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The cortical structural and functional differences in athletes and novices were
investigated with a cross-sectional paradigm. We measured the gray matter volumes
and resting-state functional connectivity in 21 basketball players and 21 novices with
magnetic resonance imaging (MRI) techniques. It was found that gray matter volume
in the left anterior insula (AI), inferior frontal gyrus (IFG), inferior parietal lobule (IPL) and
right anterior cingulate cortex (ACC), precuneus is greater in basketball players than
that in novices. These five brain regions were selected as the seed regions for testing
the resting-state functional connectivity in the second experiment. We found higher
functional connectivity in default mode network, salience network and executive control
network in basketball players compared to novices. We conclude that the morphology
and functional connectivity in cortical neuronal networks in athletes and novices are
different.

Keywords: basketball player, motor expertise, magnetic resonance imaging, plasticity, resting state functional
connectivity

INTRODUCTION

Cortical plasticity is an intrinsic property of the human brain and occurs after long-term training
under various conditions (Blakemore and Frith, 2005; Pascual-Leone et al., 2005). Structural
differences were found in regional cortical morphology between musicians and non-musicians
(Gaser and Schlaug, 2003). Interestingly, London taxi drivers have larger gray matter volume than
that in healthy controls or even non-taxi drivers in posterior hippocampi where information of
spatial representation is stored (Maguire et al., 2000). However, it is not clear whether long-term
training may have effects on cortical morphology with plasticity in motor related cortical
areas and whether these effects may contribute to the improvement in motor functions. Elite
athletes in the confrontational sports (e.g., basketball etc.) start training since childhood. The
sophisticated skills in confrontational sports are likely due to the involvement of different brain
areas related to various cortical networks (di Pellegrino et al., 1992; Gallese et al., 1996). These elite
athletes offer a special model for studying the long-term training related cortical plasticity with
changes in multiple brain areas. In contrast to the long time period required for the longitudinal
studies (or often nearly impossible due to extremely long time consumption), a cross-sectional
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paradigm (cohort paradigm) with a comparison between highly
skilled elite athletes and novices was widely used recently
(Imfeld et al., 2009; Jäncke et al., 2009; Wei et al., 2011; Fauvel
et al., 2014). Although the cross-sectional paradigm may not be
more sufficient than the longitudinal paradigm, the study using
cross-sectional paradigm is more practicable and the results
obtained from a cross-sectional designed study also provide
an important indication of the presence of plasticity effects
with long-term training. Voxel-based morphometry (VBM) is
a neuroimaging analysis technique that allows investigation of
focal differences in brain anatomy (Ashburner and Friston,
2000). In the present study, we compared the gray matter
volumes in various brain areas in basketball players with those
in novices in a cross-sectional paradigm by measuring the
structural variation in cortical morphology with VBM. We
hypothesize that the gray matter volumes in motor related
cortical areas are different between basketball players and
novices. In addition, since long-term training process leads to
refined cognitive functions such as visual search (Williams et al.,
1999; McRobert et al., 2007) and sensory perceptions (Aglioti
et al., 2008; Wu et al., 2013) in elite athletes, we also expect
that the morphological difference between basketball player and
novices may be present in cortical areas responsible for cognitive
functions.

Motor expertise involves several internal processes requiring
organization and integration of sensory and motor information
in different cortical areas (Lisberger, 1988). Neuroimaging
studies have showed that the human brain is intrinsically
organized into a set of spatially distributed, functionally
specific networks (Damoiseaux et al., 2006; Bressler and
Menon, 2010). Cortical plasticity with long-term training to
gain motor expertise is complex. The interaction of cortical
activation among different brain areas at the network level
may be associated with multi-factorial process of cortical
plasticity (Dosenbach et al., 2008). In particular, default mode
network, salience network and executive control network are
major functional networks relevant to motor and cognitive
functions (Bressler and Menon, 2010; Cocchi et al., 2014).
Default mode network is activated during motor related
spontaneous cognition (Buckner et al., 2008; Mantini and
Vanduffel, 2013). The salience network plays an important
role in guiding orientation of attention and monitoring of
errors during events with internal and external activities (Eckert
et al., 2009). The executive control network is responsible for
high-level cognitive functions during motor behaviors (Alvarez
and Emory, 2006; Fox et al., 2006). Our second hypothesis
is that the resting-state functional connectivity in basketball
players and novices are different, as relatively less evidence
was found in functional brain network in top athletes. We
selected the cortical areas with larger gray matter volumes
in basketball players (compared to novices, defined in the
VBM analysis) as the seed regions and used a seed-based
approach to test the functional connectivity in two subject
groups. We predicted that the different resting-state functional
connectivity between basketball players and novices will be
related to the cortical areas located in default mode network,
salience network and executive control network which are

relevant to the motor and cognitive functions in the basketball
players.

