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Previous studies have found that the amplitude of the early event-related potential (ERP)
components evoked by faces, such as N170 and P2, changes systematically as a function
of noise added to the stimuli. This change has been linked to an increased perceptual
processing demand and to enhanced difficulty in perceptual decision making about faces.
However, to date it has not yet been tested whether noise manipulation affects the neural
correlates of decisions about face and non-face stimuli similarly. To this end, we measured
the ERPs for faces and cars at three different phase noise levels. Subjects performed the
same two-alternative age-discrimination task on stimuli chosen from young–old morphing
continua that were created from faces as well as cars and were calibrated to lead to similar
performances at each noise-level. Adding phase noise to the stimuli reduced performance
and enhanced response latency for the two categories to the same extent. Parallel to that,
phase noise reduced the amplitude and prolonged the latency of the face-specific N170
component. The amplitude of the P1 showed category-specific noise dependence: it was
enhanced over the right hemisphere for cars and over the left hemisphere for faces as a
result of adding phase noise to the stimuli, but remained stable across noise levels for cars
over the left and for faces over the right hemisphere. Moreover, noise modulation altered
the category-selectivity of the N170, while the P2 ERP component, typically associated
with task decision difficulty, was larger for the more noisy stimuli regardless of stimulus
category. Our results suggest that the category-specificity of noise-induced modulations
of ERP responses starts at around 100 ms post-stimulus.
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INTRODUCTION
There has been a long tradition of applying external noise to visual
stimuli in the last two decades of the 20th century in visual psy-
chophysics as well as in studies of face perception to study various
stages of visual processing (Costen et al., 1994; Gold et al., 1999;
Näsänen, 1999). Common methods included noise manipulation
combined with electrophysiological and brain imaging methods
to investigate and identify the underlying neuronal mechanisms
of the various functions of the perceptual system. In recent stud-
ies, different types of external noise were used, including uniform
white noise (Wild and Busey, 2004), Gaussian noise (Jemel et al.,
2003), bit noise (Smith et al., 2012), multiplicative noise com-
bined with brain imaging techniques (e.g., Schyns et al., 2003,
2007, 2009; Smith et al., 2004, 2006, 2007, 2008, 2009; Rutishauser
et al., 2011), Fourier phase-randomization techniques (Rousselet
et al., 2008a; Bankó et al., 2011) with the mean-phase random-
ization (Dakin et al., 2002), and pink noise (Tjan et al., 2006;
Rousselet et al., 2008a,b). These techniques provided valuable
insights into the spatial and temporal events at different corti-
cal regions in the human brain involved in different stages of face
processing.

Regarding human face perception, electrophysiological stud-
ies have described a large positive (P1) and negative (N170) wave

over the occipital and posterior occipito-temporal areas that might
be sensitive to face stimulation (Bentin et al., 1996; Eimer, 2000a;
Itier and Taylor, 2004). As of today, usually the N170 is consid-
ered as the first clearly face-sensitive event-related potential (ERP)
component, although category-specific processes have been sug-
gested by some studies to be present already at 100 ms (or even
50−80 ms) after stimulus onset (corresponding to the P1 com-
ponent; George et al., 1997; Seeck et al., 1997; Liu et al., 2002;
Herrmann et al., 2005a; Thierry et al., 2007). The N170 is higher
in amplitude and shorter in latency to pictures of faces than to
exemplars of other non-face object categories (Bentin et al., 1996;
for reviews see Rossion and Jacques, 2008, 2011; Eimer, 2011).
Recently, however, the specificity of N170 for faces has been ques-
tioned by studies that failed to demonstrate higher N170 ampli-
tude for faces when compared with cars (Rossion et al., 2000a;
Schweinberger et al., 2004; Thierry et al., 2007; Dering et al., 2011;
Kloth et al., 2013).

With regard to noisy stimulation, Jemel et al. (2003) used
a parametric design to characterize early ERPs to face stimuli
embedded in gradually decreasing levels of random Gaussian
noise. The authors found that while the P1 component was unaf-
fected by noise levels, there was a linear increase in the amplitude
and a decrease in the latency of the N170 with decreasing levels of
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noise. Jemel et al. (2003) concluded that while the early P1 com-
ponent is likely to reflect the stage at which the perceptual analysis
of faces is achieved, the N170 seems to reflect the successful cat-
egorization of faces (Liu et al., 2002; Jemel et al., 2003). In other
words, earlier ERP components might reflect the extraction of
task-relevant information from noisy stimuli. This modulation of
the N170 component is in line with findings showing attenuated
and delayed N170 to faces either without internal features or in the
absence of their contours (Eimer, 2000a). In addition, Rousselet
et al. (2008b) found that sensitivity to phase noise falls in the time
window of the N170 (130–170 ms).

