2 expression is a 
critical feature to decide whether the cell will increase (S1PR3) or 
decrease (S1PR2) its migratory capability (29).

Expressions of S1PR4/5 are more limited, and the mechanisms 
that they regulate are less understood. However, it is known that 
S1PR4 promotes neutrophil trafficking (30) and dentritic cell dif-
ferentiation (31), while S1PR5 has been associated with natural 
killer (NK) cell trafficking (32, 33).

Many studies, in the past few years, have clearly demon-
strated that S1P can also function as an intracellular mediator. 
Dr. Spiegel’s group has shown that S1P binds and modulates 
the function of different intracellular targets, including tumor 
necrosis factor (TNF) receptor-associated factor 2 (TRAF2) (34), 
histone deacetylases, HDAC1 and HDAC2 (35), and prohibitin 
2 (36). Recent reports also indicate that S1P binds peroxisome 
proliferator-activated receptor gamma (PPARγ) in endothelial 
cells and stimulates angiogenesis (37).

A comprehensive description of S1P signaling is out of the 
scope of this review, but the reader is encouraged to read some 
excellent reviews published recently (5, 11, 38).

THe MANY FUNCTiONS OF  
S1P iN CANCeR

About 20 years ago, two seminal papers described, for the first 
time, the role of S1P in enhancing proliferation and inhibiting 
apoptosis (39, 40). Since then, many studies have reinforced a 
pro-survival function of S1P. On the contrary, ceramide and 
sphingosine are usually associated with cell growth arrest. The 
inter-convertibility of these metabolites has led to the concept of 
“sphingolipid rheostat,” with the balance between S1P vs. sphin-
gosine and ceramide levels, determining cell survival or death 
(41). Considering its role as growth promoter, it is not surprising 
that many evidences strongly support a fundamental role of S1P 
in cancer progression.

S1P Metabolizing enzymes in Cancer
It has been demonstrated that S1P levels and SphK1 expres-
sion and/or activity are increased in distinct cancer types (42). 
Table  1 summarizes some of the known cancer types and the 

biological effects associated to deregulated expression of the 
enzymes involved in S1P metabolism. Although beyond the 
scope of this review, these findings have been substantiated by 
in vitro studies using pharmacological and molecular tools. Thus, 
inhibition of SphK1 activity with corresponding decrease of S1P 
levels induced apoptosis in acute myeloid leukemia (AML) cells 
(43, 44), and diminished in  vivo cell growth of ovarian cancer 
(45). Importantly, in ovarian cancer, the mTORC1/2 inhibitor 
WYE-132 reduced SphK1 activity, which induced cytotoxicity 
and diminished in vivo cell growth (45).

Interestingly, microRNAs (miR), which may act as oncogenes 
or tumor suppressors, also regulate the expression of SphK1. In 
that regard, miR-506 suppressed tumor angiogenesis through tar-
geting SphK1 mRNA in liver cancer (77), while miR-124 down-
regulated SphK1 and inhibited proliferation of gastric cancer cells 
(78). miR-124 expression inversely correlated with metastasis and 
SphK1 in ovarian cancer, suggesting that downregulation of miR-
124 may be a common mechanism to modulate S1P-induced can-
cer progression (79). Moreover, miR-613 was downregulated in 
papillary thyroid cancer (PTC) and inversely modulated SphK2 
expression in  vitro and in  vivo (64). It is likely that regulation 
of SphKs expression by miR in different tissues will reveal new 
mechanisms and define improved cancer therapies.

In contrast to the substantial evidences that suggest a crucial 
role of SphK1 in cancer development, much less is known about 
the function of SphK2. In that sense, specific inhibition of SphK2 
with ABC294640 in colorectal cancer (CRC) cells reduced S1P 
and increases ceramide levels, thus inhibiting CRC cells and 
xenografts growth in vitro and in vivo, respectively (50). Although 
this action seemed to be receptor-mediated, studies with specific 
S1PRs agonist or antagonist are lacking. Of great interest, low 
dose of ABC294640 was able to sensitize cells, making them 
more susceptible to chemotherapeutic treatment (80, 81). In 
addition, ABC294640 has been also found to effectively inhibit 
proliferation and xenograft prostate tumor growth by targeting 
the androgen receptor and the proto-oncogene myc (81). Indeed, 
SphK2 was upregulated in acute lymphoblastic leukemia and 
induced the expression of Myc, suggesting an important role in 
hematological cancers (46). Downregulation of SphK2 by small 
interfering RNA also reduced migration of T24 human bladder 
carcinoma (82), MDA-MB-231 breast cancer, and A-498 kidney 
carcinoma cells (83). Altogether, these evidences unwrap a new 
opportunity to consider SphK2 as a potential target, not only to 
inhibit cancer progression but also to prevent tumor resistance to 
standard chemotherapy.

Alterations in S1P metabolism and levels are not only 
regulated by SphKs but also by SPPs and SPL. In line with the 
cancer-supporting role of S1P, reduced expression of SPPs led to 
augmented S1P levels and is also a common feature of different 
tumors. In fact, downregulation of SPP1 in gastric cancer tissues 
enhanced metastasis (73), suggesting that SPP1 expression may 
serve as a prognostic marker in gastric cancer that correlates with 
patient’s survival (73). Also, the increased S1P content detected in 
human glioblastoma tissue was associated with SphK1 expression 
but inversely correlated with SPP2 expression, suggesting that 
the shift of the S1P rheostat may play a role in the development 
of this tumor (74). SPL is downregulated in prostate and colon 
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TABLe 1 | List of S1P-related proteins deregulated in distinct cancer types.