MATERIALS AND METHODS

Participants
Twenty-one basketball players (mean age 21.3 ± 1.3 years, age
range 18–23 years) and 21 novices (mean age 21.9 ± 0.8 years,
age range 19–24 years) were studied. All subjects were male
(Shanghai University of Sport is one of the major training
centers for men’s basketball in China). The basketball players
were national first-class athletes and were trained five sessions
per week (each daily session about 3 h) for 10–15 years (mean
duration, 11.4 ± 2.3 years). The novices were university students
without professional training in basketball or any other sports.
Basketball players were taller (190.6 ± 3.4 cm) than healthy
controls (176.8 ± 2.9 cm; t = 14.1, p < 0.001). The experimental
protocol was approved by the regional ethics committee of the
Shanghai University of Sport. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Magnetic Resonance Imaging
Imaging scanning was performed using a 3T Siemens scanner in
the functional magnetic resonance imaging (fMRI) center at the
East China Normal University. The anatomical difference
in gray matter volume between basketball players and
novices was tested using the T1-weighted structural image
scanning. A high-resolution image with 192 slices was acquired
using a 3-dimension fast-field echo sequence (echo time
(TE) = 2.34 ms, repetition time (TR) = 2530 ms, flip angle
(FA) = 7◦, field of view (FOV) = 256 mm2

× 256 mm2, slice
thickness = 1 mm, inversion time (TI) = 1100 ms). The resting-
state fMRI scanning was performed with a gradient echo planar
imaging sequence (TE = 30 ms, TR = 2000 ms, FA = 90◦,
FOV = 240 mm2

× 240 mm2, slice thickness = 3 mm). A total
of 210 scans were obtained from each subject. Subjects were
instructed to keep themselves relaxed while lying still in the
scanner with their eyes closed.

Optimized Voxel-Based Morphometry
Analysis
The imaging data analysis was performed using Statistical
Parametric Mapping version 8 software1 implemented in
MATLAB 7.4. As the basketball players were taller than novices
and the brain volume varied with the height in individuals, we
applied the optimized VBM approach (Good et al., 2001) to
compare the gray matter volumes in two groups by creating
a study-specific template. In the pre-processing step, each
reoriented image was segmented (unified segmentation) into
gray matter, white matter and cerebrospinal fluid (Ashburner
and Friston, 2005). Segmented gray matter images of all subjects
were rigidly transformed and averaged to create the study-
specific template. The aligned gray matter images in each subject
were normalized with the study-specific template. Modulation

1http://www.fil.ion.ucl.ac.uk/spm/
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with Jacobian determinant was used to correct volume changes
caused by spatial normalization. The modulated images were
finally transformed into the Montreal Neurological Institute
space and smoothed with a 6-mm full-width at half maximum
Gaussian kernel.

Pre-processed gray matter images in basketball players and
novices were compared with a two-sample t-test (second-level)
run at the whole brain level. The height of subject was set as
a covariate to exclude the potential contamination caused by
different sizes of brain in two groups. The t-map was set at a
corrected significance level of p < 0.05. AlphaSim correction
(REST_V1.8) with Monte Carlo simulation was used to correct
for multiple comparisons (Poline et al., 1997; Song et al., 2011)
with consideration both for the individual voxel probability and
cluster size threshold. Based on the results of optimized VBM
analysis, brain areas with larger gray matter volume in basketball
players were identified (Figure 1). We also tested the correlation
between gray matter volumes in these areas and training time
in basketball players with the Pearson correlation coefficient.
These areas were further selected as the seeds for the subsequent
functional connectivity analyses. The seed was defined as a 6 mm
radius sphere.