The P2 ERP component is characterized by a positive-going
deflection over lateral occipito-temporal areas and a maximal peak
between 200 and 250 ms. Recently, it has been shown that the
amplitude of the P2 is sensitive to the inversion of either the
entire face or of its parts (Milivojevic et al., 2003; Boutsen et al.,
2006) and has been linked to the processing of spatial relations
between facial features in individual faces (Latinus and Taylor,
2006). Wiese et al. (2009) have shown that own race faces gen-
erate larger P2 components when compared with faces of other
races, although, this effect interacts with expertise (Stahl et al.,
2008). Larger P2 was also reported for younger when compared
to older face stimuli (Stahl et al., 2008). Furthermore, it has been
suggested that the P2 is involved in individual face recognition
mechanisms (Halit et al., 2000). Altogether, these results suggest
that the P2 is involved in the deeper and more advanced anal-
ysis of faces when compared to earlier components. Regarding
noisy stimulation, Rousselet et al. (2007, 2008a) showed that the
P2 is larger to noise patterns in comparison to faces. In a follow-
up study, they tested whether this difference was independent
from the changes of the N170 amplitude and therefore a peak-
to-peak analysis was carried out on the modeled data (Rousselet
et al., 2008b). The authors found that the P2 difference is a simple
carry-over effect that was present already on the N170. In addi-
tion, the P2 was identified as a clear neural correlate of decision
difficulty under noisy stimulation (Philiastides et al., 2006; Heek-
eren et al., 2008). However, a recent study using image warping
as well as phase noise to manipulate task difficulty found that
rather, the P2 reflects noise-sensitive increases of sensory pro-
cessing and not task difficulty per se (Bankó et al., 2011). In a
previous ERP study, we confirmed these results and distinguished
the nature of adding phase noise from that of another irrelevant,
overlapping car image (Nagy et al., 2009). We found that adding
phase noise reduces the N170 component, while the amplitude of
the P2 component increases with the amount of noise added. In
addition, the P2 was larger in the phase noise condition than if
another coherent, but irrelevant stimulus (a car) was added to the
face.

In general, adding noise to face images leads to smaller N170
amplitudes, reflecting impaired early structural face processing
(Bentin and Deouell, 2000; Eimer, 2000a,b for a review see Rossion
and Jacques, 2008), as well as to larger P2 amplitudes. However,
the effect of noise reflected in the early P1 component is equivocal
as of today. While Jemel et al. (2003) found that the effect of added
noise does not affect P1 amplitude, other studies have demon-
strated that the P1 and P2 components are significantly larger in
the noise-present when compared with noise-absent conditions

(e.g., Curran et al., 1993; Tucker et al., 1994; Mercure et al., 2008;
Bankó et al., 2011).

To the best of our knowledge, so far no study has explicitly
compared the noise-dependence of face and non-face stimulus
categories. The goal of the present study was to test whether adding
phase noise to stimuli affects the neural processing of different
high-level categories, such as faces and cars, in a similar way.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen naïve, healthy volunteers (two left-handed, eight females,
mean age: 22.1 years ± 2.1 years SD) participated in the study.
They received partial course credits for their participation and gave
signed, informed consent in accordance with the Ethical Com-
mittee of the Budapest University of Technology and Economics
prior to testing. All participants had normal or corrected-to-
normal visual acuity, no previous history of any neurological or
ophthalmologic diseases and were not under medication. Three
participants were excluded from the final electrophysiological
analyses due to insufficient numbers of ERP segments after arti-
fact rejection. Therefore, statistical analysis was conducted on the
data of thirteen subjects (seven females, one left-handed, mean
age: 21.5 years ± 1.8 years SD).

STIMULI
Front-view grayscale images of faces and cars were used with age
gradually changing, with or without phase noise. Face stimuli
were digital images of six Caucasian males from a larger face
database (Minear and Park, 2004). Three of them were younger
than 30 years old, while the others were older than 60 years old. Car
images were old and new variations of the same models of three
well-known commercial car types (VW, Mercedes, and Jaguar),
and were downloaded from freely available websites. Car images
were presented in full frontal views, similar to those of Kloth
et al. (2013). All images were first converted into grayscale (8 bit)
using Adobe Photoshop CS3 Extended 10.0 (Adobe Systems Inc.).
Stimuli of both categories were then revealed through a circular
aperture (radius = 153 pixels). Stimulus size was equated for each
category (mean height and width of the faces and cars were 248
and 154 pixels, and 153 and 251 pixels, respectively; see Figure 1).
Since previous studies have shown that early ERP components,
such as P1, are sensitive to luminance (Johannes et al., 1995) and
that neural processes are sensitive to luminance histogram skew-
ness (Olman et al., 2008), we have equated all stimuli in luminance
and matched their histograms using the lummatch and histmatch
functions of the SHINE toolbox (Willenbockel et al., 2010). On the
other hand, we did not equate the spectral content of the images, as
we would concurrently have manipulated artificially the difficulty
of the age-discrimination task for the face stimuli. It is well known
that facial aging is reflected in the dynamic, cumulative effects of
the skin, and is a complex synergy of skin textural changes and the
loss of facial volume (Coleman and Grover, 2006). The decreased
tissue elasticity and the redistribution of subcutaneous fullness
result in a larger amount of higher spatial frequency informa-
tion. This low-level difference between younger/newer and older
individuals does not appear when comparing new cars to old
ones.
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FIGURE 1 | Procedure and sample stimuli. Timeline depicts some examples of faces and car test stimuli at different levels of phase coherences (100, 30, or
24%) and with different ages (young, middle-aged, or old).

