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Thorough investigation of a neuronal population can help reveal key aspects regarding
the nervous system and its development. The retinal horizontal cells have several
extraordinary features making them particularly interesting for addressing questions
regarding fate assignment and subtype specification. In this review we discuss and
summarize data concerning the formation and diversity of horizontal cells, how
morphology is correlated to molecular markers, and how fate assignment separates the
horizontal lineage from the lineages of other retinal cell types. We discuss the novel and
unique features of the final cell cycle of horizontal cell progenitors and how they may
relate to retinoblastoma carcinogenesis.
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A BRIEF INTRODUCTION TO HORIZONTAL CELLS

Multipotent retinal progenitor cells (RPCs) in the vertebrate optic cup give rise to the five
types of neurons and one type of glia that make up the mature retina (reviewed in Masland,
2001a; Marquardt and Gruss, 2002; Boije et al., 2014). The neuronal cell types: photoreceptors,
horizontal, bipolar, amacrine, and ganglion cells, can be further divided into subtypes based on
variousmorphological, functional, andmolecular criteria (Masland, 2001b). During the Nineteenth
century the Spanish neuroscientist Santiago Ramón y Cajal was the first to classify the retinal
neurons and some of their subtypes based on morphological criteria (Ramón y Cajal, 1972).
Since then, molecular and functional definitions have often been found to correlate with the
morphological classifications thereby validating the oldest taxonomy.

Horizontal cells (HCs) have been identified in all vertebrate retinas from fish to man (Gallego,
1971, 1982, 1986; Peichl et al., 1998). They were found to be the source of the puzzling S-potentials,
where hyperpolarization occurs as a response to light stimulus (Svaetichin, 1953; Werblin and
Dowling, 1969; Kaneko, 1970). HCs facilitate both long and short range interactions between
photoreceptors (PRs) and through inhibitory feed-back they aid in contrast enhancement and color
opponency (Twig et al., 2003). There are several reasons why HCs are of particular interest. They
have clearly distinguishable subtypes, both by morphological criteria and by molecular markers,
allowing the study of subtype formation. Unlikemany other cell types in the retina, the final number
of HCs is not adjusted by apoptosis (Mayordomo, 2001; Edqvist et al., 2008). HCs undergo a unique
bi-directional migration, resulting in a stopover at the basal side of the retina before arriving at their
predestined position close to the PRs (Edqvist and Hallböök, 2004). Furthermore, in zebrafish and
chicken, committed HCs has been shown to undergo non-apical mitoses in a semi-differentiated
state (Godinho et al., 2007; Boije et al., 2009). Recent studies in chicken revealed a novel cell cycle
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behavior by the HCs that includes endoreplication leading to
heteroploidy (Shirazi Fard et al., 2013). Moreover, HCs can divide
in the presence of DNA damage and are able to develop into
retinoblastoma in a murine model (Ajioka et al., 2007; Shirazi
Fard et al., 2014b). In this review we will discuss the progress
made regarding these HC features and how these findings
relate to general concepts of development, evolution, and tumor
formation.

MORPHOLOGICAL AND FUNCTIONAL
DIVERSITY OF HORIZONTAL CELLS

Horizontal cells can be divided into axon-bearing and axon-less
subtypes, a feature that appears to be conserved in the vertebrate
lineage with few known exceptions (Gallego, 1986; Peichl et al.,
1998; Table 1). The emerging pattern for all vertebrate retinas
examined so far is that the axon-bearing HC is universal, and that
any additional HC subtype(s) adhere to the axon-less population.
In the chicken retina, three different HC subtypes have been
described based on morphology; the “brush-shaped” (H1) is
axon-bearing, whereas the “stellate” (H2) and the “candelabrum-
shaped” (H3) are both axon-less (Figure 1; Genis-Galves et al.,
1979; Gallego, 1986). In some species these HC subtypes are
referred to as A-, B-, and C-type (Table 1). As will be discussed
below, this morphological classification has since been found to
correlate with the expression of unique molecular markers.