Cancer type Deregulation SphKs/
S1PRs

Biological significance Reference

Acute lymphoblastic 
leukemia

↑ SphK2 expression Mice: SphK2−/− animals display reduced leukemia. In vitro: inhibition of SphK2 suppresses 
proliferation and induces apoptosis

(46)

Astrocytome ↑ SphK1 expression In vivo: patients exhibit shorter survival time (47)

Breast cancer ER-negative ↑ SphK1 and S1PR4 
expression

In vivo: shorter disease-specific survival (48)

Breast cancer ER-positive ↑ SphK1, S1PR1, and 
S1PR3 expression

In vivo: increase tamoxifen resistance (49)

Colorectal cancer ↑ SphK1 expression In vivo: increase lymph node and liver metastasis, and advanced TNM stage. In vitro: SphK1 
knockdown inhibits cell proliferation and invasion

(50, 51)

Gastric cancer ↑ SphK1 expression In vivo: decrease survival (52)

Glioblastoma multiforme ↑ SphK1, S1PR1, 
S1PR2, and S1PR3 
expression

In vivo: poor prognosis and survival in patients. In vitro: inhibition of SphK reduces cell viability; 
inhibition of S1PR1 and S1PR2 diminishes cell migration

(53–55)

Head and neck squamous 
cell carcinoma

↑ SphK1 expression Mice: SphK1−/− animals display less tumor incidence and volume (56)

Hepatocellular carcinoma ↑ SphK1/2 and SPL 
expression; ↓ S1P levels

In vivo: poorer tumor differentiation, increase microvascular invasion, and earlier recurrence.  
In vitro: inhibition of SphKs or SPL expression reduces cell proliferation, invasion, and migration

(57)

Large B-cell lymphoma ↓ S1PR2 Human: S1PR2 somatic mutations were found in large B-cell lymphoma samples (58)

Liver cancer ↑ SphK1 expression Mice and in vitro: downregulation of SphK1 inhibits angiogenesis (59)

Melanoma ↑ SphK1 activity Mice: SphK1 inhibition decreases melanoma cell growth. In vitro: SphK1 inhibition retards 
melanoma cell growth

(60)

Nasopharyngeal carcinoma ↑ SphK1 expression In vivo: SphK1 is related to clinical stage and distant metastasis (61)

Non-Hodgkin lymphomas ↑ SphK1 expression In vivo: increase clinical grade (62)

Pancreatic cancer ↑ SphK1 expression In vivo: poor prognosis (63)

Papillary thyroid cancer ↑ SphK2 expression In vivo: SphK2 expression correlates with clinical stage (64)

Prostate cancer ↑ SphK1 activity Human: 2-fold increase of SphK1 activity in human prostate Ca section vs. normal counterpart. 
↑ PSA, ↑ tumor volume, ↑ treatment failure were associated with increased SphK1 activity

(65)

Neutralization of S1P In vivo: in orthotopic xenograft model of human PC-3 prostate cancer cells, anti-S1P 
monoclonal Ab (Sphingomab®) inhibited intratumoral hypoxia, induced vascular remodeling and 
chemotherapy sensitivity

(66)

Thyroid cancer ↑ SphK1 expression In vivo: increased proliferation. In vitro: silencing of SphK reduces cell proliferation (67)

Triple-negative breast 
cancer

↑SphK1 expression In vivo: decrease patient survival. In vitro: knockdown of SphK1 diminishes cell proliferation and 
migration/invasion

(18, 68)

Uterine cervical cancer ↑SphK1 expression In vivo: aggressive oncogenic behavior, invasion, and lymph node metastasis. In vitro: inhibition 
of SphK1 reduces cell viability and increases apoptosis

(69)

Wilm’s tumor (renal cancer) ↑ S1PR2 Human: S1PR2 mRNA overexpressed in Wilm’s tumor samples (70)

Cancer type Deregulation of other 
S1P-related proteins

Biological significance Reference

Colon cancer ↓ SPL and SPP 
expression

Human: SPL expression downregulated in colon cancer tissue. In mice: SPL−/− increased 
susceptibility to CAC. In vitro: SPL downregulation diminished stress-induced apoptosis. SPL 
overexpression had opposite response

(71, 72)

Gastric cancer ↓ SPP expression Human: SPP (protein and mRNA) was downregulated in cancer tissue and correlated with 
metastasis. In vitro: SPP knockdown increased invasion and migration. SPP overexpression 
induced slow growth and less adhesion

(73)

Glioblastoma ↓ SPP2 and ↑ SphK1 
expression

Human: increased S1P and decreased ceramide content; high SphK1 and low SPP2 expression 
in cancer tissue. In vitro: Sphk1 inhibition reduced angiogenesis in a coculture model

(74)

Lung cancer ↓ Spns2 expression Human: Spns2 mRNA is reduced in advance lung cancer. In vitro: ectopic Spns2 expression 
induced apoptosis, modulates S1P metabolism and S1PRs expression

(75)

Prostate cancer ↓ SPL expression and 
activity

Human: low SPL and high Sphk1 expression are correlated with aggressiveness and poor 
prognosis. In vitro: SPL downregulation enhanced cell survival after radio and chemotherapy, 
while SPL overexpression had opposite effects

(76)
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cancer (71, 72, 76), and it was shown to have an implication in 
chemo and radiotherapy resistance (76), implying that regulation 
of SPL activity might be a novel approach to cancer treatment. 
Furthermore, deletion of SPL in intestinal epithelium provoked 
an increased incidence of colitis-associated cancer and enhanced 
inflammatory response in mice (72). Interestingly, the expres-
sion of the specific S1P transporter, Spns2, was also reduced in 
advance lung cancer patients (75). On the contrary, over expres-
sion of Spns2 induced apoptosis in non-small cell lung cancer 
(NSCLC) cells (75). Although it is clear that the evidences are less 
abundant in comparison with SphKs, these findings suggest that 
the modulation of S1P-degrading enzymes and S1P transporter 
might constitute a new therapeutic option.