In order to increase task difficulty, two different types of
stimulus manipulations were applied. First, we decreased the
age difference between young and old stimuli using a warp-
ing algorithm (Winmorph 3.01; Kovács et al., 2005, 2006, 2007;
Bankó et al., 2011). That is, we paired a young and an old
image of the same category and created a morph continuum
with seven intermediate images of faces and cars. Second, the
coherence of the original images (100% phase coherence) and
the intermediate morphs was manipulated by decreasing their
phase coherence in two steps (30 and 24% phase coherences,
respectively) using the weighted mean phase technique (Dakin
et al., 2002). In fact it means that we have manipulated the
phase coherence of the RGB values (and not the luminance
values) of the stimuli. This phase-randomization resulted in
the gradual elimination of the cues important for accurate age
judgments.

To avoid behavioral ceiling or floor-effects and to have com-
parable performance for face and car stimuli, first we performed
a behavioral pilot experiment (n = 12). We tested the age dis-
crimination performance of participants for 10 exemplars of faces
and cars as well as for 10 incrementally graded noise levels from
0 to 100% phase coherence. For the final three stimulus-pairs,
morph levels of the young–old continuum and the exact per-
centage of phase noise were selected based on the results of
this pilot study, so that the average age-discrimination perfor-
mance would be similar across faces and cars for each phase noise
level.

Stimuli were presented centrally on a uniform gray background
on a 26 inch LCD monitor at a refresh rate of 60 Hz, while view-
ing distance (57 cm) was maintained using a chinrest. Stimulus

presentation was controlled by MATLAB 2008a (Mathworks, Nat-
ick, MA, USA) using Psychtoolbox 3.0.9 (Brainard, 1997; Pelli,
1997) and custom-made scripts.

PROCEDURE
As it is generally more difficult to determine the age of a car than
the age of a face, as suggested by the results of the pilot study,
first, participants were presented with a practice session for the car
stimuli prior to the experiment.

Practice experiment
In the first part of the practice, participants had to choose the
younger (newer) car from a pair of stimuli, depicting the end-
points of the morph continuum, or in other words the oldest and
youngest versions of a model. Each pair was presented eight times
(exposition time = until response; inter-trial interval = 500 ms).
The newer model was displayed randomly on either the left or the
right side. Participants received feedback after each trial as well
as at the end of the block. Participants performed at least four,
but not more than six blocks of 24 trials. The practice was inter-
rupted if 90% correct performance was reached in two consecutive
blocks. A subject was excluded from the study if their perfor-
mance did not reach this criterion even after 10 practice blocks
(0 participants).

Second, participants performed an age-discrimination task on
individually presented cars depicting the endpoints of morph
continuums. In this part of the practice a fixation screen was
presented in the beginning of each trial for a random time
between 800 and 1200 ms, followed by the presentation of the
test image (100% phase coherence) for 300 ms. Participants were
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instructed to respond within 2 s after stimulus onset (inter-trial
interval = 800 ms). Within a single block, car stimuli were pre-
sented in a random order. Subjects had to perform 4–6 blocks of
24 trials (each car presented four times in a random order). The
practice was interrupted if 90% correct performance was reached
in two consecutive blocks. A subject was excluded from the study
if her/his performance did not reach this criterion even after six
practice blocks (0 participants).

Finally, immediately prior to the ERP recording experiment,
participants were asked to passively fixate the center of each stim-
ulus (both faces and cars) at each noise level and at each morph
level for 5000 ms (inter-stimulus interval 1000 ms) for the subjects
once, to avoid strong familiarity effects of the practice phase with
cars.

ERP recording experiment
Subjects performed an old vs. young age discrimination task for
faces and cars. The trial structure was identical to that of the second
task of the practice experiment (Figure 1). Noise-levels, stimu-
lus categories, and morph levels were intermixed and presented
in random order within each block. Each participant completed
eight blocks of 378 trials [2(category; face vs. car) × 3(exemplars;
face morph-continuum vs. car morph-continuum) × 3(coher-
ence level, 100% vs. 30% vs. 24%) × 7(morph level) × 3(number
of repetitions)]. Subjects were allowed to take a short break
between blocks. An experimental session lasted approximately
100 min.

BEHAVIORAL DATA ANALYSIS
Accuracy and response times (RTs) were collected during the
experiment. Performance was assessed by computing just notice-
able differences (JND) as the smallest difference in morph level
required to perform the old versus young age discrimination task
reliably (Lee and Harris, 1996; Bankó et al., 2009) for each stimu-
lus type individually. First, psychophysical data were modeled by
the cumulative Gaussian psychometric function, using the Psignifit
toolbox (Version 2.5.6.) for MATLAB (Wichmann and Hill, 2001).
JNDs were calculated using the equation JND = (Perf75–Perf25)/2,
where Perf75 and Perf25 denote the morph levels leading to 75
and 25% accuracies, respectively. JNDs for different stimuli and
noise levels were calculated separately. RTs were calculated as the
average of the RTs for stimuli yielding 25 and 75% performance.
JNDs and RTs were analyzed with a 2 × 3 repeated measures
ANOVA with category (2; face vs. car) and phase coherence
(100% vs. 30% vs. 24%) as within-subject factors. Post hoc t-tests
were computed using Fisher’s Least Significant Difference (LSD)
tests.

