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This study aims to assess the vigilance task-related change in connectivity in
healthy adults using wavelet phase coherence (WPCO) analysis of near-infrared
spectroscopy signals (NIRS). NIRS is a non-invasive neuroimaging technique for
assessing brain activity. Continuous recordings of the NIRS signals were obtained from
the prefrontal cortex (PFC) and sensorimotor cortical areas of 20 young healthy adults
(24.9 ± 3.3 years) during a 10-min resting state and a 20-min vigilance task state.
The vigilance task was used to simulate driving mental load by judging three random
numbers (i.e., whether odd numbers). The task was divided into two sessions: the first
10 min (Task t1) and the second 10 min (Task t2). The WPCO of six channel pairs were
calculated in five frequency intervals: 0.6–2 Hz (I), 0.145–0.6 Hz (II), 0.052–0.145 Hz (III),
0.021–0.052 Hz (IV), and 0.0095–0.021 Hz (V). The significant WPCO formed global
connectivity (GC) maps in intervals I and II and functional connectivity (FC) maps in
intervals III to V. Results show that the GC levels in interval I and FC levels in interval III
were significantly lower in the Task t2 than in the resting state (p < 0.05), particularly
between the left PFC and bilateral sensorimotor regions. Also, the reaction time (RT)
shows an increase in Task t2 compared with that in Task t1. However, no significant
difference in WPCO was found between Task t1 and resting state. The results showed
that the change in FC at the range of 0.6–2 Hz was not attributed to the vigilance task
per se, but the interaction effect of vigilance task and time factors. The findings suggest
that the decreased attention level might be partly attributed to the reduced GC levels
between the left prefrontal region and sensorimotor area. The present results provide a
new insight into the vigilance task-related brain activity.

Keywords: near-infrared spectroscopy, attention, functional connectivity, global connectivity, wavelet phase
coherence

INTRODUCTION

A high-level attention cannot constantly be maintained during a cognitively demanding task,
such as driving; the level of attention progressively diminishes as time elapses, thereby affecting
task performance negatively (Derosière et al., 2014). Attention decrements may lead to work-
related injuries (Grandjean, 1979; Czeisler et al., 2005) and traffic accidents (Lal and Craig, 2001;
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Beede and Kass, 2006). Driving a vehicle requires the ability to
make decisions, planning, and visual attention. Driver attention
level decreases after a long time of driving. Understanding the
cognitive state of a driver in real-time can assist in the design
of in-vehicle interfaces. Therefore, clarifying the relationship
between driver attention state and brain activity, including
recognition and judgment, is necessary.

Resting state functional connectivity (RSFC) is characterized
by a temporal correlation between two time series in low
frequency (0–0.1 Hz; Biswal et al., 1995). RSFC has been
extensively studied within the related brain regions, including
the sensory, motor, sensory association, attention, and task-
negative regions, using functional magnetic resonance imaging
(fMRI; Fox and Raichle, 2007), near-infrared spectroscopy
(NIRS; Li et al., 2010; Lu et al., 2010; Sasai et al., 2011),
electroencephalography (EEG) or magnetoencephalography
(MEG; Aihara et al., 2012; Scholkmann et al., 2014). The RSFC
maps reflect the intrinsic functional architecture of the human
brain (Lu et al., 2010). The correlation of brain activity in the
functional connectivity (FC) maps can provide insights into the
intrinsic functional architecture of the human brain networks
(Biswal et al., 1995; Lu et al., 2010).

NIRS is an optical neuroimaging method that has been
extensively adopted to detect real-time changes of brain activity.
NIRS is a non-invasive method that continuously monitors
brain activity by measuring the absorption of near-infrared
light through the intact skull (Villringer and Dirnagl, 1994).
NIRS has unique features compared with other non-invasive
brain imaging techniques (i.e., fMRI), such as data quality
(i.e., temporal and spatial resolutions) and logistics (i.e., cost,
equipment portability, and patient compatibility; Lu et al., 2010;
Tan et al., 2015).

Studies using NIRS has successfully observed FC in adult and
infant participants (Taga et al., 2000; Sasai et al., 2011; Ferrari
and Quaresima, 2012). The high FC over an extensive range
(0.009–0.1 Hz) has been determined between the homologous
cortical regions of the contralateral hemisphere (i.e., homologous
connectivity) based on the oxy-Hb signals (Sasai et al., 2011).
Also, NIRS has been used to detect changes in the FC response
to cognitive load task and task-free state and these results
demonstrate that NIRS is sensitive to both cognitive load and
state (Derosière et al., 2014; Fishburn et al., 2014).