Even an overwhelming amount of data indicate that increased 
S1P levels were associated with cancer progression, many recent 
reports showed disconcerting results: (i) in patients with hepa-
tocellular carcinoma, a decrease in S1P levels in HCC tissue was 
linked to less tumor differentiation and more microvascular inva-
sion (57); (ii) specific inhibition of SphK1 in 1483 head and neck 
carcinoma cells with PF-543 did not affect cell proliferation or 
survival (84), and (iii) pharmacological and molecular inhibition 
of SphK1 and SphK2 did not affect tumor cell growth, both in vitro 
and in  vivo (85). The discrepancies of these results with many 
opposing evidences warrant further investigation. Nonetheless, 
it is important to highlight that PF-543 exerted anti-proliferative 
effects in diverse CRC cell lines, suggesting differential and tissue-
dependent functions for SphK1 (86).

S1PRs and Cancer
Similar to SphKs, deregulation of S1PRs expression is frequently 
observed in many cancer types and may account for significant 
differences in tumor angiogenesis and invasiveness. In glioblas-
toma multiforme (GBM), one of the brain tumors with worse 
prognosis, increased expression of S1PR1 and S1PR2 correlated 
with decreased patient’s survival (53). In human pancreatic cells, 
S1P also increased proliferation and migration through a mecha-
nism that involves activation of c-Src pathway (87). A very recent 
report showed that activation of S1PR2 in epithelial cells was 
crucial for elimination of neighboring cancer cells, a process 
known as epithelial defense against cancer (EDAC) (88). Of 
great interest, the process involved a gradual accumulation of 
Filamin A (FlnA), an actin-binding protein that we recently 
demonstrated to modulate S1P-induced NF-κB activation in 
melanoma cells (89).

A central role of S1P in tumor progression has been further 
highlighted by the development of Sphingomab®, a neutral-
izing anti-S1P monoclonal antibody (90) that prevents signal-
ing through all S1PRs. Exciting studies in xenograft models 
showed that Sphingomab reduced blood vessel formation and 
tumor-associated angiogenesis (90). Furthermore, this antibody 
blocked hypoxia-inducible factor 1α (HIF-1α) accumulation 
in low-oxygen environments and modified vessel architecture, 
leading to an improved sensitivity to chemotherapeutic drugs in 
an in vivo model of prostate cancer (66) and sunitinib-resistant 
renal cancers (91).

More recently, the development of Spiegelmers®, synthetic 
oligonucleotides built of non-natural L-nucleotides, has opened 

new opportunities to target S1P. Indeed, NOX-S93 is a recently 
identified Spiegelmer® that binds S1P in the low nanomolar 
range and blocks the angiogenic activity of the lipid and vascular 
endothelial growth factor (VEGF) (92). Moreover, preclinical 
data indicate that NOX-S93 reduces S1P-induced metastasis of 
Rhabdomyosarcoma (RMS) (93). Thus, strong evidences suggest 
that S1P inhibition may be a prospective strategy to deprive 
cancer cells from basic nutrients and diminish tumor growth and 
chemotherapy resistance.

S1P is a Putative Prognostic Factor
Sphingosine-1-phosphate has recently gained additional sig-
nificance through many reports, suggesting that it may serve as 
a prognostic factor in different kind of tumors. In fact, increased 
SphK1 expression was associated with tumor size, lower survival, 
recurrence and poor prognosis in HCC, astrocytoma, and breast 
cancer patients (47, 48, 94). Moreover, in uterine cervical cancer, 
SphK1 expression was correlated with invasion and lymph node 
metastasis (69). Intriguingly, plasma levels of S1P were lower in 
prostate cancer patients than in healthy controls, perhaps due 
to the reduced expression of SphK1 subsequent to decreased 
hematocrit featured in cancer patients (95). There is no doubt 
that substantiation of these findings in other types of cancers may 
shed some light about possible clinical implications and use of 
S1P as a cancer biomarker.

S1P and Cancer Chemoresistance
Accumulating evidences imply that S1P may have a potential role 
in cancer chemoresistance, one of the main causes of poor treat-
ment outcome and tumor relapse. For instance, CRC cells with 
acquired resistance to cetuximab, an epidermal growth factor 
receptor (EGFR) inhibitor, overexpressed SphK1, and its inhibi-
tion re-established sensitivity to the drug. These findings were 
corroborated in CRC patients whose SphK1 overexpression also 
resulted in resistance to cetuximab (96). Similarly, both expres-
sion and activity of SphK1 were increased in sunitinib-resistant 
renal cell lines (97), and a gene-expression analysis of different 
tumor cell lines resistant to oxaliplatin, cisplatin, and docetaxel 
identified that drug resistance was related to SphK1 expression 
(98). These evidences support the relevance of ongoing clinical 
trials with combinational therapies of safingol (SphK1 inhibitor) 
and classic chemotherapeutic drugs.