Functional Connectivity Analysis
We defined five seeds (Figure 1) for the resting-state functional
imaging analysis. The pre-processing for the resting-state
functional imaging analysis included slice time correction, rigid
body movement correction, normalization of the functional
images by directly registering onto the Montreal Neurological
Institute echo planar imaging template (interpolated spatial
resolution 3 mm3

× 3 mm3
× 3 mm3) and spatially smoothing

(6 mm full-width at half maximum). The voxel-wise correlation
analysis was conducted after the initial imaging data were
temporally filtered (0.01–0.08 Hz). The resting-state time series
of the five selected seed regions were extracted using MarsBaR
toolbox (Brett et al., 2002). The correlation coefficient (r-value)
between the seed region (6 mm radius sphere) and other voxels

of the whole brain (excluding those in the seed region) was
computed. The correlation coefficient was converted into a z
score by Fisher’s r-to-z transformation to generate a contrast
matrix for each seed region in each subject. For the group data
analysis, we used a two-sample t-test to compare the difference
between basketball players and novices (Figure 2). The t-test was
repeated five times (one t-test for each seed region). AlphaSim
correction with Monte Carlo simulation was used to correct
for multiple comparisons. The t-map was set at a corrected
significance level of p < 0.05.

One purpose of our study was to investigate the differences
in functional connectivity between two groups as they were
applied to the cortical networks with potential interests. We
predicted the differences in functional connectivity between two
subject groups would be due to different motor and cognitive
functions in them which were likely related to different cortical
networks. We specifically focused on three cortical networks,
including the default mode network, salience network and
executive control network. Therefore, we illustrated the data with
functional connectivity from five seed regions (superimposed
results of 5 t-tests) and projected the data onto a network
brain template (Brain NetViewer2; Xia et al., 2013; Figure 3).
The clusters of involved brain areas were extracted separately
for each seed region and an ICBM152 brain template was
used (REST_V1.8; Song et al., 2011). This three-dimensional
volume-to-surfacemapping providedmore intuitive information
about the seed regions and other functionally connected brain
areas within three cortical networks and exhibited the spatial
distribution of these cortical networks in the brain (Margulies
et al., 2013).

RESULTS

Gray Matter Volume
We used an optimized VBM technique to analyze T1-weighted
anatomical scanning and set height as a covariate to correct

2http://www.nitrc.org/projects/bnv/

FIGURE 1 | Comparison of gray matter volume between basketball players and novices. Cortical areas with more gray matter volume in basketball players
compared to novices was shown. Color scale represents the significant t-values (corrected p < 0.05). L = left; R = right. Abbreviations for brain areas: ACC, anterior
cingulate cortex; AI, anterior insula; IFG, inferior frontal gyrus; IPL, inferior parietal lobule.
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FIGURE 2 | Comparison of resting-state functional connectivity
between basketball players and novices. Higher resting-state functional
connectivity in basketball players compared to novices was shown. Five seed
regions (three in the left brain and two in the right brain) were extracted. Color
scale represents the significant t-values (corrected p < 0.05).

for the potential effect of contamination caused by different
brain sizes in two subject groups. It was found that basketball
players had larger gray matter volumes than novices in
multiple brain areas. These areas included right precuneus,
left anterior insula (AI), right anterior cingulate cortex
(ACC), left inferior frontal gyrus (IFG) and left inferior

parietal lobule (IPL; Figure 1; Table 1). These areas were
selected as the seeds for the functional connectivity analyses.
The inverse contrast analysis did not show larger volumes
in novices compared to players in any brain areas. No
significant correlation was found between the gray matter
volume and training time in five seed regions in basketball
players.

Resting-State Functional Connectivity
Five seed regions were connected with multiple brain areas at
resting state both in basketball players and novices. Importantly,
we found resting-state functional connectivity is different for
basketball players and healthy controls in functional networks
related to various brain areas (Figure 2; Table 2). Specifically,
the right precuneus showed more resting connectivity with right
inferior orbitofrontal gyrus (IOG), left pars opercularis (POP) of
the IFG and right middle frontal gyrus (MFG) in the basketball
players group. The connectivity between left AI and right MFG,
right IFG, left superior temporal poles (STP) was stronger in
the player group than that in the novice group. Right ACC was
more functionally connected with left medial superior frontal
gyrus (MSFG) in the basketball player group. Left IFG was
more functionally connected with the left IPL while the left
IPL was more functionally connected with the left MFG in
the basketball player group compared to the novice group. On
the other hand, the reversed comparison did not find stronger
connectivity between seed region and any other cortical areas in
novices compared to basketball players.