The division into axon-bearing and axon-less HC subtypes
has also been suggested to reflect a functional difference where
the axon-terminus of H1 HCs mainly connects to rod PRs,
whereas the dendritic tree of all subtypes exclusively forms
connections with cone PRs (Zhang A. -J. et al., 2006; Zhang J.
et al., 2006). Although there is no clear-cut relationship between
a low cone/rod ratio and the number of HC subtypes (reviewed
in Peichl et al., 1998), the difference in the number of HC
subtypes among different species seem to be loosely correlated
with the relative numbers of cone and rod PRs. In cone-rich
retinas (e.g., the chicken retina), two types of axon-less HCs
are present alongside the axon-bearing HCs (Genis-Galves et al.,
1979; Gallego, 1986). In contrast, rod-dominated retinas, such as
most mammalian retinas (Ahnelt and Kolb, 2000), have only one
type of axon-less HC. Extremely rod-dominated retinas, such as
the mouse and rat retina, with merely 1–3% cones (Szél et al.,
1996; Peichl, 2005), lack the axon-less HC subtypes altogether
(Peichl and González-Soriano, 1994). Examples of species with
only the axon-bearing HC subtype have been described in such
diverse groups as fish, marsupials, and mammals (Peichl and
González-Soriano, 1994; Lyser et al., 1999; Hirt and Wagner,
2005; Table 1). Thus, it may be that the loss of axon-less HCs
in highly rod-dominated retinas is a result of adaptations to
a nocturnal lifestyle, since few cones would make the “cone-
specialized” axon-less HCs obsolete.

MOLECULAR MARKERS FOR
HORIZONTAL CELL SUBTYPES

Data from our lab and others have shown that all HCs in the
chicken retina express the homeodomain transcription factors

(TF) Prox1 and Pax6 whereas the LIM/homeodomain TFs Lhx1
(Lim1) and Isl1 are both expressed in half the HC population in a
non-overlappingmanner (Edqvist et al., 2006, 2008; Fischer et al.,
2007). Specifically, the axon-bearing HCs express Lhx1, fibroblast
growth factor 19 (Francisco-Morcillo et al., 2005; Okamoto et al.,
2009), and calretinin (Edqvist et al., 2008) while both axon-
less subtypes lack the expression of these markers, but instead
expresses Isl1 (Edqvist et al., 2008; Figure 1). Based on these
observations, Lhx1 and Isl1 have emerged as markers for the
axon-bearing and axon-less HC subpopulations, respectively.

The axon-less H2 and H3 populations can be distinguished
based on their expression of GABA and the nerve growth factor
receptor tyrosine kinase TrkA, respectively (Karlsson et al., 1998,
2001; Edqvist and Hallböök, 2004; Boije et al., 2008). Although
HCs are often referred to as GABAergic inhibitory interneurons
GABA is only present in the H1 and H2 subtypes (Edqvist
and Hallböök, 2004; Boije et al., 2008). Certain cadherins and
connexins are also expressed in HCs in a subtype-specific pattern
(Tanabe et al., 2004, 2006; Puller and Haverkamp, 2011; Pan et al.,
2012).

Although Lhx1 was identified as a HC-specific marker in
the retina (Liu et al., 2000), the sub-type specific quality of
Lhx1 was initially unknown. Isl1 on the other hand is not
uniquely expressed in HCs but is also expressed in ganglion
cells, certain amacrine cells (ACs), and bipolar cells. However,
the combination of Prox1 and Isl1 is exclusive to HCs. When
Isl1 was first described as a novel HC subtype-marker in
chicken (Edqvist et al., 2006), it was uncertain whether the
Lhx1/Isl1 division of chicken HCs into axon-bearing and axon-
less subtypes was an evolutionarily conserved feature in other
species. Subsequent studies show that Isl1 is expressed in HCs
in retinas of various species including fish, frogs, turtles, and
pigs (Francisco-Morcillo et al., 2006; Guduric-Fuchs et al., 2009;
Álvarez-Hernán et al., 2013; Zhang et al., 2013; Table 1). Taken
together, this suggests an evolutionary conserved division of
Lhx1 and Isl1 into different HC subtypes that confirms the
morphologically based subdivision.