In agreement, many reports suggest that other proteins 
involved in S1P signaling may also serve as potential targets to 
overcome resistance to chemotherapy. Thus, SphK2 overexpres-
sion has been correlated to gefitinib chemoresistance in NSCLC 
cells (99), and to proliferation of chemoresistant hormone-inde-
pendent breast cancer (80), while in cisplatin-resistant melanoma 
cells, combined treatment with the S1PR modulator FTY720 and 
cisplatin induced cell death (100).

Indeed, increase in S1P levels seems to be crucial to chemo-
therapy resistance. Thus, preventing S1P degradation by SPL 
silencing in prostate cell lines enhanced survival after chemo-
therapy and radiation (76). In agreement, levels of S1P were also 
increased in metastasic sites of RMS cells inoculated in mice 
treated with chemotherapy or γ-irradiation (93). Therefore, 
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S1P may be important in establishing a microenvironment that 
facilitates metastasis after standard tumor treatments.

Taken together, these data strongly support the “sphingolipid 
rheostat” concept and indicate that modulation of S1P, ceramide, 
and sphingosine levels may constitute a promising anti-cancer 
therapy, but it also suggests that controversy still exists per-
taining to the exact role of S1P in tumor progression. In that 
sense, it is possible that differential functions of S1P in distinct 
cancer types may be related not only to the regulation of the 
tumor cell but also to its role as a factor present in the tumor 
microenvironment.

S1P AS A MODULATOR OF THe TUMOR 
MiCROeNviRONMeNT

Since Virchow proposed that tumors behave like wounds that do 
not heal (101), a link between inflammation and cancer has been 
extensively studied, but it was not widely understood until recently 
(102). The tumor microenvironment is populated by tumor cells 
and non-neoplastic stromal cells as lymphocytes, macrophages, 
dendritic cells (DC), fibroblasts, mast cells (MC), and endothelial 
cells, among others. They can interact by direct cell–cell contact 
or they may communicate through soluble factors. Indeed, many 
evidences demonstrate that the tumor microenvironment has an 
important role in allowing the tumor to express its full neoplastic 
phenotype by increasing angiogenesis and metastasis.

Monocyte Recruitment and Macrophage 
Polarization
Inflammatory infiltrates are often a hallmark of many cancers, 
leading to sustained release of proinflammatory, anti-inflam-
matory, and immunosuppressive cytokines in the tumor micro-
environment. While the initial purpose of these inflammatory 
cells is to fight the tumor, at the end, they may enhance cancer 
progression. The recruitment of macrophages to the tumor is 
dependent on chemokines secreted by the tumor and represents 
a delicate balance between the antitumor response and the pro-
duction of mediators that may facilitate the growth of the tumor. 
Accordingly, a broad range of macrophage subsets has been 
described. M1 (classically) or M2 (alternatively activated) mac-
rophages constitute the extremes of the scale. M1 macrophages 
kill tumor cells, whereas M2 macrophages produce angiogenic 
factors, anti-inflammatory cytokines, and stimulate tumor 
growth (103). Tumor-associated macrophages (TAM) display 
an M2-like phenotype and a correlation between TAM density 
and poor prognosis of many cancers has been clearly established. 
Moreover, new evidences connect TAMs with chemotherapy 
resistance.

Sphingosine-1-phosphate has been largely recognized as a 
chemoattractant lipid for many cell types, including inflam-
matory cells (104, 105). Indeed, we have shown that S1P 
released from apoptotic cancer cells, acted as a “come and get 
me” signal and attracted monocytes to almost the same extent 
as monocyte chemoattractant protein-1 (MCP-1/CCL2) (106) 
(Figure 2A). Once they reach the tissue, monocytes differenti-
ate into macrophages. Interestingly, apoptotic cells also regulate 

macrophages by enhancing expression of S1PR1, which in turn 
is required to increase motility (107) (Figure  2A). It is well 
known that apoptotic cell clearance is an important regulatory 
mechanism that maintains homeostasis; thus, deregulation of 
this activity results in chronic inflammation characteristic of 
cancer among other diseases. The role of S1P as a signal from 
apoptotic cells has been well documented in the last years in 
many models, including erythropoiesis (108), breast cancer 
(109, 110), kidney repair (111), and acute T cell leukemia (107, 
112, 113). Mechanistically, while some reports indicated that 
increased release of S1P from apoptotic cells was related to 
SphK1 activation (106), others suggested that S1P was mainly 
derived from SphK2 (113). These opposite results may be due 
to the use of different agents to induce apoptosis: doxorubicin 
and SphK inhibitors induced a dramatic increase in SphK1 
expression (106), while staurosporin treatment supported 
SphK2-induced release of S1P (113).