ELECTROPHYSIOLOGICAL RECORDING AND ANALYSIS
EEG acquisition and processing
Electroencephalography (EEG) data was recorded using a Brain-
Amp (BrainProducts GmbH, Munich, Germany) amplifier from
60 Ag/AgCl scalp electrodes placed according to the international
10/10 electrode system (Chatrian et al., 1985) and mounted on an
ActiCap (Easycap, HerrschingBreitbrunn, Germany). Addition-
ally, four periocular electrodes were placed at the outer canthi
of the eyes and above and below the right eye for recording the

electrooculogram (EOG). All channels were referenced to FCz
online and digitally transformed to a common averaged reference
offline. The ground was placed at AFz and all input impedances
were kept below 10 k�. EEG was digitized at a 1000 Hz sampling
rate with an analog bandpass filter of 0.016–1000 Hz. Subse-
quently, a digital 0.1 Hz, 12 dB/octave Butterworth zero phase
high-pass filter was used to remove DC shifts, and a 50 Hz
notch filter was applied to minimize line-noise artifacts. Finally,
a 12 dB/octave low-pass filter with a cut-off frequency of 50 Hz
was applied. Trials that contained voltage fluctuations exceeding
±100 μV, or eye blinks exceeding ±50 μV were rejected.

ERP data analysis
After the eye blink artifacts were corrected (Gratton et al., 1983) the
EEG was segmented offline using Brain Vision Analyzer 1.05.0002
(Brain Products GmbH, Munich, Germany) into 1300 ms epochs
using a 500 ms pre stimulus interval. Segments were baseline cor-
rected over the 500 ms prestimulus window, artifact rejected, and
averaged to obtain the ERP waveforms for each subject and for
each condition. Individual ERPs were averaged to compute the
grand average ERP for visualization. Statistical analysis was per-
formed on the early visual components P1, N170, and P2 of
the individual average ERP waveform. The peak amplitude and
latency of the individually averaged ERPs was extracted using
a semiautomatic detection algorithm that identified the global
maxima separately for each selected channels in a specific time
window. P1 was defined as a main positive deflection in the
80–130 ms time window. N170 was defined as a negative com-
ponent at around 130–200 ms after stimulus onset, and P2 as
a second positive component in the 200–250 time window. P1
amplitude was measured over O1, PO7 (left hemisphere, LH), and
O2, PO8 (right hemisphere, RH) electrode positions. In the case
of the N170, the usual posterior-occipito-temporal sites, corre-
sponding to the PO7, PO9, P7, and P9 (LH) and PO8, PO10,
P8, and P10 (RH) were used, while P2 amplitude was measured
over PO3, PO7, O1 (LH), and PO4, PO8, and O2 (RH) chan-
nels. Both amplitude and latency values of the pooled values of
the relevant electrodes were entered into a four-way repeated-
measures ANOVA with hemisphere (2; left vs. right), category
(2; face vs. car), coherence (3; 100% vs. 30% vs. 24% phase
coherence), and age (3; young/new vs. middle-aged vs. old)
as within-subject factors separately for each component. The
Greenhouse–Geisser correction was applied to correct for pos-
sible violations of sphericity. Post hoc tests were computed using
Fisher’s LSD tests.

RESULTS
BEHAVIORAL RESULTS
The age-discrimination performance of the participants was sim-
ilar for faces and cars (main effect of category: F(1,15) = 0.198,
p = 0.661, η2 = 0.013; Figure 2A), suggesting that the difficulty of
the task was similar for the two stimulus categories. As expected,
additional phase noise reduced the performance incrementally
(main effect of coherence: F(1.11,16.58) = 13.002, p < 0.0001,
η2 = 0.464). This effect was similar for the two stimulus cate-
gories, as suggested by the lack of interaction between category
and coherence (F(2,30) = 0.0461, p = 0.955, η2 = 0.003).
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FIGURE 2 | Behavioral results. Effect of added noise on the accuracy
(A) and response times (B) in the age discrimination task for faces (black
columns) and for cars (gray columns). Just noticeable differences (JND;
±SD) were calculated (see Materials and Methods) to characterize the
performance of the subjects. The x -axis denotes different levels of phase
coherences (*p < 0.05).

Paralleling performance results, RTs were also prolonged
by reduced phase-coherence (main effect of coherence:
F(1.1,16.54) = 23.98, p < 0.0001, η2 = 0.62, Figure 2B). In addi-
tion, significantly longer RTs were found for car stimuli when
compared to faces [main effect of category: F(1,15) = 5.47,
p = 0.03, η2 = 0.27], at least for the 100% coherence condi-
tion (category × coherence level interaction: [F(2, 30) = 3.316,
p < 0.05, η2 = 0.181].

RESULTS OF THE ELECTROPHYSIOLOGICAL MEASUREMENT
The stimuli evoked ERPs with clearly identifiable P1, N170, and
P2 components, measured at occipital and posterior-occipito-
temporal sites. Figure 3 depicts the grand average ERPs of the
pooled recording sites over the LH and RH, displayed between
−100 and 500 ms.