Furthermore, we projected the data onto a network brain
template. It was confirmed that right precuneus had stronger
connectivity with left POP of the IFG and right IOG, MFG in
default mode network in basketball players compared to that
in novices (Figure 3A). For the salience network (Figure 3B),
left AI had stronger connectivity with left STP and right IFG
while right ACC was more functionally connected with left
MSFG in basketball players than novices. For the executive
control network (Figure 3C), functional connectivity between
left IFG and IPL and that between IPL and MFG was stronger
in basketball players than that in novices.

DISCUSSION

We investigated the difference in brain structure and resting-
state functional connectivity between basketball players and
novices. The novel finding was that basketball players showed
greater gray matter volume in five brain areas (Figure 1).
Furthermore, basketball players displayed higher resting-state
functional connectivity between these five seed regions and other
cortical areas compared to novices. These cortical areas are
located in default mode network, salience network and executive
control network which are related to motor and cognitive
functions in basketball players (Figures 2, 3).

Gray Matter Volume
We found larger volume of gray matter in right precuneus,
left AI, right ACC, left IFG and left IPL in basketball players
compared to novices. Precuneus is associated with processing
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FIGURE 3 | Higher resting-state functional connectivity in basketball players related to three cortical networks. Five seed regions (purple) with enhanced
gray matter volume showed stronger functional connectivity with several brain areas (green) in the basketball players compared to novices. These functionally
connected brain areas are parts of default mode network (A), executive control network (B) and attention network (C). L = left; R = right. Abbreviations for brain
areas: ACC, anterior cingulate cortex; AI, anterior insula; IFG, inferior frontal gyrus; IOG, inferior orbitofrontal gyrus; IPL, inferior parietal lobule; MFG, middle frontal
gyrus; MSFG, medial superior frontal gyrus; POP, pars opercularis (of the inferior frontal gyrus); STP, superior temporal pole.

spatial information during motor execution and preparation
(Kawashima et al., 1995; Cavanna and Trimble, 2006). In
particular, precuneus was involved in target tracking tasks
with special requirement for attention to spatial information
(Wenderoth et al., 2005; Cavanna and Trimble, 2006). Regular
practicing skill of tracking the frequently moving targets in
basketball may explain the volume increase in precuneus in
basketball players compared to novices. Insula shows high
activation during complex behavioral tasks (Craig, 2009) and
plays an important role in making a rapid decision in
a risky situation (Craig, 2002; Singer et al., 2009). Such
ability with superior motor related perceptual functions is

TABLE 1 | Gray matter volumes in five seed areas in basketball players
and novices (players > novices).

Brain region Side x y z Voxels t-value

Precuneus (BA 31) R 11 −74 23 52 8.52
Anterior insula (BA 13) L −42 −6 −0 136 7.88
Anterior cingulate R 2 32 6 35 6.32
cortex (BA 32)
Inferior frontal gyrus (BA 9) L −45 11 33 48 6.75
Inferior parietal lobule (BA 3) L −45 −24 44 75 7.50

BA, Brodmann’s area; L, left; R, right. Coordinates refer to Talairach space. Brain

areas with corrected p < 0.05 were listed.