FATE SPECIFICATION OF HORIZONTAL
CELLS RELY ON FoxN4 AND Ptf1a

Although several bHLH and homeodomain TFs (e.g., Ascl3,
Ngn2, NeuroD1, Atoh3, Pax6, Onecut1 and 2, and Six3)
have been associated with HC genesis, all of these required
combinatorial over-expression or knock-out in order to affect
the HC population (Inoue et al., 2002; Akagi et al., 2004; Wang
and Harris, 2005; Wu et al., 2013). Prox1 has been proposed to
be crucial for the generation of HCs, though its relatively late
onset of expression suggests that it is more likely involved during
maturation rather than fate commitment (Dyer et al., 2003; Boije
et al., 2008, 2009). However, the complete abolishment of HCs in
retinas lacking the winged helix TF FoxN4 indicated that there
indeed may be a key fate determinant for HCs (Li et al., 2004).
The expression pattern of FoxN4 in the developing retina is
conserved in mouse, frog, chicken, and zebrafish (Gouge et al.,
2001; Danilova et al., 2004; Schuff et al., 2006; Boije et al., 2008).
FoxN4 is expressed throughout the neural epithelium of the
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TABLE 1 | Species comparison of horizontal cell subtypes.

Species H1 H2 H3–H4 Comment References

B-type A-type C-type

Axon-bearing Axon-less Additional subtypes

FISH

Zebrafish x x xx Include Isl1+ HCs Connaughton et al., 2004; Song et al., 2008;
Zhang et al., 2013

White perch x x xx Dowling et al., 1985

Carp x x xx H1-2 are Cx35/36+, not H4 Liu et al., 2009

Shark(s) x x x Calretinin and GABA double and single
labeling subtypes

Ferreiro-Galve et al., 2010; Schieber et al., 2012

Stingray x x x Toyoda et al., 1978

Sea lamprey x x Villar-Cheda et al., 2006

Deep sea eel x Rod-only retina Hirt and Wagner, 2005

Goldfish xxx Three subtypes, all have axons Kamiji et al., 2012

REPTILES

Turtle(s) x x xx Isl1, GABA, Calretinin, Calbindin in
subpopulations

Leeper, 1978; Francisco-Morcillo et al., 2006

Frog(s) x x x Include Isl1+ HCs Ogden et al., 1984, 1985; Álvarez-Hernán et al.,
2013

Mudpuppy x x x Kim and Miller, 1992

Tiger salamander x x A-type: Calretinin+ B-type: GABA+ Zhang J. et al., 2006

Chameleon ? ? One Gad65+ subpopulation Bennis et al., 2003

BIRDS

Pigeon x x xx Mariani, 1987

Chicken x x x Include Lhx1, Isl1, GABA and TrkA cells Gallego et al., 1975; Edqvist et al., 2008

Owl x x Tarrés et al., 1986

MARSUPIALS

Didelphis opossum x x x Diurnal Hokoc et al., 1993

Brush-tailed possum x x Harman, 1994

Wallaby x x Harman and Ferguson, 1994

Brazillian opossum x Nocturnal Lyser et al., 1999

VARIOUS MAMMALS

Horse, Ass, Zebra x x Sandmann et al., 1996a

Sheep, Ox x x Sandmann et al., 1996b

Cat x x Boycott et al., 1978; Vardi et al., 1994

Pig x x Include Isl1+ HCs Sandmann et al., 1996b; Guduric-Fuchs et al.,
2009

Rabbit x x ? A-type: Cx50+ and NF+ B-type: Cx57+
and Calbindin+ Third type: “Elongated
A-type”?

Bloomfield and Miller, 1982; Dacheux and Raviola,
1982; Silveira et al., 1989; Famiglietti, 1990; Lyser
et al., 1994; Hack and Peichl, 1999; Pan et al.,
2012

Tree shrew x x A-type is GFAP+ Müller and Peichl, 1993; Knabe and Kuhn, 2000

RODENTS

Squirrel(s) x x West, 1978; Leeper and Charlton, 1985; Linberg
et al., 1996; Cuenca et al., 2002