P1
Significantly larger P1 amplitudes were observed for faces when
compared to car stimuli [main effect of category: F(1,12) = 10.16,
p = 0.008, η2 = 0.46]. Importantly, the noise-induced modulation
of the P1 component showed category-specificity in a hemisphere-
specific manner [hemisphere × category × coherence interaction:
F(2,24) = 8.8452, p < 0.01, η2 = 0.4243], as it was enhanced as a
result of adding noise to the images over the RH for cars (post hoc
test for 100% vs. 30 or 24%: p < 0.005 for both comparisons) and
over the left hemisphere for faces (post hoc tests for 100% vs. 30 or
24%: p < 0.01 for both comparisons) but remained stable across
phase coherence levels for cars over the left and for faces over the
right hemisphere (Figure 4A). Facial aging is mainly reflected
in changes of skin textures and in altered tissue elasticity. As
these changes can increase the amount of higher spatial frequency
information only in the case of older face stimuli such low-level
differences might explain the different phase-noise dependency of
P1 for faces and cars. However, since age decisions for faces are
mainly based on these factors (e.g., George and Hole, 2000), we
have not equated the spectral content of the images. However, to
test whether the significant hemisphere × category × coherence
interaction is due to any differences in the spatial frequency con-
tent in the 100% phase coherent stimuli, we tested the effect of
wrinkling/skin texture changes on the range of higher spatial fre-
quency information. We plotted the spectral content of the 100%
phase coherent stimuli by using the sfplot method of the SHINE
toolbox (Willenbockel et al., 2010) and compared these functions
for faces and cars at every morph level. Due to the small sam-
ple size, we used non-parametric ranked t-tests (point-by-point
two-tailed Mann–Whittney U tests with Bonferroni-corrected p
values). Although we found that the older the face stimuli, the
more pronounced the spectral difference in the range of higher
spatial frequency information when compared with car stimuli, it
is worth noting that the spectral content of the youngest stimuli
did not differ between the two categories. Next, we investigated the
hemisphere × category × coherence × age interaction. The results
suggest that the age information of the stimuli do not modulate
the strength of the hemisphere-specific category effect reflected in
the P1 component [hemisphere × category × coherence × age
interaction: F(4,48) = 0.33, p = 0.86, η2 = 0.03, n.s.], arguing
against the role of low-level spectral differences in explaining the
results. Moreover, the age of the stimuli as a categorical factor
neither had a main effect [F(2,24) = 2.78, p = 0.09, η2 = 0.19]
nor had any significant two-way (any ps > 0.13), three-way (any
ps > 0.25), or four-way interactions (any ps > 0.75) with other
factors. Taken together with the fact that no significant differences
in spectral content were observed between the youngest 100%
phase coherent face and car stimuli, our results suggest that the
observed hemisphere × category × coherence three-way interac-
tion is not due to the low-level spectral differences in the original
stimuli.

The latency of the P1 was significantly longer for cars when
compared to faces [main effect of category: F(1,12) = 22.65,
p = 0.0005, η2 = 0.65]. Adding phase noise to the stimuli
increased the latencies of P1 component [main effect of coher-
ence: F(1.27,15.27) = 9.7, p = 0.0008, η2 = 0.4468, post hoc
LSD: 100% vs. 30 and 24%: p < 0.002 for both comparison].
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FIGURE 3 | Grand average ERPs displayed between −100 and 500 ms

of the pooled posterior-occipito-temporal recording sites of the N170

for the left (LH) and for the right hemisphere (RH). 100% phase
coherence: thick line, 30% phase coherence: dashed line, 24% phase
coherence: dotted line; for faces (black) and cars (red), respectively. Insets

depict the category-specificity of noise-induced modulations on the P1
component. Topographical voltage maps of ERP differences between faces
and cars at different phase coherence levels (100%-upper, 30%-middle,
24%-lower) show hemispheric asymmetries in the P1 time window.
Positivity is red.

This difference in latency was, however, similar for both categories
[category × coherence interaction: F(1.71,20.5) = 1.77, p = 0.19,
η2 = 0.13; Figure 4D].

N170
We found a significant main effect of coherence for the ampli-
tude of the N170 component, [F(1.48,17.78) = 71.45, p < 0.0001,
η2 = 0.86] reflecting the reduction of the N170 amplitude as the
phase coherence decreases. It is worth noting that this effect was
larger for the right when compared with the left hemisphere as
suggested by the significant hemisphere × coherence interaction
[F(1.28,15.38) = 5.52, p = 0.01, η2 = 0.32, Figure 4B]. Inter-
estingly, N170 amplitudes did not show the typically observed
face-specificity (see Kloth et al., 2013 for similar results): the
N170 was almost identical for both faces and cars [main effect
of category: F(1,12) = 0.49, p = 0.5, η2 = 0.04]. However,
adding phase noise changed the category selectivity of the N170
as suggested by the significant category × coherence interaction
[F(1.57,18.88) = 3.94, p = 0.03, η2 = 0.25].