required in basketball because the players often perceive
their self-positioning in the court and make decision in
offending/defending strategy (Bar-Eli and Tractinsky, 2000;
Llorca-Miralles et al., 2013; Kinrade et al., 2015). Our results also
confirmed that physical exercise induces volume increase in the
ACC (Flöel et al., 2010; Prakash et al., 2010) and supported the
opinion that ACC is the major neuronal substrate for attention
(Osaka et al., 2007) and action selection (Rushworth, 2008).
The IFG is related to the action observation and imitation
(Buccino et al., 2004; Calvo-Merino et al., 2005, 2006; Iseki
et al., 2008; Caspers et al., 2010), which may be essential in
basketball because the programming and execution of motor
plan in basketball highly relies on the action observation of the
opponent players (Fujii et al., 2014a,b). The IPL is important
for complex cognitive functions, including visual perception,
spatial perception and visuomotor integration (Anderson, 2011).
The present finding of more gray matter volume in IPL in
basketball players was consistent with previous evidence from
neuroimaging studies that IPL was activated during action
observation (Grèzes and Decety, 2001; Buccino et al., 2004;
Hamilton and Grafton, 2006; Chong et al., 2008) and anticipation
with correct understanding of the movement (Rizzolatti et al.,
2006).

The basketball players in the present study are top athletes
in China. The expertise in basketball skill largely varies
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TABLE 2 | Resting-state functional connectivity between seed regions and other brain areas in basketball players and novices (players > novices).

Brain region Side x y z Voxels t-value

Seed 1: Right precuneus
Inferior orbitofrontal gyrus (BA 47) R 51 45 −3 53 4.43
Inferior frontal gyrus (pars opercularis, BA 47) L −30 12 30 58 4.52
Middle frontal gyrus (BA 8) R 42 18 57 49 3.89
Seed 2: Left anterior insula
Superior temporal pole (BA 38) L −57 3 −6 34 4.05
Middle frontal gyrus (BA 6/BA 8) R 27 12 39 84 4.39
Inferior frontal gyrus (BA 9) R 54 12 30 48 3.82
Seed 3: Right anterior cingulate cortex
Medial superior frontal gyrus (BA 9) L −6 51 33 167 4.96
Seed 4: Left inferior frontal gyrus
Inferior parietal lobule (BA 40) L −60 −33 33 31 4.15
Seed 5: Left inferior parietal lobule
Middle frontal gyrus (BA 8) L −24 15 42 25 3.78

BA, Brodmann’s area; L, left; R, right. Coordinates refer to Talairach space. Brain areas with corrected p < 0.05 were listed.

depending on the special role that the athlete plays on the
court (e.g., point guard and center have completely different
playing styles) although our subjects have a similar duration in
basketball training. The diversity in playing style with similar
training duration might explain why we did not find significant
correlation between gray matter volume and training duration in
basketball players. This is different from our recent transcranial
magnetic stimulation study in badminton players whose motor
cortical excitation and inhibition are correlated to training years
(Dai et al., 2016).

Functional Connectivity in Cortical
Neuronal Networks
Independent component analysis and seed-based correlation
analysis are two most common techniques used in functional
connectivity data analysis (Biswal et al., 1995; Fox et al.,
2005). Although network map obtained from the independent
component analysis may be used as a reference to interpret the
results from seed-based correlation analysis, two data analysis
techniques are based on different mathematical models (Calhoun
et al., 2001; van de Ven et al., 2004; Joel et al., 2011).
Independent component analysis provides a means to test several
spatially separated cortical networks at once. However, the
value of a voxel being tested with the independent component
analysis represents the correlation between the time series of
this voxel and the mean time series of a particular cortical
network. The interpretation for these data-driven networks
largely depends on the predetermined number of components
for production which changes the patterns of spatially separated
cortical networks. The interpretation is further challenged by
the complexity of noise identification process which is often
determined with system selection by the user. On the other
hand, seed-based correlation analysis requires the selection
of the seed regions. Voxel value from seed-based correlation
analysis reflects the degree to which the time series of a
tested voxel is correlated with the time series of the seed
region. Owing to inherent simplicity, high sensitivity and
ease of interpretation, seed-based correlation analysis is widely
used to test the functional connectivity between a given

seed region and the other cortical areas. We defined five
seed regions with larger gray matter volumes in basketball
players through VBM analysis at the first step in our study.
Therefore, we specifically tested whether the correlations of
time series between the seed regions and other cortical areas
were different in basketball players and novices. A seed-based
correlation approach is likely better and more practicable to
identify the difference between two groups in our study. In
addition, it may be worth mentioning that previous studies
reported similar results when same resting-state fMRI data
set was processed by independent component analysis and
seed-based correlation analysis techniques (Damoiseaux et al.,
2006).