Guinea pig x x Peichl and González-Soriano, 1994; Loeliger and
Rees, 2005

Agouti x x Diurnal rodent Silveira et al., 1989; de Lima et al., 2005

Capybara ? x Silveira et al., 1989

Naked mole rat x ? 1–2 HCs detected in a regressive eye Mills and Catania, 2004

Rat x Peichl and González-Soriano, 1994

Mouse x Lhx1 positive, Isl1 negative Peichl and González-Soriano, 1994; Liu et al.,
2000; Hombach et al., 2004; Elshatory et al., 2007

(Continued)
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TABLE 1 | Continued

Species H1 H2 H3–H4 Comment References

B-type A-type C-type

Axon-bearing Axon-less Additional subtypes

PRIMATES

Cebus monkey x x x dos Reis et al., 2002; Dos Santos et al., 2005

Owl monkey x x x Nocturnal Dos Santos et al., 2005

Macaca monkey x x Wässle et al., 2000; Hendrickson et al., 2007

Marmoset monkey x x Chan et al., 1997

Human xxx Three types, all have axons Kolb et al., 1992; Kolb, 1995; Nag and Wadhwa,
2001

“x” denotes one HC subtype being present in the species.

FIGURE 1 | Three horizontal cell types. Schematic diagram of the three subtypes of chicken horizontal cells. The “brush-shaped” (H1) is axon-bearing and
expresses Lhx1 (Lim1), whereas the “stellate” (H2) and the “candelabrum-shaped” (H3) are both axon-less and express Isl1. AC; amacrine cell, BC; bipolar cell, GC;
ganglion cell, GCL; ganglion cell layer, H1-3; horizontal cell type 1-3, HC; horizontal cell, INL; inner nuclear layer, IPL; inner plexiform layer, ONL; outer nuclear layer,
OPL; outer plexiform layer, PR; photoreceptor.

optic cup but is upregulated in a subset of cells that are Lhx1
positive suggesting a commitment down the HC path. Knock-out
of the bHLH Ptf1a, a down-stream target of FoxN4, turned out to
mimic the phenotype of the FoxN4 mutant with a complete loss
of HCs and a drastic decrease of ACs (Li et al., 2004; Fujitani et al.,
2006). Subsequent studies of FoxN4 and Ptf1a revealed that they
are not only required, but also sufficient, for the generation of

HCs and ACs (Dullin et al., 2007; Lelièvre et al., 2011; Boije et al.,
2013).

Clearly, both FoxN4 and Ptf1a are required for the formation
of HCs, but equally so for the generation of ACs. How does
this FoxN4/Ptf1a-lineage divide into two closely related, but
functionally distinct, cell types? In mice, which only possess
the axon-bearing HC subtype, Lhx1 appeared as an obvious
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candidate for lineage diversification since it uniquely labels all
HCs. Conditional Lhx1 mutant mice showed that its ablation
caused ectopic HCs with a morphology resembling that of ACs
(Poché et al., 2007). Expression of Ptf1a and Prox1 was initiated
as in wild type HCs but the retrograde migration from the basal
side (see paragraph regarding HCmigration) was not performed.
Although the ectopic HCs adopted an AC morphology they
did not express AC specific markers suggesting proper fate
commitment had occurred but that they had an erroneous
laminar position (Poché et al., 2007). This indicated that Lhx1
may be a crucial homeodomain protein for the positioning of
HCs in the mouse retina. It also indicated that Lhx1 expression
is not required for the expression of either Ptf1a or Prox1. The
fact that Lhx1 expression is observed during apical mitoses in the
chicken retina, prior to the onset of Ptf1a expression, highlights
a common mis-perception of the temporal aspect of these genes
(Boije et al., 2013). Instead this suggests a process where Ptf1a
and Lhx1 are both required but independently regulated in order
to specify HCs.

