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B lymphocytes contribute to acute and chronic allograft rejection through their 
production of donor-specific antibodies (DSAs). In addition, B cells present allopeptides 
bound to self-MHC class II molecules and provide costimulation signals to T cells, 
which are essential to their activation and differentiation into memory T cells. On the 
other hand, both in laboratory rodents and patients, the concept of effector T cell 
regulation by B cells is gaining traction in the field of transplantation. Specifically, 
clinical trials using anti-CD20 monoclonal antibodies to deplete B cells and reverse 
DSA had a deleterious effect on rates of acute cellular rejection; a peculiar finding that 
calls into question a central paradigm in transplantation. Additional work in humans 
has characterized IL-10-producing B cells (IgM memory and transitional B cells), which 
suppress the proliferation and inflammatory cytokine productions of effector T cells 
in vitro. Understanding the mechanisms of regulating the alloresponse is critical if we 
are to achieve operational tolerance across transplantation. This review will focus on 
recent evidence in murine and human transplantation with respect to non-traditional 
roles for B cells in determining clinical outcomes.

Keywords: regulatory B cells, transplant tolerance, antigen presentation, allorecognition, transplant rejection, 
autoimmune diseases

inTRODUCTiOn

Allorecognition refers to the detection by the immune system of polymorphic determinants 
expressed by different individuals of the same species (alloantigens) (1–3). After transplanta-
tion of allogeneic organs or tissues, recognition of alloantigens by host leukocytes initiates an 
inflammatory immune response leading to graft rejection (4, 5). It is now established that certain 
leukocytes of the innate immune system, including NK cells and macrophages, can distinguish 
between self- and non-self antigens and thereby contribute to the alloresponse (6–8). However, 
allorecognition by T lymphocytes of the adaptive immune system is the driving force behind 
alloimmunity and allograft rejection in vertebrates. After transplantation, graft MHC class II+ cells 
as well as donor-derived extracellular vesicles traffic to the recipient lymphoid organs where they 

Abbreviations: AMR, antibody-mediated rejection; APC, antigen-presenting cell; Breg, B regulatory cells; cGVHD, chronic 
graft versus host disease; CTL, cytotoxic T lymphocytes; DSAs, donor-specific antibodies; GC, germinal center; HSCT, hemat-
opoietic stem cell transplant; TrB, transitional B cells.
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activate CD4+ allospecific T cells (9–12). This process occurs 
via two distinct pathways: direct allorecognition in which T cells 
recognize intact donor MHC molecules as well as the semi-
direct mechanism dependent on donor-derived MHC–peptide 
complex, which traffics via extracellular vesicles to be presented 
upon recipient antigen-presenting cells (APCs). In this case, 
the recipient dendritic cell (DC) becomes chimeric for donor 
allopeptide–MHC complex and can present to donor responsive 
CD8+ T cells through the direct pathway (13). It is important to 
note that some complex can undergo internalization, degrada-
tion, loading, and presentation on MHC-II to CD4+ T cells 
in the same manner as below in the indirect pathway. Thus, a 
single DC can present to both CD4+ and CD8+ cells resulting in 
a linked activation of T cells (14). The indirect pathway involves 
T cells, which interact with donor peptides bound to recipient 
MHC molecules on host APCs (15–18). This process leads to 
the differentiation of CD8+ cytotoxic T lymphocytes (CTL) 
and to plasmocytes (B cells), which produce donor-specific 
antibodies (DSAs) (19). B cells play a key role in acute and 
chronic allograft rejection through their production of DSAs, 
a process requiring help from CD4+ T cells activated indirectly 
(20). In addition, B cells serve as APCs and present alloantigen 
peptides to T cells thereby contributing to their activation and 
differentiation into memory T cells (21, 22). On the other hand, 
certain B cell subsets can suppress inflammatory alloreactive 
T cells and promote allograft tolerance (23–27). In this article, 
we present recent data from human and animal studies that raise 
exciting new possibilities for B cells in antigen presentation and 
T cell regulation relevant to transplantation.

ALLOReCOGniTiOn BY B CeLLS

B cells have a critical role in indirect allorecognition. The 
traditional immunological concepts for developing an adaptive 
response to any given protein antigen underpin the so-called 
indirect pathway of allorecognition. Recipient T cells recognize 
processed allopeptide–self-MHC-II complexes on recipient 
APCs (28–30). The indirect response is primarily CD4+ T cell-
driven due to the involvement of self-MHC-II molecules (31, 
32). Following recognition of cognate antigen on DCs in the 
T cell zone, these CD4+ T cells upregulate BCL6, CXCR5, and 
CD40L and downregulate CCR7, which allows them to migrate 
to the follicle where they take on the follicular T helper cell 
phenotype (33). These cells can then instruct follicular B cells, 
which have internalized donor antigen to seed germinal centers 
(GCs) via the CD40L/CD40 axis as well as the secretion of IL-21 
promoting the differentiation of CD40L stimulated B cells (34). 
These B cells undergo somatic hypermutation, a critical step to 
generating high-affinity DSA (35). They also class switch and 
some differentiate into plasma cells (with highest BCR signal 
strength) or memory B cells if density and tonicity of the B cell 
receptor signaling are insufficient to differentiate to a plasma 
or GC B cell (36). Thus, the presence of DSA can be used as a 
proxy measure of the activity of the indirect pathway (37, 38). 
In addition to alloreactive or DSA, B cells can generate anti-
body responses against non-HLA self-peptides, the angiotensin 
II receptor is an example of an activating antibody leading 