Default mode network includes precuneus, posterior
cingulate, medial prefrontal cortex and inferior parietal cortex
(Raichle et al., 2001; Fox et al., 2005). We found greater
connectivity between precuneus and medial prefrontal cortex
in basketball players, supporting the functions of precuneus
and the medial prefrontal cortex as the core nodes in default
mode network (Martinelli et al., 2013). Our results were
consistent with previous study performed in musicians
that long-term motor learning and expertise experience
lead to resting-state functional connectivity changes in the
default mode network (Fauvel et al., 2014). As precuneus
and medial prefrontal cortex highly involve in self-related
episodic memory (Dörfel et al., 2009), it may be explained
that higher activity in the default mode network is caused by
frequently processed self-related episodic memory in basketball
playing.

Salience network is composed of AI, dorsal ACC (dACC)
and ventrolateral prefrontal cortex (Seeley et al., 2007; Chan
et al., 2008). We found high connectivity between AI, frontal
cortex and STP in basketball players. The result may be
consistent with the notion that AI is highly involved in extracting
key salient stimuli from multiple inputs (Menon and Uddin,
2010). Our previous study also reported greater AI activity
when basketball players noticed incorrect anticipation during
observation of a basketball free throw (Wu et al., 2013).
Frontal cortex is responsible for the episodic memory extraction
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(McDermott et al., 1999; Wagner, 1999; Lepage et al., 2000;
Cabeza et al., 2002) while STP is related to the storage of
semantic memory (Markowitsch, 1995; Simmons and Martin,
2009). Our results support the idea that memory extraction
and storage are essential in basketball. We also found strong
connectivity between ACC and MSFG (one part of frontal
cortex) in basketball players. As ACC is related to the detection
and processing of salient information and monitoring of errors
(Kiehl et al., 2000; Hester et al., 2005; Etkin et al., 2011),
our results may suggest that the process of semantic memory
with interaction between ACC and frontal cortical area is
important to maintain the high performance for the basketball
players.

Executive control network is distributed in the frontoparietal
system which comprises the dorsolateral prefrontal cortex and
posterior parietal cortex. Particularly, frontal cortex is a primary
region in modulating regular allocation of spatial attention
(Schafer andMoore, 2011) and parietal cortex is heavily involved
in spatial awareness (Behrmann et al., 2004). Our results that
connectivity between the IFG, MFG and IPL is stronger in
basketball players compared to novices may verify the idea that
executive control network is the key structure for converting
selective and spatial attention (Wu et al., 2007) in athletes with
high motor expertise.

Motor and Cognitive Functions in
Basketball Players
Basketball is a confrontational sport with open motor skill in
which movements and actions of the players largely depend
on the understanding of the environment and actions of other
players (both the team mates and the players on the opposite
side; Schmidt and Wrisberg, 2008). Our results with larger
gray matter volume and higher functional connectivity in
basketball players involved in multiple cortical areas and various
cortical networks suggest that complex motor and cognitive
functions combining visual search, perceptual anticipation
and action execution are required in the development of
motor expertise (Abernethy, 1996; Vickers, 2004). It is not
surprising that the gray matter volumes in motor related
cortical areas increase and show enhanced connectivity with
other cortical areas as frequent engagement of these cortical
areas during long-term training induces the cortical plasticity
in the underlying neuronal components and facilitates the
communication of these components within the networks (Fries,
2005; Lewis et al., 2009; Duan et al., 2012). Interestingly, we
found gray matter volume increases and functional connectivity
enhanced in a wide range of cortical areas among three
different functional networks in basketball players. Structural
and functional changes in these areas largely contribute to the
improvement of cognitive functions including temporal and
spatial attention (Wright et al., 2013; Wu et al., 2013), memory
processing (Wan et al., 2011; Wang et al., 2013), decision
making and error correction (Koelewijn et al., 2008; Cocchi
et al., 2013) in the population with professional experience.
Our results are consistent with previous studies performed in
other sports players (Di et al., 2012; Wang et al., 2013) and
support the view that development of motor expertise relies

on the improvement both in motor and cognitive functions
(Aglioti et al., 2008). Future studies with further consideration
about the interaction and mutual advantage between motor and
cognitive components may help elucidate the mechanisms of
cortical plasticity during the acquisition of high-level motor
expertise.