Lineage analysis in the zebrafish retina using transgenic lines
driving fluorescent reporter genes under the promoters of Lhx1
and Ptf1a suggests how independent expression of key factors
may regulate HC fate assignment. Two things stand out regarding
the Lhx1-lineage: firstly, all HC subtypes arise from the Lhx1-
lineage, and secondly, most cells of this lineage do not become
HCs but adopt the PR fate (Boije et al., 2015). A recent study
by the Wong lab further stresses this close relationship between
HCs and PRs (Suzuki et al., 2013). Quantification of the different
lineages suggested that the generation of the HCs could be
explained as the intersectional population of the independent
expression of Lhx1 and Ptf1a (Figure 2A; Boije et al., 2015), while
cells that expressed only Ptf1a or only Lhx1 become ACs or PRs,
respectively. Recalling the conditional Lhx1 mutant mice, there

seem to be two pieces to the puzzle; Ptf1a to drive differentiation
and Lhx1 to govern positioning.

HORIZONTAL CELL SUBTYPE
FORMATION

As the presence of both axon-bearing and axon-less HCs seems
to be an evolutionarily conserved feature, it is natural to question
how these subtypes arise. While FoxN4 specifies subtype identity
in the spinal cord this does not appear to be the case in the retina
(Li et al., 2005). Knock-out or over-expression of FoxN4, affected
the fate assignment of V2a vs. V2b spinal interneurons via the
Notch-Delta pathway (Li et al., 2005; Del Barrio et al., 2007).
In the retina however, FoxN4 activates Dll4-Notch signaling
suppressing PR fate but it does not seem to play a role in HC
subtype formation as both Lhx1 positive (+) and Isl1+ HCs
were lost in the mutant and both subtypes were generated by
FoxN4 overexpression (Boije et al., 2013). Similarly, Ptf1a has
been suggested to determine GABAergic cell fate in the spinal
cord and in the cerebellum (Glasgow et al., 2005; Hoshino
et al., 2005). In contrast to the mouse retina, which only has
the Lhx1 expressing GABAergic HC subtype, the chicken retina
also has non GABAergic HCs expressing Isl1. However, Ptf1a
overexpression led to an increase in both GABAergic Lhx1
positive HCs and in TrkA, Isl1 double positive HC subtypes
(Lelièvre et al., 2011). This suggests that Ptf1a is involved in
assigning inhibitory neurons in the retina, rather than specifying
GABAergic subtypes.

Since recent lineage analysis implies a common origin of
the HC subtypes in zebrafish there may be intrinsic and/or
extrinsic factors responsible for the progression from generating
one subtype to generating the next. Birth-dating analysis in the

FIGURE 2 | Horizontal cell fate and cell type formation. (A) Horizontal cell fate assignment can be regarded as the intersectional population of the independent
expression of Ptf1a and Lhx1. (B) The pathway to horizontal cells is linked to amacrine cells by the expression of FoxN4 and Ptf1a while Lhx1 separates the HC lineage
from ACs. Isl1 blocks Lhx1 expression to form the axon-less subtypes. AC; amacrine cell, HC; horizontal cell, H1-3; horizontal cell type 1-3, PR; photoreceptor.
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chicken retina has revealed that the axon-bearing population is
born roughly 1 day prior to the axon-less subtypes (Edqvist et al.,
2008). Furthermore, studies in the chicken retina have shown
that Isl1, which is the molecular signature of the later born axon-
less HC subtypes, is necessary and sufficient to down-regulate the
expression of Lhx1 and inducing the phenotypic trait of axon-less
HCs (Suga et al., 2009). Overexpression of Isl1 in HCs residing in
the HC layer represses endogenous Lhx1 expression and cause a
subtype fate switch from the H1 morphology to the H2 but not
to H3 (Suga et al., 2009). Expression of a dominant negative Lhx1
variant does not cause subtype fate-switch and overexpression of
Lhx1 did not affect the proportion of the HC subtypes. During
normal development there are occasionally cells that are double
labeled for Lhx1 and Isl1 during the migration to the basal
side (Boije et al., 2009). Combined, the lineage data and the
dominance of Isl1 over Lhx1, suggests that there is a pool of
committed HCs that initiates expression of Isl1 causing a subtype
fate-switch (Figure 2B). How this is regulated to produce the
50/50 split in the chicken retina remains unknown. Interestingly,
in the mouse retina, which only hosts the Lhx1+ subtype, the
number of HCs was found to be inversely dependent on the
expression of Isl1 (Whitney et al., 2011). This was shown by the
identification of an expression quantitative trait locus in the Isl1-
gene from genetic analysis of mouse strains that have inherently
different HC numbers. These findings are consistent with a role
for Isl1 in regulating the formation or population size of the
Lhx1+ subtype and such a role has also been found during the
formation of other neuronal subtype-populations (Sun et al.,
2008).