Notably, release of S1P from apoptotic cells has dramatic 
implications in macrophage polarization, cytokine release, and 
angiogenesis. Thus, S1P polarized macrophages toward an M2 
phenotype (110), increased release of IL-10, a distinctive anti-
inflammatory cytokine, from TAMs (109, 110), and stimulated 
macrophages to secrete prostaglandin E2 (PGE2) that, in turn, 
induced migration of endothelial cells increasing angiogenesis, a 
seal of tumor progression (112) (Figure 2A). S1P released from 
apoptotic cells also induced Bcl-X(L) and Bcl-2 upregulation and 
protected macrophages from cell death (113). In that regard, it is 
attractive to speculate that S1P has a dual role on macrophages: 
(i) cell death inhibition and (ii) induction of M2 polarization, 
both supporting cancer progression. Importantly, in vivo xeno-
graft experiments suggested that growth and M2 macrophage 
polarization, but not total infiltration, were compromised in 
mice injected with MCF-7 breast cancer cells carrying a short 
hairpin (sh)RNA plasmid to downregulate SphK2, strongly 
suggesting a role for this isoform in S1P-mediated macrophage 
growth and M2 polarization (114). However, it has also been 
suggested that increased expression of SphK1 may serve as an 
M2 marker (115).

Although the evidences indicated above clearly support a 
direct role of S1P as a modulator of TAMs, recent finding sug-
gests that its function may be even more complex than expected 
and may regulate the function of different ligands. In that sense, 
S1PR1 signaling was also required for Angiotensin II (Ang II)-
dependent production of TAMs in the spleen (116). To further 
emphasize its role as modulator of macrophage functions, direct 
S1P stimulation also induced M2 polarization through IL-4 
secretion and signaling (117) and S1PR1-mediated decrease 
of proinflammatory cytokines secretion with simultaneous 
inhibition of inducible nitric oxide synthase (iNOS) activity and 
augmented arginase I activity (118) (Figure 2A).

The assumption that S1P is important for both monocyte 
recruitment and switch toward a less aggressive macrophage 
phenotype may be of great utility for cancer cells to generate a 
permissive microenvironment and, at the same time, to evade 
the tumor-killing response elicited by cytotoxic macrophages. 
In this regard, S1P may not only promote cancer cell growth 
but also decrease the immune response that destroys the tumor. 
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FiGURe 2 | Role of S1P in the tumor microenvironment. (A) S1P induces monocyte recruitment and macrophage polarization. Apoptotic or tumor cells release 
S1P that binds S1PR1 and recruits circulating monocytes toward the tumor microenvironment. Once they enter the tissues, monocytes differentiate into 
macrophages with distinct phenotype according to the surrounding signals. In the tumor microenvironment, S1P exhibits many functions; (i) increase macrophage 
survival; (ii) function as a “come and get me signaling” of dying cells to attract and enhance macrophage migration through the binding of S1PR1, and (iii) stimulate 
TAM/M2 macrophage polarization by activating S1PR1/2/4. TAMs are characterized by increased Arginase I (Arg I) activity and secrete the anti-inflammatory 
cytokines IL-4 and IL-10 that further contribute to induce a permissive microenvironment characterized by tumor evasion and chemotherapy resistance. In addition, 
S1P released from apoptotic cells activates S1PR1/3 in macrophages to upregulate the expression of cycloxoygenase 2 (Cox-2) and stimulate the secretion of 
prostaglandin E2 (PGE2) that support migration of endothelial cells and angiogenesis, a hallmark of tumor progression. (B) S1P modulates the interaction between 
tumor and stromal cells. SphK1 expression is upregulated in melanoma cells, increasing the production of S1P. Melanoma cells stimulate the recruitment of dermal 
fibroblast toward the tumor microenvironment, and S1P induces the differentiation to myofibroblast/cancer-associated fibroblast (CAF). In turn, CAFs display 
increased SphK1 expression and release S1P that enhances melanoma migration (through S1PR3) and growth. CAF also express α-smooth muscle actin (α-SMA) 
and secrete growth factors, extracellular matrix (ECM) components, and metalloproteinases (MMP) that augment cancer progression and promote tumor metastasis.
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Importantly, S1P-induced attenuation of NF-κB activity in TAMs 
(118), but not in cancer cells, may be another mechanism of the 
tumor to elude the immune response of the host. On the other 
hand, although S1P-mediated induction of M2 macrophage 
polarization and angiogenesis correlates with cancer progression, 
it may also prove to be useful for bone regeneration and physi-
ological situations that require wound repair (119). Thus, it is clear 
that targeting S1P as a macrophage modulator involves establish-
ing a compromise between beneficial and harmful outcomes. The 
identification of the potential functions of S1P as master regulator 
of macrophage production and polarization is perhaps one of the 
most challenging tasks for this field in the coming years. Indeed, 
reprogramming TAMs phenotype to activate antitumor response 
is a proposed strategy for cancer treatment that warrants further 
clinical evaluation.

Resident Mast Cell Functions and 
Phenotypic Plasticity
Mast cells are tissue-dwelling cells, thus, de facto components 
of the tumor microenvironment and endowed with immuno-
modulating functions through the production of numerous 
mediators, including S1P (120, 121). Human and mouse stud-
ies have established pro- or antitumorigenic functions for MC 
(122). Increased number of MC has been observed in all solid 
tumors, such as melanoma (123), prostate (124–127), colorectal 
(128) and pancreatic (129) adenocarcinomas, and NSCLC (130). 
Confusingly, MC elevation has been described as indicative of a 
poor (124, 127) or a good (125, 126) prognosis. For example, in 
prostate cancer, increased number of MC around, but not within, 
cancer foci positively correlated with advanced stage (124), 
whereas high intratumoral MC density was accompanied with a 
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good prognosis (126). Thus, it is suggested that MC functions are 
likely to be determined by the organ affected with and the stage 
of tumor, in addition to their location in the tissues relative to 
tumor foci (122).