We did not find increase in graymatter volume and functional
connectivity related to primary motor cortex in basketball
players compared to novices. This is consistent with previous
studies in cohorts with other motor expertise, such as musicians
(Fauvel et al., 2014), taxi drivers (Maguire et al., 2000) and
athletes (Wei et al., 2011; Di et al., 2012; Wang et al., 2013).
Interestingly, our previous studies with transcranial magnetic
stimulation found increased motor cortical excitability during
different motor tasks in athletes (Wang et al., 2014; Dai et al.,
2016). It may be inferred that changes (both gray matter volume
and functional connectivity) in other motor and cognitive related
brain areas alter the cortico-cortical projections to the primary
motor cortex and eventually lead to the increased output from
the motor cortex in athletes. However, we cannot exclude the
possibility that functional or even structural changes occur in the
primary motor cortex itself after different courses of long-term
motor training (Gaser and Schlaug, 2003; Draganski et al.,
2004).

Limitations
We investigated the morphological and functional differences
between athletes and novices with a cross-sectional paradigm.
It may be argued that larger gray matter volume and
stronger functional connectivity observed in basketball players
are not induced by long-term training but simply due to
the natural property in this cohort which potentially leads
to an ‘‘expert’’ brain with better structure and functions
during development. Although our optimized VBM analysis
partly ruled out the effect caused by inherent brain size
difference in two groups, the question how cortical plasticity
with long-term training is related to the structural and
functional changes in the brain should be further addressed by
longitudinal studies performed along the whole career of the
athletes.

In addition, stronger connectivity in three functional
networks was identified in the basketball players. It has
long been controversial whether and how the resting-state
functional connectivity represents the anatomical and biological
connections in the brain (Raichle et al., 2001; Fox et al., 2005,
2006). Our study does not directly approach the question
how the strong functional connectivity in the basketball
players is related to the biological changes after the long-term
training. However, our findings that functional connectivity
was relevant to the seed region where structural (gray matter
volume) difference was found between two groups and
that we did not perform any pre-selection in determination
of the seed region might suggest the potential biological
changes with cortical plasticity after long-term training in
athletes. The opinion is also consistent with the evidence
obtained from neuroimaging studies performed in musicians
that changes in functional map are often accompanied with
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structural changes during acquisition of motor expertise
(Schlaug, 2001).

A reversed question is whether the result of functional
connectivity analysis is affected by the difference in seed
regions determined in the VBM approach. The findings that
higher resting-state functional connectivity seen in basketball
players compared to novices in the present study was based
on the whole brain wide correlation analysis and that the
cortical areas where higher functional connectivity were found
(except for the seed regions) did not show greater gray
matter volumes might partly deny the cause of increase in
functional connectivity with simple changes in seed sizes. Similar
increases both in gray matter volumes in seed regions and
functional connectivity with the seed regions were also found
in musicians (Fauvel et al., 2014). In addition, the reference
time series in two subject groups are likely slightly different
due to more gray matter volume in basketball players compared
to novices when parametric approach is used in our time
domain analysis (Friston et al., 1994). The comparison for
functional connectivity between two groups may further be
confounded by the partial volume effect around the seed regions
(Müller-Gärtner et al., 1992). Although we performed additional
masks in the seed regions by excluding voxels with low gray
matter density (value below 0.3) to minimize partial volume
effect, it may still be argued that the functional connectivity
in novices is potentially underestimated with the fact that
the selected seeds in the novices are contaminated by gray
matter in other adjacent cortical areas or even white matter.
The interaction between structural and functional changes
during the long-term course of motor training is complex
and the answer to this complex question again requires future
work with longitudinal studies performed in the training
course.

CONCLUSION

Using structural and resting-state functional imaging techniques,
the present study revealed larger volumes of gray matter
in five seed regions and higher functional connectivity in
default mode network, salience network and executive control
network in basketball players compared to novices. We
conclude that the morphology and functional connectivity
in cortical neuronal networks in athletes and novices are
different, and the differences may be related to higher level
of motor expertise in athletes with better motor and cognitive
functions.
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