HORIZONTAL CELL MIGRATION

As RPCs pass through the cell cycle their nuclei undergo
translocation across the neuroepithelium, a process known as
interkinetic nuclear migration, while remaining attached to the
apical and basal lamina (Baye and Link, 2007). Mitoses typically
occur on the apical side of the neuroepithelium and after a
neurogenic division the post-mitotic daughter cells detach and
migrate toward their final laminar location (Götz and Huttner,
2005). Based on this, one would expect the newborn HCs to
simply migrate the short distance from the apical side, to the
outer part of the prospective inner nuclear layer, where they
reside in the mature retina. However, HCs deviate from this
path by migrating from their site of birth across the width of
the neuroepithelium and halt near the prospective ganglion cell
layer before migrating back again toward their final laminar
location (Edqvist and Hallböök, 2004). This phenomenon has
also been described in mouse (Liu et al., 2000) and zebrafish
(Chow et al., 2015), and the presence of displaced HCs in various
species (cat, chicken, macaque, augoti, rabbit, capybara) suggest
that this migration pattern may be an evolutionarily conserved
HC feature (Prada et al., 1984; Silveira et al., 1989; Wässle et al.,
2000). Subsequent studies in the chicken retina showed that H1,
H2, and H3 HCs all undertake the same route of migration,
but the migration of H1 and H2/H3 is temporally separated by
approximately 1 day (Edqvist et al., 2008). The separation in

migration correlates with a similar difference regarding birth-
dates, indicating that the subtypes are not generated during
the maturation process but rather that cells are born into a
specific subtype fate. This notion is supported by the fact that
Isl1, which specifies HC-subtype, is already expressed during the
birth of HCs. A similar phenomenon is known from AC subtype
formation in the rat retina where GABAergic ACs are born 2–
3 days before acetylcholine and dopamine expressing ACs (Lee
et al., 1999).

Why do HCs in the Lhx1 loss-of-function mouse retina adopt
AC morphology in the absence of the retrograde migration
despite not adopting AC molecular characteristics (Poché et al.,
2007)? This may either reflect that the morphological maturation
of HCs solely depends on Lhx1 or that there are environmental
cues governing this step. Interestingly, recent results show that
wild type HCs transplanted into retinas lacking HCs and ACs
also fail the retrograde migration (Boije et al., 2015). These HCs
are intrinsically wild type with the competence to migrate back
but they never the less fail. This phenomenon may be due to
the absence of a non-cell autonomous factor, possibly arising
from ACs. Interestingly, there seems to exist some regulatory
mechanism in which a certain number of ACs has to be present
for the retrograde migration of HCs to occur (Boije et al., 2015).
Furthermore, these HCs also adopted an AC morphology and
extended processes into the inner plexiform layer. This suggests
that HC morphological maturation relies, at least partly, on
extrinsic cues. One can hypothesize that there may have been an
ancient inhibitory neuron specified by Ptf1a expression and that
the addition of Lhx1 has split this population in two, the HCs and
the ACs. The migration of HCs may therefore be an evolutionary
remnant from when these cells were destined to reside together.