As for the N170 latency, a strong tendency of category depen-
dence was found, suggesting that face stimuli evoked an N170 com-
ponent earlier than cars [main effect of category: F(1,12) = 4.32,
p = 0.06, η2 = 0.26]. The N170 was delayed by adding noise
to the stimulus [main effect of coherence: F(1.06,12.77) = 7.82,
p = 0.0024, η2 = 0.39, post hoc LSD: 100 vs. 30 and 24%:
p = 0.005 for both comparisons]. In addition, a hemispheric
asymmetry was also found in the noise-induced modulation of
the N170 latencies [interaction between hemisphere and coher-
ence: F(1.38,16.59) = 4.8, p = 0.0018, η2 = 0.29], which was due
to shorter latencies for noise absent stimuli over the RH (LSD:
p < 0.01), but similar latencies of the RH and LH for the other
two noise conditions (LSD: ps > 0.34; Figure 4E).

P2
Supporting prior results (Philiastides et al., 2006; Nagy et al., 2009;
Bankó et al., 2011), phase noise enhanced the amplitude of the
P2 gradually [main effect of coherence: F(1.05,12.6) = 25.06,
p < 0.0001, η2 = 0.68]. Moreover, significantly larger P2 ampli-
tudes were observed for face stimuli when compared to cars
[main effect of category: F(1,12) = 40.17 p < 0.0001, η2 = 0.77,
Figure 4C]. This effect was more pronounced in the right
hemisphere, as suggested by the significant interaction between
hemisphere and category [F(1,12) = 6.17, p = 0.03, η2 = 0.34]. It
is worth noting, however, that the category selectivity of the com-
ponent was not altered by the amount of altered phase coherency
[interaction between category and coherence: F(1.25,15.02) = 1.6,
p = 0.22, η2 = 0.12]. Finally, the P2 component also showed a
strong tendency toward a RH dominance [main effect of hemi-
sphere: F(1,12) = 4.36, p = 0.059, η2 = 0.27]. No significant
effects and interactions were observed on the P2 latency values
(Figure 4F).

The effect of stimulus ambiguity
Recent results suggest that stimulus ambiguity plays a role in
determining the susceptibility of the N170 to stimulus adapta-
tion (Walther et al., 2013). In order to test the effect of stimulus
ambiguity and its noise dependence, we compared the early ERP
components for the endpoints of morph continua (oldest and
youngest stimuli) and for the most ambiguous (i.e., middle-
aged) stimulus groups (see Materials and Methods). The first
ERP component reflecting stimulus ambiguity was the N170:
its amplitude was larger for middle-aged stimuli, as suggested
by the main effect of age [F(1.9,12.75) = 10.13, p = 0.0006,
η2 = 0.46; post hoc LSD tests: old vs. middle-aged: p = 0.0004,
young vs. middle-aged: p = 0.001 but young vs. old p = 0.66,
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FIGURE 4 | Mean (±SD) of the amplitudes and latencies of the (A,D) P1, (B,E) N170, and (C,F) P2 components for faces (black columns) and cars (gray

columns) at different levels of phase coherences.
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respectively]. N170 also had a RH dominance for middle-aged
and young stimuli but not for old ones (significant hemi-
sphere × age interaction: F(1.5,18.1) = 12.53, p = 0.0002,
η2 = 0.51, Fisher’s LSD tests: p < 0.0001 for both young and
middle-aged stimuli and p = 0.31 for old stimuli, respectively).
Interestingly, larger N170 amplitudes were measured for old cars
when compared to faces, as suggested by the significant interac-
tion between category and age [F(1.84,22.14) = 16.98, p < 0.0001,
η2 = 0.59; Fisher’s LSD: p < 0.0001 for old stimuli but not for
middle-aged or young stimuli: ps > 0.13]. This effect was more
pronounced in the RH [three-way interaction among category,
hemisphere and age: F(1.65,19.78) = 8.13, p = 0.002, η2 = 0.4;
Figure 5]. Another interesting result is that for noisy stimuli,
the younger the faces were, the more pronounced the category
effect was, as suggested by the significant category × coher-
ence × age interaction [F(2.35,28.23) = 10.12, p < 0.0001,
η2 = 0.46].

We observed larger P2 components for face than for car stim-
uli at every level of stimulus ambiguity, but this effect was the
most pronounced for the old stimuli and weaker for the young
ones (significant category × age interaction: F(1.52,18.2) = 8.01,
p = 0.002, η2 = 0.4). No other effect of stimulus ambiguity was
found.

DISCUSSION
The goal of the present study was to test whether adding phase
noise to a stimulus affects the neural processing of complex object
stimuli in a category-specific manner by recording ERPs for faces
and cars at different levels of phase coherences. Several previous
ERP studies applied different types of noise to manipulate the dif-
ficulty of decisions about faces (Bentin et al., 1996; McKone et al.,
2001; Jemel et al., 2003; Wild and Busey, 2004; Rousselet et al.,
2008b; Bankó et al., 2011). They found that adding noise to faces
(or reducing their phase coherence) affects the P1 – N170 – P2

FIGURE 5 |The effect of stimulus ambiguity reflected on the N170

component. Mean (±SD) of the amplitudes of the N170 for faces (black
columns) and cars (gray columns) at different level of age (old vs.
middle-aged vs. young).