Mast cells may differentiate into two subsets depending upon 
the tissue they populate and the microenvironmental conditions, 
as defined by the protease repertoire harbored within cytoplasmic 
granules: connective tissue or serosal MC express tryptase and 
chymase, whereas mucosal MC are single positive for tryptase 
(120). Importantly, MC-derived proteases can activate matrix 
metalloproteinases (MMP) that are critical to tumor growth and 
metastasis, and we recently reported that S1P-mediated MC acti-
vation triggered substantial release of MMP and pro-angiogenic 
VEGF (131). We and others have shown that MC can produce 
S1P (3, 132). Therefore, it is tempting to speculate that MC could 
be one of the initial and prime cellular sources of local S1P in 
tissues that may trigger tumorigenesis.

It is noteworthy that augmented levels of S1P may act in a par-
acrine manner on the neighboring cells and also in an autocrine 
manner on MC, leading to further MC activation. Our labora-
tory has discovered key contributions of MC to the inception and 
perpetuation of multi-organ manifestations of inflammation, 
including tissue remodeling, perivascular edema, and chemoat-
traction of T lymphocytes through signaling of S1P (105, 120, 
133). As previously mentioned, a link between chronic inflam-
mation and cancer was originally described more than 100 years 
ago, and MC could orchestrate the transition from inflammation 
to cancer. Interestingly, we discovered that exposure to S1P led 
to human MC hyperplasia and chymase expression, in addition 
to MC activation (121), and chymase-expressing MC were 
hyperactive with increased mediator content and release and 
extended surface receptor expression (121, 134), also reported 
by others (135).

In sum, the presence of MC in tissues prior to cancer inception 
and their ability to produce and respond to S1P by secretion of 
tumor-influencing mediators may qualify MC as key regulators of 
the tumor microenvironment, pointing toward the MC/S1P axis 
as a promising interventional target to prevent cancer initiation 
and progression.

S1P Functions in Other immune Cells
Even though most of the literature point to a crucial role of S1P 
in monocytes/macrophages recruitment, survival, and polariza-
tion, it has also been suggested that S1P modulates the function 
of other immune cells of the tumor microenvironment. Thus, 
while S1P acts as a chemoattractant of NK cells, it also inhibits its 
cytotoxic activity through a mechanism that involves the increase 
of cAMP levels and activation of protein kinase A (PKA) (136). 
Moreover, although Rolin et al. reported that S1P does not affect 
the cytotoxic activity of NK cells, they showed that S1P protects 
human myeloid leukemia K562 cells from NK cells-induced lysis 
through the activation of S1PR1 (137). Whereas these evidences 
indicate that S1P may contribute to tumor evasion from NK cells, 
on the other hand, S1P also inhibits NK-mediated cell lysis of 
immature monocyte-derived DCs (137), which may favor anti-
gen presentation to T cells. Moreover, S1P enhances endocytosis 
and migration of mature DCs through S1PR3 engagement (138), 

an event that may increase immune response toward cancer cells. 
In addition, in the presence of S1P, monocytes differentiate into 
DCs that do not express CD1a and display reduced capability of 
stimulating T lymphocytes as compared with DCs that matured 
in the absence of S1P (139). Consequently, this duality in the role 
of S1P in NK and DCs in migration and phenotypic modulation 
deserves more attention to unequivocally establish its patho-
physiological relevance.

The role of S1P on lymphocyte migration and egress from 
lymphoid organs has been extensively studied and resulted in the 
development of the S1PR1 functional agonist fingolimod for the 
treatment of autoimmune diseases such as MS (140). However, in 
the last years, many reports suggest distinct and, in some cases, 
conflicting functions of S1P in B and T lymphocytes regarding 
cancer progression. Differential expression of S1PRs has a crucial 
function in B and T cell lymphocyte migration and activation. 
In diffuse large B-cell lymphoma (DLBCL) cell lines, expression 
of S1PR2 reduces tumor growth and is a good prognosis factor 
for patient survival (141). In addition, the modulation of S1PR1, 
S1PR2, and S1PR4 engagement regulates B cell circulation in 
patients with chronic lymphocytic leukemia (CLL) (142). Thus, 
while S1PR1 is expressed at low levels in CLL lymph nodes as 
compared with normal B cells (143), increased expression of 
S1PR1 correlates with signal transducer and activator of tran-
scription 3 (STAT3) activation and survival in B-cell lymphoma 
(144). Furthermore, decreased expression of S1PR1 in CLL B 
cells impairs their egress from the peripheral lymphoid organs 
and enhances their survival (145).

Regulatory T cells (Tregs) have a crucial function in cancer 
progression since they suppress the antitumor activity of other 
immune cells. While fingolimod inhibition of Tregs proliferation 
may abrogate the suppressive role of these cells in the tumor 
microenvironment (146), it has more recently been shown that 
S1PR1 signaling activates STAT3, resulting in accumulation of 
Tregs and tumor growth in an orthotopic model of breast cancer 
(147). In that regard, the elucidation of the subjacent mechanisms 
involved in these opposite functions of S1P may be of great 
importance to overcome the immunological tolerance frequently 
observed in cancer progression.

In sum, in the last few years, it has become clearly evident that 
S1P modulates numerous aspects of immune cells. However, the 
discrepancy and complexity of its actions guarantee that more 
studies are needed to establish the role of this lipid in the immune 
cells that inhabit the tumor microenvironment.