to a functional change following renal transplantation (39). 
The extent to which these antibodies contribute to rejection, 
especially chronic vascular type rejection is as of yet unclear; 
however, the mechanism of generation in the face of varying 
degrees of allograft tolerance (DSA levels) is intriguing (40).

B CeLLS AS APCs

B cells are likely to play a role in antigen presentation associated 
with indirect activation of donor-specific T cells. For example, 
the presence of CD20+ cells in renal allografts is associated with 
poor outcomes and acute cellular rejection, but not necessarily 
antibody-mediated rejection (AMR), in renal transplantation 
(41). B cells present in these grafts presumably mediate their 
effects through alloantigen presentation and ICOS/CD28 
costimulation of T cells leading to their activation and expansion 
(42). Graft infiltrating CD20+CD27+ memory B cells survey for 
cognate antigen prior to expanding and seeding GCs, a process 
leading to increased DSA production and subsequent acute and 
chronic rejection (43). These DSAs have the potential to greatly 
modify the interplay of donor antigen and recipient tolerance 
since bound antibodies have the potential to fix complement 
and lead to increased tissue damage and increased antigen pres-
entation, as well as epitope spreading, leading to tissue-specific 
responses as in the indirect pathway described above (44).

ROLe OF B CeLLS in SUPPReSSinG 
inFLAMMATORY ALLOiMMUniTY

B cells may not always act as pro-inflammatory players. In 
human renal transplantation, B cells were recently shown to 
have a regulatory role on T cell alloresponses in  vitro using 
peripheral blood from 65 patients with biopsy-proven AMR, 
non-immune related graft dysfunction, or stable graft function 
(45). The authors found many biopsy-proven AMR samples 
that did not demonstrate an anti-donor IFN-gamma response 
unless CD25+ (regulatory T cells) and CD19+ cells (B cells) 
were depleted. More importantly, depletion of these cells also 
restored alloresponsiveness in patients with no histological signs 
of immune-mediated graft dysfunction. Alloresponsiveness was 
dependent on B–T interactions (with CD19+ cells acting as 
APCs in vitro).

A clinical trial in renal transplantation compared the efficacy of 
rituximab, a monoclonal anti-CD20 antibody, with daclizumab, 
a monoclonal anti-CD25 antibody (46) as induction therapy. 
This trial was halted early due to dramatically increased rates 
of biopsy-confirmed acute rejection (within the first 3  months 
post-transplant) in the rituximab-treated group compared with 
daclizumab (83 versus 14%; p = 0.01). In fact, the rate of acute 
rejection observed in the rituximab-treated group exceeded 
previously observed rates in recipients that did not receive any 
induction therapy (~35%), suggesting that B cell depletion actu-
ally increased alloreactivity. Another study sought to evaluate 
rituximab for desensitization prior to HLA-incompatible live 
donor renal transplantation. Rituximab-treated recipients exhib-
ited a trend toward higher rates of acute rejection and greater 
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number of episodes of rejection compared with non-rituximab 
recipients (47). These studies’ results are in line with animal 
models showing worsening of disease severity along several 
T-dependent autoimmune models including ulcerative colitis 
(48), psoriasis (49), and autoimmune encephalomyelitis/multiple 
sclerosis (EAE/MS) (50) following anti-CD20 mAb-mediated B 
cell depletion, despite decreases in circulating autoantibodies, 
underscoring the antibody-independent role of B cells in auto-
immunity. However, other studies including rituximab in the 
induction period for ABO incompatible desensitization did not 
show statistically significant differences in rates of acute rejection, 
although they did raise the concern of possible increased risk of 
cardiac mortality following B cell depletion (51, 52).