HETEROGENEITY DURING THE FINAL
CELL CYCLE OF HORIZONTAL CELLS

Once a cell undergoes the neurogenic division, the daughter
cells become post-mitotic, migrate out to their final laminar
position, and initiate differentiation. While this is true for several
of the retinal neuronal cell types, chicken HCs can divide once
more after having initiated their final migration (Boije et al.,
2009). These non-apical mitoses occur on the basal side of the
retinal neuroepithelium in a semi differentiated state. However,
not all HCs act in this way and three different behaviors have
been described during the terminal cell cycle. The first behavior,
denoted behavior “one,” resembles that of the RPCs, with an
apical mitosis followed by migration and accumulation on the
basal side of the retina where they rest for several days before
migrating back to the prospective HC layer. HCs with behavior
“two” initiate a non-apical neurogenic cell cycle by entering S-
phase, however they do not proceed into mitosis and remain
with a replicated genome. The presence of such cells was shown
by the existence of increased DNA content and double number
of chromosomes in post-mitotic HCs (Shirazi Fard et al., 2013).
However, the majority of HCs perform a non-apical (basal)
mitosis that generates two HCs. Clonal analysis has shown that
individually labeled HC progenitors often generated two HCs
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of the same subtype indicating that the assignment of subtype
in many cases occurs prior to the terminal division (Rompani
and Cepko, 2008). The non-apical mitoses are denoted behavior
“three” and occur later than the behavior “one” and “two”-cells,
although there is extensive overlap between the three behaviors
(Figure 3). Independent of behavior during the final cell cycle, all
HCs undergo retrograde migration and form the prospective HC
layer in proximity to the PRs (Shirazi Fard et al., 2013). These
behaviors have so far only been carefully studied in the chicken
H1 subtype but it is likely that the H2 and H3 HC subtypes have
similar behaviors during their neurogenic cell division since they
all exhibit basal mitoses in a similar fashion as the H1 HCs do
(Boije et al., 2009).

A similar heterogeneity during the neurogenic HC division
is seen in the zebrafish retina. HCs divide non-apically on the
basal side of the zebrafish retina (Weber et al., 2014) or in the
HC layer (Godinho et al., 2007). Such mitoses resemble the
behavior “three” cells in the chicken retina. In zebrafish HCs are
occasionally generated together with a PR as its sister cell and
this pattern may represent the behavior “one” with an apical cell
division (He et al., 2012). There have been no reports indicating
any heterogeneity during the neurogenic cell divisions of either
mouse or rat HCs. They migrate and accumulate on the basal
side of the retina and stay on the basal side as post-mitotic cells
before their retrograde migration to the prospective HC layer.
This conclusion finds support in that the rodent retina only has
H1 HCs (Peichl and González-Soriano, 1994; Poché and Reese,
2009) and their behavior during the neurogenic cell division
corresponds to behavior “one” cells in the chicken retina (Liu
et al., 2000).

Cells that fail to enter mitosis after genome replication, similar
to that seen for the behavior “two” HCs, are often associated
with DNA damage and an active DNA damage response (DDR;

Zhou and Elledge, 2000). However, the arrested chicken HCs
are not a result of an active DDR since they do not display
phosphorylation of histone H2AX nor Rad51 foci, which are
hallmarks of an active DDR and repair (Shirazi Fard et al.,
2013). Rather, the heteroploid cells are produced by a mechanism
referred to as endoreplication (Edgar and Orr-Weaver, 2001).
Overall, endoreplication and its regulation is poorly understood,
but it has been linked to cells that have initiated differentiation
while remaining in the cell cycle (Zanet et al., 2010). It has also
been suggested that endoreplication promotes resistance against
intrinsic and extrinsic stress (Lee et al., 2009) a feature that may
be important to the HCs since their numbers are determined by
proliferation rather than apoptosis.

Chromosomal variations in adult tissues are common, and
aneuploidy (one form of heteroploidy) has been found in
developing and adult cortical interneurons (Rehen et al., 2001;
Kingsbury et al., 2005) as well as in chicken retinal ganglion
cells (Morillo et al., 2010). However, in contrast to HCs, most
aneuploid cells undergo caspase-mediated apoptosis (Voullaire
et al., 2000; Rehen et al., 2001; Kingsbury et al., 2005; Rajendran
et al., 2008; Zupanc et al., 2009; Peterson et al., 2012). Although
the heteroploid HCs appear resistant to apoptosis, they respond
to drug-induced DNA damage by phosphorylation of histone
H2AX (γH2AX) and formation of γH2AX and RAD51 foci,
suggesting a functional DNA damage response (Shirazi Fard
et al., 2014a). Still the chicken HCs were able to enter S-phase
and complete mitosis (Shirazi Fard et al., 2014b). This ability to
enter mitosis in the presence of DNA damage indicates that these
cells are able to withstand the effect of the DNA damage response
(Shirazi Fard et al., 2014b, 2015). Furthermore, direct activation
of p53 by its co-activator Zac1 neither induces cell cycle arrest
nor apoptosis in HCs supporting the notion that the HCs are
less sensitive to events that activate the p53 system, compared