S1P and Cancer-Related inflammatory 
Pathways
A role of S1P in regulating NF-κB and STAT3 activation, two key 
signaling pathways that link cancer with inflammation, has been 
long suspected, but only recently uncovered. It has been reported 
that S1P can activate NF-κB through both intracellular and extra-
cellular mechanisms. Receptor-mediated activation involved 
S1PR1/3 in different cell types (115, 148–153). Moreover, we have 
recently demonstrated that activation of NF-κB by extracellular 
S1P in melanoma cells involved both S1PR1 and S1PR2 and was 
inversely correlated with the expression of the actin-binding 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


9

Rodriguez et al. S1P Modulates Tumor Microenvironment

Frontiers in Oncology | www.frontiersin.org October 2016 | Volume 6 | Article 218

protein FlnA (89). Interestingly, FlnA physically interacts with 
SphK1 (16) and TNF receptor-associated factor 2 (TRAF2) 
(154). Certainly, we established that intracellular S1P generated 
by SphK1 was a required cofactor for TRAF2 E3 ubiquitin ligase 
activity, linking TNF signaling to NF-κB activation in melanoma 
cells (34). Our results were supported by other reports showing 
that TRAF-interacting protein (TRIP), a cellular-binding partner 
of TRAF2, abrogated TNF-induced NF-κB activation by inhibit-
ing binding of S1P to TRAF2 and thus suppressing its E3 ubiq-
uitin ligase activity (155). Altogether, it is clear that S1P is able 
to modulate, in distinct ways, the activation of NF-κB providing 
a link between chronic inflammation and cancer (156). Indeed, 
NF-κB activation in macrophages also promoted the switch 
toward an M2 phenotype (157). Considering the role of S1P in 
M2 macrophage polarization, it will be interesting to determine 
whether or not the NF-κB-induced anti-inflammatory switch 
in macrophages could be triggered by S1P present in the tumor 
microenvironment.

A connection between S1P and STAT3 activation has also been 
shown to be critical for tumor progression. A pivotal study estab-
lished a direct relationship between S1PR1 and STAT3 expres-
sion in distinct tumors, including lymphoma, adenocarcinoma, 
melanoma, breast, and prostate cancer (158). These findings were 
further reinforced later to show that silencing of S1PR1 expression 
diminished expression of STAT3-regulated genes and inhibited 
tumor progression (144). Moreover, Silva et  al. showed that in 
a mice model of cancer-induce anorexia, high levels of S1PR1 
were correlated with augmented phosphorylation of STAT3 in the 
hypothalamus (159). Interestingly, treatment with FTY720 does 
not affect tumor growth, but reduces weight loss and increases 
survival. The link between S1P and STAT3 is not restricted to 
S1PR1; thus, pharmacological inhibition of SphK2 abrogated 
STAT3 phosphorylation, leading to decreased proliferation of 
cholangiocarcinoma cells (160), while in ER-negative breast 
cancer cells, SphK1 knockdown led to a significant reduction in 
leptin-induced STAT3 phosphorylation (161).

Over the last years, accumulating evidences have demon-
strated that S1P signaling was crucial for persistent activation 
of STAT3 in epithelial/tumor cells in inflammation-associated 
colon cancer (162). Thus, targeted deletion of SPL in normal 
intestinal epithelial cells, which increases S1P levels, enhanced 
colitis-associated cancer through STAT3-modulated regulation 
of proinflammatory cytokines (72). Moreover, silencing of SPL in 
fibroblast also supported tumor progression. In an elegant study, 
Liang et al. demonstrated that S1P, derived from increased SphK1 
expression in CRC, drove a malicious loop that involved NF-κB 
activation and IL-6 production with the subsequent induction 
of STAT3 and upregulation of S1PR1 (163). This mechanism is 
crucial to connect chronic inflammation with colon cancer.

S1P Regulates interactions between 
Different Cells from the Tumor 
Microenvironment
The role of S1P in the tumor microenvironment has been recently 
highlighted by different studies that described how this lipid may 
modulate interactions between distinct cell types in the tumor. 

Thus, expression of SphK1 in dermal fibroblasts enhanced tumor 
growth in a model of melanoma (164) (Figure 2B). In addition, 
SphK1-expressing melanoma cells secreted factors required for 
fibroblasts to myofibroblasts differentiation, strongly indicating 
that SphK1 was crucial for communication between stromal 
and cancer cells in melanoma (Figure 2B). Reciprocally, myofi-
broblasts released S1P and metalloproteinases that increased 
melanoma growth and metastasis, respectively (Figure  2B). 
S1P also mediates mutual interactions in the pancreas between 
tumor and stromals cells, leading to tumor progression (165). 
Indeed, pancreatic cancer cells overexpress SphK1 and secrete 
S1P which, in turn, binds to S1PR2 and induces stromal cells to 
release MMP-9, in a mechanism controlled by NF-κB activation. 
This feed-forward loop further enhanced tumor cell migration 
and invasion in vitro and cancer growth in vivo. Also, Beach et al. 
(166) established that SphK1 acted as a critical mediator of differ-
entiation and of TGF-β-induced activation of cancer-associated 
fibroblasts, a cell type that inhabits the tumor microenvironment 
and supports cancer progression. It was recently demonstrated 
that communication between cancer and stromal cells was 
dependent on systemic host-derived S1P rather than S1P gener-
ated in tumor cells (167). Importantly, only systemic S1P regulates 
lung metastasis. Altogether, these evidences strongly support that 
S1P may facilitate the communication between malignant and 
stromal cells to enhance tumor development.