The role of B cells with regulatory potential has also been 
explored in human hematopoietic stem cell transplantation. 
Chronic graft versus host disease (cGVHD) is a debilitating 
complication that carries a poor prognosis in patients who fail 
to respond to corticosteroids (53, 54). A frequent observation in 
GVHD is increased titers of autoantibody that demonstrates a 
loss of peripheral B cell tolerance (54). Khoder et al. examined 
the frequencies of regulatory B cells in GVHD and healthy con-
trols and found that the ratio of IL-10+ B cells to IFN-gamma 
CD4+ T cells was greatly reduced in cGVHD patients compared 
to stable controls (55). They found B cells with regulatory 
function (Bregs) (as measured by the ability to suppress CD4+ 
T cell proliferation and effector function in  vitro) in both the 
IgM memory (CD19+IgM+CD27+) and transitional B cell (TrB; 
CD19+CD24hiCD38hi) compartments. They also demonstrated 
that the regulatory potential of these cells required cell–cell con-
tact by coculturing both IgM memory and TrB cells in transwell 
plates with anti-CD3 and anti-CD28 antibody-activated CD4+ 
T  cells. CD80/CD86 blockade in coculture systems was also 
found to be deleterious to the development of full regulatory 
effect by Bregs, and that this effect was independent of CD80/
PD-1 interactions. The necessity for cell–cell contact combined 
with the ability of B cells to act as APC raises the question of 
whether Bregs are antigen-specific via either the B cell receptor 
or MHC, although there have been no reports of direct evidence 
supporting either possibility.

Future work needs to be done to clarify the ontogeny of 
donor-specific “regulatory” B cells [current definitions rely on 
functional production of IL-10 (56–58)]. The regulatory B cell 
populations in murine models are more fully characterized and 
reliably defined by phenotypic markers compared with humans. 
Although no fewer than 10 subsets have been defined as “Bregs,” 
most work has been done on either marginal zone precursor 
B2 cells or B10 cells, which are typically CD19+CD1dhiCD5+ 
(a population, which overlaps with marginal zone B2 cells, 
marginal zone precursor B2 cells, and B1 cells) (59). However, 
many still perform in  vitro assays using anti-CD40 antibodies, 
and PMA-ionomycin, followed by monensin or brefeldin treat-
ment to stimulate IL-10-competent B cells to produce and retain 
this cytokine for intracellular staining (25). In humans, only a 
small percentage of cells identified as potentially regulatory by 
phenotypic markers produce IL-10, a finding that makes transla-
tion more difficult (60, 61).

One of the first animal models to demonstrate the regulatory 
role of B cells in transplantation was performed in a murine renal 
transplantation model where greater efficiency of tolerogenesis 
was observed by transplanting donor B cells at the time of renal 
transplantation than with donor T cells (62). Since that time, 
laboratory efforts have identified several subtypes of B cells with 
regulatory potential (63).

In a murine model of pancreatic islet allotransplantation, T 
cell Ig domain and mucin domain protein 1 (TIM-1), a costimula-
tory molecule was shown to modulate CD4+ T cell reactivity and 
serves as a marker of Bregs (27). TIM-1 broadly marked Bregs 
with significant overlap with IL-10+ capable cells. In fact, TIM-1 
ligation actually enhanced production and secretion of IL-4 and 
IL-10 by B cells. Compared to other reports, this group was able 
to more reliably identify IL-10+ cells in peripheral tissues and 
secondary lymphoid organs as compared to spleen using TIM-1 
positivity as opposed to a non-specific CD19+CD1dhiCD5+ gate. 
Finally, they were able to promote tolerogenesis via RMT1-10, 
an anti-TIM-1 mAb, which simulates CD4+ binding. This work 
was furthered by identifying the role of Breg-derived TGF-beta 
in inducing Tregs and in promoting tolerance to fully MHC-
mismatched pancreatic islet transplants. Tolerance induction 
in these mice was transferrable through injection of naïve 
mice with B cells from dual antibody-treated recipients (anti-
CD45RB and anti-TIM-1) (24). This dual therapy promoted 
TGF-beta secretion by TIM-1+ B cells and led to a substantial 
increase in Treg frequencies, which was blocked by anti-TGF-
beta antibody (26).

COnCLUSiOn

It is clear that great strides are being made across the field of 
transplantation with respect to the understanding of the many 
roles of B cells. B cells are unique in their ability to produce 
antibodies, which can kill donor cells via antibody-dependent 
cell-mediated cytotoxicity and complement fixation. In addi-
tion, B cells are efficient APCs providing help to T cells thereby 
polarizing the T cell response and promoting the differentiation 
of memory T cells. However, mechanistically informed clinical 
trials, which sought to take advantage of the indirect pathway 
of allorecognition via CD20+ antibody treatment to deplete 
recipient B cells, resulted in increased rates of acute cellular 
rejection. This peculiar result challenges the single faceted 
view of B cells as solely pro-inflammatory and supports the 
human relevance of recent laboratory work in rodents, which 
has demonstrated immunoregulatory roles for several B cell 
subsets. Future work needs to characterize the transcriptome of 
Bregs in an effort to identify a transcription factor necessary for 
function regulation such as Foxp3 in Tregs. Critical questions 
remain about whether the variety of reported Bregs are indeed 
separate cell subsets or merely different activation states of 
B cells across development. This would help to explain such 
diverse findings in B10, marginal zone precursors, and TIM-1+ 
B cells and would open up the exploration of what cytokine 
environment polarizes a Breg and might be useful in clinical 
transplantation.
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