ERP complex. In the case of the face-specific N170, it was found
that phase noise reduces its amplitude dramatically (Jemel et al.,
2003; Nagy et al., 2009; Bankó et al., 2011) and also prolongs its
latency. In addition to the changes observed in the N170 ampli-
tude, different types of noise manipulations made the behavioral
task more difficult per se and this difficulty was linked to the P2
ERP component (Philiastides et al., 2006; Heekeren et al., 2008):
the amplitude of this component was enhanced parallel to the
difficulty of the task. Later, however, it was shown that the
noise-induced modulation of the P2 reflects increased visual cor-
tical processing demands instead of task difficulty per se (Bankó
et al., 2011). Although the effect of phase noise on the electro-
physiological correlates of face perception has been investigated
extensively, the question whether noise-induced modulation of
these components is specific to the category of faces has so far
remained unanswered. The present results suggest that the early
P1 component shows a category-dependent modulation of phase
coherence.

The results of the electrophysiological recordings suggest that
the first stage where category-dependent phase noise-induced
modulation can be observed is the level of the early P1 com-
ponent. In the noise-absent conditions, faces elicited larger P1
amplitudes when compared with cars in the RH, while no such
category-specific effects were found in the LH (for similar results
see Itier and Taylor, 2004). P1 is usually referred to as an early
indicator of the endogenous processing of visual stimuli, and it is
especially linked to spatial processing (Mangun, 1995). Recently,
however, it has been shown that P1 reflects more than simply the
low-level features such as contrast or luminance of the stimuli,
it also indexes an early stage of visual processing, being sensi-
tive to stimulus category such as faces (Taylor, 2002). As noted
by Itier and Taylor (2002), P1 could reflect the holistic pro-
cessing of a face as a face, whereas the later N170 component
would reflect facial configurations. Adding noise to a face causes
enhanced P1 in some studies (Schneider et al., 2007; Rousselet
et al., 2008b; Nagy et al., 2009; Bankó et al., 2011, 2013), while
others suggest that P1 is unaffected by such changes (Jemel et al.,
2003; Wild and Busey, 2004; Horovitz et al., 2004). Interestingly,
in both cases, it has been suggested that P1 is not involved in any
aspect of face-processing, but it is rather involved in the sensory
analyses of the images, irrespective of their content (Jemel et al.,
2003). In the present study, the noise-induced modulation of the
P1 showed category-sensitivity in a hemisphere-specific manner.
Adding noise enhanced P1 amplitudes for cars over the RH but
it had no effect over the LH, and vice versa; enhanced P1 values
were observed for faces in the LH but not in the RH. These results
suggest that the category-specificity of the noise-induced mod-
ulation of the ERP appear very early, that is, already at 100 ms
after stimulus onset. Although we have equated all stimuli in
luminance and matched their histograms, we did not equate the
spectral content of faces and cars since larger amount of higher
spatial frequency information is caused by wrinkling and reduced
skin elasticity in the case of face stimuli. Since facial age deci-
sion is mainly based on this information (e.g., George and Hole,
2000) we did not equate the spectral content of images. This,
however, raises the possibility that the category-specificity of the
noise-induced modulation of the early P1 component is merely
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the effect of the different spectral content of the original stim-
uli. Indeed, several studies indicate that there are differences in
sensitivity to the specific spatial frequencies both between dif-
ferent visual areas and between the two hemispheres (Ivry and
Robertson, 1998). Our results, however, show that the category-
specificity of the noise-induced modulation of the P1 is unaffected
by the perceived age of the stimuli. Therefore, the amount of wrin-
kling that leads higher spatial frequency content in case of older
faces does not modulate the results. In terms of hemispheric dif-
ferences in sensitivity to specific spectral content, Sergent (1982)
argued that the left hemisphere is more adept in processing high-
frequency information, whereas the right hemisphere is more
efficient in processing low-frequency information. This differen-
tial frequency processing account was supported by studies using
tasks such as spatial frequency discrimination (Proverbio et al.,
2002) and identification (Kitterle et al., 1990) or face recogni-
tion (Keenan et al., 1989). These results, however, would predict
that 100% phase coherent faces with a larger amount of higher
spatial frequency content would enhance the amplitude of the
P1 component over the left hemisphere and adding phase noise
would not affect P1 over the right hemisphere. Vice versa, 100%
phase coherent cars with relatively lower spatial frequency con-
tent would enhance the P1 amplitude on the right hemisphere
and adding phase noise would not affect this value when com-
pared with the left hemisphere. However, our results show the
complete opposite effect, suggesting that low-level features are
not able to explain the described category dependence of P1. It
is worth noting, however, that in a recent study, Motoyoshi et al.
(2007) drew attention to other image-statistics that are sensitive
to asymmetries in dark and light and can also affect the low-level
properties of an image. Although we cannot exclude the possibility
that these properties affect our results, it is unlikely that low-level
differences between cars and faces are responsible for the results
regarding the hemispheric asymmetries of the category-specific
phase-coherence dependence of the P1 in the current study. It is
also well known that there are hemispheric asymmetries in the
processing of local versus global information processing. A left
hemisphere advantage for responses to local features and a right
hemisphere dominance for responses to global features was found
in most studies (Weismann and Woldorff, 2005; Flevaris et al.,
2010; Hsiao et al., 2013). Several lines of evidence suggest (e.g.,
the face inversion effect, the Thatcher illusion, or the composite
face effect) that faces are not perceived as collections of isolated
parts, but rather as holistic configurations (Yin, 1969; Thomp-
son, 1980; Young et al., 1987). Most of the electrophysiological
research studying the N170 emphasizes the specificity of the com-
ponent to the structural encoding step of face processing (e.g.,
Bentin and Deouell, 2000; Eimer, 2000a,b). Other studies highlight
the right hemisphere advantage of the component for manipula-
tions of configural facial information, whereas the N170 in the
left hemisphere is sensitive to the manipulations of featural facial
information (Rossion et al., 1999; Scott and Nelson, 2006; Jacques
and Rossion, 2007). This finding of different hemispheric special-
izations is consistent with evidence from neuroimaging studies.
For example, in a PET study, Rossion et al. (2000b) have found
hemispheric asymmetries for whole-based and part-based pro-
cessing of faces in the fusiform gyrus in the sense that more