The NIRS signals obtained from the cortical regions
during the resting state mainly reflect regional hemodynamic
fluctuations that originated from spontaneous cortical activity
(Ferrari and Quaresima, 2012). Sasai et al. (2011) used
multichannel NIRS to investigate frequency dependency of
FC between different regions by decomposing fluctuations of
oxy-Hb and deoxy-Hb signals into various frequency bands.
The NIRS signals comprise different features in the time and
frequency domains (Bajaj et al., 2014). The quantification of
the NIRS information can be estimated using the Hilbert
transform, Fourier transform, or wavelet transform, which are
mathematically equivalent when applied in spectral analyses
(Bruns, 2004). However, the Fourier transform fails in providing
good time and frequency resolutions in low or high frequencies.
In contrast, wavelet transform using the Morlet wavelet provides

an adjustable window, thereby offering an intuitive visualization
of the time–frequency domain and high resolution in both
high and low frequency components (Stefanovska et al., 1999;
Han et al., 2014b). The approach used for NIRS signals
based on wavelet has been used to reveal frequency-specific
FC in elderly subjects with cerebral infarction (CI; Tan
et al., 2015). Characteristic frequencies of cerebral oxy-Hb
signals corresponding to specific origins have been identified
using wavelet analysis (Li et al., 2010; Tan et al., 2015,
2016).

Wavelet phase coherence (WPCO) can reveal a possible
relationship by evaluating the match between the instantaneous
phases of two signals (Bandrivskyy et al., 2004; Bernjak et al.,
2012). WPCO is particularly valuable for low frequency
components, thereby significantly contributing to the
cardiovascular system (Bernjak et al., 2012). Wavelet-based
analysis has been performed to detect relationships among
skin blood flows, temperature, cerebral oxygenation and blood
pressure within certain frequency ranges (Bandrivskyy et al.,
2004; Bernjak et al., 2012; Gao et al., 2015; Tan et al., 2015).

The prefrontal cortex (PFC) plays an important role in
cognitive control (Miller and Cohen, 2001; Derosière et al.,
2014). Sensorimotor cortex located anterior and posterior of
the brain central sulcus, and is crucial in sensation and
motor control (Franceschini et al., 2003). Attention lapses
were demonstrated to happen in the different cortical regions
(Weissman et al., 2006). However, little information is known
about the changes in the vigilance task-related FC maps in
characteristic frequencies ranges. In this study, we hypothesized
that the vigilance task would induce significant change in the
connectivity maps in characteristic frequency bands in the PFC
and sensorimotor areas. Therefore, the objective of this study was
to evaluate the change in vigilance task-related connectivity in
the prefrontal–sensorimotor regions using the WPCO methods.
The present results would provide a new insight into the driving
ability and facilitating the prevention of vigilance task-related
accidents.

MATERIALS AND METHODS

Subjects
A total of 20 young healthy subjects (aged: 24.9 ± 3.3 years)
including 8 males and 12 females were recruited from the
university to participate in this study. The participant should
have a valid driving license and enough sleep time (no less
than 7 h). The participants were not under psychotropic
medication (e.g., stimulants, anti-depressants, and anxiolytics)
and had no history of neurological injury or disease, seizure
disorder, or psychiatric diagnosis. All the participants were
right-handed and had normal or corrected vision. The subjects
reported their physical information and amount of sleep on the
night before the experiment was conducted. Basic information of
the participants, including their age, weight, height, and blood
pressure, was recorded before the experiment. The subjects were
prohibited from having sensitive drinks (i.e., alcohol or caffeine)
12 h prior to the experimental testing. All the participants
provided written informed consent before participating in the
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study. The subjects were instructed to be familiar with the
protocol prior to the experiment. The experimental procedure
was approved by the Human Ethics Committee of Shandong
University and was in accordance with the ethical standards
specified by the Helsinki Declaration of 1975 (revised in
1983).

Task Procedure
Driving is in high-vigilance state, such as hand on the steering
wheel, foot on the pedal and when driving in complex traffic
conditions. A vigilance task was designed to simulate driver
mental load in real-car driving in this study. This type of vigilance
task has been confirmed to be suitable in simulating driving
mental load (Noguchi et al., 1999). Figure 1 shows the protocol
of the vigilance task. Three numbers changed randomly every
second on the screen. The subjects need to immediately step
on the brake pedal using right foot (i.e., within 1 s) when the
three numbers are different odd numbers. The click time was
recorded in real-time and the reaction time (RT) and accuracy
were calculated. If the accuracy was below 80%, which indicates
the participant did not maintain a high attention level, thus, this
data was precluded. The task was performed in a silent room
with a steering wheel, a brake pedal, and a computer screen,
thereby simulating a car-driving environment. The participants
were asked to put their hands on the steering wheel and maintain
high attention.