Role of S1P in Hypoxia
The establishment of the appropriate microenvironment is decisive 
for survival of cancer cells. Hereof, hypoxia, a condition where the 
tissues are not adequately oxygenated, is a typical feature of solid 
tumor microenvironment (168, 169). Hypoxia is a consequence 
of increased oxygen consumption by abnormally proliferating 
cancer cells that triggers the formation of new atypical blood ves-
sels resulting in defective blood perfusion. Interestingly, hypoxia 
may stimulate or inhibit proliferation depending on the cell type.

The oxygen-sensitive transcription factor hypoxia-inducible 
factor 1 alpha (HIF1α) is the master regulator of the hypoxic 
response, and its expression is mainly regulated at the post-
translational level (168). Interestingly, many evidences indicate 
that S1P can regulate the activity and expression of HIF1α (170) 
(Figure  3). In that regard, it has been shown that SphK1 and 
S1PR2 were required to stabilize HIF1α in different cell types 
(171, 172). Although most of the literature indicates that S1P 
is involved in HIF1α regulation, it has also been described that 
SphK1 activity may control HIF2α expression and transcriptional 
activity through a phospholipase D (PLD)-driven mechanism in 
clear cell renal cell carcinoma (173).

Notably, hypoxia also sustains M2 macrophage polarization 
(174, 175). Considering that apoptotic cells release S1P (106, 110) 
that has been associated to HIF1α activation in macrophages 
(176), it is tempting to hypothesize that macrophage’s switch in 
hypoxia may be regulated by S1P signaling. Indeed, inhibition 
of S1P not only reduced hypoxia in vivo but also modified the 
structure of intratumoral vessels resulting in enhanced delivery 
of chemotherapeutic drugs (66). To emphasize the interconnec-
tion between the S1P and hypoxia pathways, it has been shown 
that S1P enhanced endothelial CD31-positive cell differentiation 
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and to release VEGF that supports angiogenesis. Importantly, S1P production in hypoxia increases endothelial cell migration through S1PR2 engagement and 
enhances the development of new vessels with deficient architecture that impairs the delivery of chemotherapeutic drugs.

10

Rodriguez et al. S1P Modulates Tumor Microenvironment

Frontiers in Oncology | www.frontiersin.org October 2016 | Volume 6 | Article 218

(176), while hypoxia induced S1PR1 expression thus increasing 
migration of endothelial cells and neovascularization (177).

Recent findings suggest that the role of S1P in hypoxia can be 
more extensive than previously thought and may involve multiple 
pathways and mechanisms. In that regard, in glioma cells, while 
silencing of HIF2α reduced expression of SphK1 and S1P levels, 
downregulation of HIF1α increased SphK1 (178). Moreover, 
SphK2 activity was increased in A549 lung cancer cells cultured 
in hypoxia resulting in secretion of S1P that, in turn, protected 
against apoptosis and induced chemoresistance (179).

Although still warranting further studies, these results sug-
gest that targeting S1P signaling in hypoxic conditions may be 
a potential mechanism to decrease angiogenesis and overcome 
resistance to chemotherapy.

S1P AND CANCeR THeRAPeUTiCS

While many evidences in cellular and animal models suggest that 
targeting S1P axis may be of clinical benefit in cancer treatment, 
some compounds have only recently been utilized in clinical trials.

Likely, the most promising therapy involves Sonepcizumab 
(Asonep), the humanized version of the sphingomab anti-
body that specifically targets S1P. Sonepcizumab has recently 
completed Phase I clinical trials for treatment of solid tumors 
(NCT00661414).

Importantly, although many SphK1 inhibitors were shown to 
decrease angiogenesis, tumor growth, and proliferation (180), 
only one Phase I clinical trial with Safingol (SphK1 inhibitor) in 
combination with Cisplatin has been completed (NCT00084812) 
and indicated absence of toxicity (181). It is important to note 
that Safingol not only inhibits Sphk1 but also PKC, although with 
a slightly higher Ki.

Even though PF543, the most potent and selective SphK1 
inhibitor described to date, decreased S1P levels, it had no effect 
on cancer cell viability (180), which discouraged the initiation 
of clinical trials with this compound. However, recent findings 
showing that PF-543 suppressed CRC xenograft growth and 
improved mice survival (86) may support renewed transla-
tion efforts. Of note, a Phase I clinical trial has already been 
completed with ABC294640 (SphK2 inhibitor) in patients with 
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solid tumors (NCT01488513) and refractory/relapsed DLBCL 
(NCT02229981), but no results have been reported to date.

Considering the distinct functions of S1P in normal 
physiology, it is apparent that further studies will be needed to 
establish the safety and adverse effects associated with targeting 
the S1P axis.

CONCLUDiNG ReMARKS

In the last few years, it has become clear that S1P exerts dual 
functions and may modulate both cancer and stromal cells. The 
role of S1P in cancer is not limited to enhance tumor growth, 
viability, and metastasis but S1P may also modulate the func-
tional phenotype of immune cells that surround the tumor, 
which, in turn, may initiate bidirectional communication in the 
tumor microenvironment orchestrating cancer progression and 
chemoresistance. Thus, it is imperative to consider the tumor 
microenvironment as a key player when designing new potential 

therapies to overcome pitfalls associated with the current treat-
ments of many human cancers.
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