pronounced right fusiform activation was observed for whole faces
than face parts whereas this effect was reversed in the homologous
left hemisphere brain region. fMRI studies have identified a num-
ber of areas – such as the fusiform face area (FFA; Kanwisher et al.,
1997) and the occipital face area (OFA; Gauthier et al., 2000) in
the extrastriate visual cortex – that respond more to pictures of
faces than other objects, with a strong right hemisphere domi-
nance (McCarthy et al., 1997; Haxby et al., 1999; Rossion et al.,
2003). Presumably this right hemisphere dominance is reflected
in the early P1 ERP component as well. Taken together with our
findings on the P1 component, we can hypothesize that the acti-
vation of the right FFA is more robust to the amount of phase
noise in the case of face stimuli. In other words, it suggests that
while adding phase noise to faces alters rather featural but not
configural information, the right hemisphere will be unaffected
by this image manipulation. Although in a source localization
study investigating the early stages of face processing, Herrmann
et al. (2005b) have shown that the first step of cortical face pro-
cessing (∼100 ms after stimulus presentation) is localized in the
fusiform gyrus, further studies are need to clarify the sensitivity
of the FFA to image manipulations such as the effect of phase
noise.

The electrophysiological results of the current study con-
firmed the classical noise-induced effects reflected in the N170
and P2 components (Nagy et al., 2009; Bankó et al., 2011): the
N170 amplitude decreased for higher levels of phase noise in
a stepwise manner (Jemel et al., 2003). The gradual decrease of
the N170 as the faces and cars became more and more noisy
can be accounted for by the sensitivity of the component to
the visibility of the stimuli embedded in different amounts of
noise. It can also be due to increased attentional resources as
the amount of added phase noise reduced the coherence of the
stimuli. The fact that the observed significant three-way cate-
gory × coherence × hemisphere interaction measured on the
P1 lost its hemispheric asymmetry in the N170 time window is
suggestive of the involvement of additional neural mechanisms.
Schneider et al. (2007) have shown that noise affects the neural
correlates of upright and inverted faces differently. Many stud-
ies suggest that inversion results in faces being processed by a
piecemeal, feature-by-feature strategy (Rossion et al., 2000a; Bar-
ton et al., 2001), more similar to non-face objects (Haxby et al.,
1999; Rossion et al., 2000a; Rosburg et al., 2010; Kloth et al.,
2013). As complex, non-face object stimuli such as cars are also
processed in a feature-based manner, the category × coherence
interaction observed in the N170 component is rather due to the
effect of stimulus configuration on processing levels. The fact
that N170 was similar in amplitude for 100% phase coherent
car and face images suggests that individual exemplars of objects
that are visually similar to faces and have homogeneous feature
configurations can elicit comparable N170 responses (for simi-
lar stimulus comparisons and results see Kloth et al., 2013). It
is worth noting, however, that these results do not suggest that
similar encoding takes place for cars and faces, even when they
are characterized by a similar, face-like configuration (Kloth et al.,
2013). On the other hand, our results also confirm the classical
noise-induced effects on the later P2 component as well (Nagy
et al., 2009; Bankó et al., 2011). More positive peaks were observed
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for faces when compared to cars, especially in the RH, and grad-
ually increased P2 components were measured parallel to the
amount of added noise. In previous studies, the noise induced
effect reflected in the later P2 component could be explained by
two factors – adding noise to the stimulus increases the visual cor-
tical processing demands (Bankó et al., 2011, 2013), or it results in
enhanced responses of the neural populations representing stim-
ulus uncertainty (Bach and Dolan, 2012). Since no significant
category × coherence interaction was observed on the P2 com-
ponent the results of the current study could not exclude either
explanation.

In summary, in this electrophysiological study we explicitly
compared the noise-dependence of face and non-face stimuli and
we have found that the neural processing of different high-level
categories diverge at a very early stage of stimulus processing,
starting in the P1 time window.
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