Before the vigilance task, the subjects were required to keep
the resting state for 10 min. Resting state is defined as a state
when a subject is not performing an explicit task (Biswal, 2012).
It is a natural condition in which there is no overt perceptual
input or behavioral output. During resting state, the participants
were instructed to sit comfortably in an adjustable chair, keep
their eyes closed and stepped on the brake pedal. The subjects
first assumed a sitting position to rest for 10 min. Thereafter, a
20-min task was performed immediately. The task was divided
into two sessions for next analysis: the first 10 min (Task t1)
and the second 10 min (Task t2). The NIRS measurement was
performed during the whole experiment.

NIRS Measurement
The NIRS measurements were performed using a multi-channel
tissue oxygenation monitor (TH200; developed by Tsinghua
University, China) and eight-channel OXYMON MK III
(Artinis Medical Systems B.V., Netherlands). The placement
of the optodes has been described in our previous study
(Tan et al., 2015). The sampling rate was set to 10 Hz. A
sensor bandage was used to secure the sensor by wrapping it
around the forehead to avoid any admission of background
light. All the optodes of OXYMON MK III were inserted
into a template holder. The template, which includes the
optodes on it, was positioned over the sensorimotor cortical
areas based on the international 10/10 system (Oostenveld
and Praamstra, 2001). Figure 2 shows the location of the
source optode (blue dots) and detector optode (green dots)
in the PFC and sensorimotor areas. The Delta [HbO2]
signals were monitored for 30 min in the frontal lobe and

sensorimotor cortical areas. Figure 3A shows an example of
raw time series Delta [HbO2] signals obtained from the NIRS
measurements.

Data Pre-Processing
First, the moving standard deviation (SD) method was used to
remove the abrupt spikes in the raw Delta [HbO2] signals caused
by movements and background light (Scholkmann et al., 2010).
Second, a six-order Butterworth band-pass filter (0.0095–2 Hz)
was used to remove the low variations (i.e., below 0.0095 Hz)
and long-term baseline shifts. Third, the wavelet transform was
calculated in the frequency range of 0.0095–2 Hz. Slow variations
below 0.0095 Hz and uncorrelated components above 2 Hz were
removed.

Wavelet Transform
The wavelet transform is a method that provides appropriate
time and frequency resolutions using adjustable filter band
lengths. This method also provides a complex transformation of
time series signals from the time to time–frequency domains to
detect the linear combinations of the characteristic frequencies.
The wavelet transform has been used in different types of
physiological signals, such as skin blood flow oscillations and
tissue oxyhemoglobin signals, among others (Stefanovska et al.,
1999; Tan et al., 2015). A mother wavelet was used to detect
the frequency content in a certain time interval. The time series
was convolved with a family of generally non-orthogonal basis
functions generated from the mother wavelet (Stefanovska et al.,
1999; Bernjak et al., 2012). The resolutions of time (∆t) and
frequency (∆ω) were connected by ∆t∆ω ≥ c, which was
attained only for a Gaussian function (Kaiser, 2010). The Morlet
wavelet is a Gaussian function that is modulated with a sine wave
with basic frequency ω0. The Morlet wavelet is used because it
provides good localization of events in both time and frequency
domains (Bernjak et al., 2012). The current study can detect
the frequency content of the signal by selecting ω0 = 2π to
isolate the time content. Moreover, the frequency resolution
is well enough in the case of ω0 = 2π (Stefanovska et al.,
1999).

The cerebral NIRS signals, i.e., [HbO2], [dHb] and
[tHb], recorded on a human head are considered to be
composed of neurovascular coupling and systemic activity
components (Scholkmann et al., 2014). The neurovascular
coupling components include evoked neurovascular coupling
by a stimulus/task, or non-evoked (i.e., spontaneous)
neurovascular coupling (Scholkmann et al., 2014). As the
entire cerebrovasculature is extensively innervated by adrenergic
and cholinergic fibers of diverse extrinsic and intrinsic origins
(Willie et al., 2014), a number of different, and possibly
overlapping, physiological mechanisms such as the sympathetic
nervous system, endothelial derived nitric oxide, and vascular
myogenic responses could play some part in neurovascular
coupling (Hamner et al., 2010). Five characteristic frequencies
of skin blood flow signals corresponding to specific origins
have been identified and confirmed in the human cutaneous
circulation using wavelet analysis (Stefanovska et al., 1999;
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FIGURE 1 | Interface of the vigilance task. Three numbers change randomly per second on the screen (A). Subjects need to step on the brake pedal (i.e., click
the “Step” button on the screen within 1 s) when the three numbers are different odd ones (a). Otherwise, the subjects do not need to react (b). (B) Shows the
interface of the software when operating.