FIGURE 3 | Heterogeneity in the terminal cell division of horizontal cells. Schematic diagram showing three different behaviors during the neurogenic cell
division of chicken horizontal H1 (Lhx1+) cells. The diagram illustrates the retina with mitosis (M-phase) and S-phase indicated in relation to the migration across the
retina. The migration is indicated by the arrows and the replicated state of each cell, in the three behaviors is indicated by a schematic chromosome. Two
chromosomes indicate a cell with replicated DNA. The three different behaviors are denoted: behavior “One,” “Two,” and “Three” in the main text.
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to other retinal cells (Shirazi Fard et al., 2015). These properties
may associate with a cell that has the ability to become neoplastic,
in fact conditionally inactivating the retinoblastoma Rb1 gene
in early murine retinal progenitors leads to degeneration of all
retinal cells except HCs, which persist and divide with DNA
damage resulting in poly- or aneuploidy (Donovan and Corbo,
2012).

HORIZONTAL CELLS AND
RETINOBLASTOMA

The childhood cancer Retinoblastoma is rare, with a reported
incidence of 1 in 15–18,000 births. Since the discovery of RB1
mutations, much effort has been invested into finding the cell-
of-origin for retinoblastoma and understanding the carcinogenic
mechanisms in those cells. Knock-down of RB1 in human fetal
retinal cells was sufficient to induce proliferation of cone PR
cells and when grafted, these Rb1-depleted cone precursors were
able to form tumors (Xu et al., 2014). This indicates that post-
mitotic human cone precursors are sensitive to RB1-depletion
and may represent cell-of-origin for retinoblastoma. However, a
study performed on mice lacking Rb-family members, reported
that HCs are able to re-enter the cell cycle, expand clonally
and form metastatic tumors (Ajioka et al., 2007). Horizontal
cells may therefore also be considered as a cell-of-origin for
retinoblastoma. This poses the question why certain cell types are
more prone to becoming malignant following loss-of-function
of RB1. As discussed in this review, both the cone PRs and the
HCs are among the first retinal cells to be generated during
development and they are derived from the same multipotent
progenitors (Suzuki et al., 2013; Boije et al., 2014). Whether
a photoreceptor or a horizontal cell is the cell-of-origin for
retinoblastoma may be less important from a mechanistic
perspective. It is more important to understand the molecular
pathways that distinguish the properties of these cells from
other retinal cells, knowledge that may aid our understanding
why these cells have a propensity for neoplastic transformation.
In conclusion, HCs seem to have an atypical regulation or
execution of their p53-p21 system during a limited period of the
development that spans the time during which their neurogenic
cell division occurs and that allows for genomic aberrations

without triggering apoptosis. Such ability may be a factor that
under challenging conditions, allows cells with RB1 loss-of-
function mutations to remain in the retina and to develop into
cancer initiating cells.

SUMMARY

- There is a clear correlation between the morphologically
defined HC subtypes and the classification based on molecular
markers, which is evolutionarily conserved; the transcription
factor Lhx1 is expressed in axon-bearing subtypes and Isl1 in
axon-less subtypes.

- From an evolutionary perspective it seems that while most
species have both axon-bearing and axon-less HCs, some
animals may have lost the need for axon-less HCs due to
adaptation to e.g., nocturnal lifestyles.

- FoxN4 and Ptf1a are crucial in establishing the competence to
differentiate into a HC.

- While the Ptf1a-lineage is shared by HCs and ACs, the
presence of Lhx1, which is expressed independently of Ptf1a,
divides the lineage and thereby aids in the formation of HCs.

- The Lhx1-lineage gives rise to all HC subtypes and onset of Isl1
expression within this lineage drives the phenotypic change to
axon-less subtypes.

- During development, committed HC progenitors undertake a
bi-directional migration across the width of the retina during
which non-apical mitoses occur in some species.

- The ability of HCs to undergo additional rounds of division in
a differentiated state may be related to HCs being named the
cell-of-origin for retinoblastoma.
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