Shiogai et al., 2010). Similarly, the oscillations in cerebral
NIRS signals with five characteristic frequencies have also been
demonstrated in our previous studies (Li et al., 2010; Tan et al.,
2015, 2016), which may reflect the neurovascular coupling and
systemic regulation activities. Figure 3B shows an example of
time-averaged wavelet transform amplitude of Delta [HbO2]

signals obtained from the NIRS measurements. The periodic
oscillations of ∆[HbO2] signals in five frequency intervals were
identified: 0.6–2 Hz (I), 0.145–0.6 Hz (II), 0.052–0.145 Hz
(III), 0.021–0.052 Hz (IV), and 0.0095–0.021 Hz (V). The
frequency intervals were determined by the minima at each side
of the peak.
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FIGURE 2 | Locations of source optode (blue dots) and detector optode (green dots). A total of 10 channels were formed in the prefrontal cortex (PFC) and
sensorimotor areas based on the international 10/10 system.

Wavelet Phase Coherence
WPCO identities possible relationships by calculating
instantaneous phase difference of two signals. WPCO has a
value between 0 and 1, which shows the tendency of phase
difference between two signals at a certain frequency to
remain constant (where the value would be close to 1) or
unrelated (close to 0 because of the continuous changes of phase
difference; Bernjak et al., 2012). Several physiological signals are
characterized by high phase correlations and autocorrelation
processes; thus, the surrogate method was adopted to avoid
the influence of autocorrelation and to define the significance
of phase correlation relationships (Sheppard et al., 2012).
Significant coherence was tested by the evaluation of the
coherence of two oscillatory time series, which may have
variable amplitude and frequency. The test was performed
by generating amplitude-adjusted Fourier transform (AAFT)
surrogate signals via shuffling of the phases of the original
time series to create a new time series with the same means,
variances, and autocorrelation functions, which has the same
power spectra as the original sequences. A temporally constant
interference possibly exists between the signals regardless of
their spectral similarities or differences when the coherence
value is equal to the SDs above the mean surrogate coherence
(Bernjak et al., 2012). It is considered statistically significant if
an averaged WPCO value is above the mean surrogate with two
SDs (Figure 3C).

The significant WPCO values were calculated as follows:
Firstly, 100 AAFT surrogate signals (Bernjak et al., 2012; Tan

et al., 2016) were generated to calculate the surrogate WPCO
value. Secondly, the WPCO values and their surrogate signals
were averaged across the subjects. Thirdly, the WPCO values
were averaged across the interval. The average was performed
with trapezoidal integral in each frequency intervals and divided
it by the length of the frequency band. The presence of a
significant WPCO value between two channels was considered
to imply connectivity and marked with a blue line.

FC is usually characterized by a temporal correlation
between two raw time series with low frequency (<0.1 Hz;
Sasai et al., 2011), separable from respiratory (0.1–0.5 Hz)
and cardiovascular (0.6–1.2 Hz) signal frequencies (Cordes
et al., 2001). The systemic signals including respiratory and
cardiovascular are commonly considered as global interference
(Zhang et al., 2007). Therefore, the significantWPCO in intervals
I and II formed the global connectivity (GC) maps and in
intervals III to V formed the FC maps. The GC reflects
the synchronization of cardiac and respiratory activities in the
different cerebral areas, thereby demonstrating its difference
from FC (Tan et al., 2015).

Methodological Considerations
The NIR light must first pass through the superficial tissue
layers (i.e., scalp and skull) before reaching the cortex. Therefore,
these superficial layers may degrade the signal-to-noise ratio
and nonspecific hemodynamic variations, thereby possibly
contaminating the measured signal. The present study uses one
light source and two detectors placed at 30 mm and 40 mm from
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FIGURE 3 | An example of the raw time series Delta [HbO2] signals
obtained from (A) the near-infrared spectroscopy (NIRS)
measurements, (B) time-averaged wavelet transform amplitude, and
(C) wavelet phase coherence (WPCO) of the two Delta [HbO2] signals.
The dashed and chain lines show the mean and two standard deviations (SD)
above the mean, respectively, that is calculated from 100 surrogate signals
obtained from the amplitude-adjusted Fourier transform (AAFT). The vertical
lines indicate the outer limits of the frequency intervals: 0.6–2 Hz (I),
0.145–0.6 Hz (II), 0.052–0.145 Hz (III), 0.021–0.052 Hz (IV), and
0.0095–0.021 Hz (V).

the source to separate extracerebral (i.e., scalp and skull) and
brain hemodynamics signals. Thus, the differences in the optical
density (OD), as detected by the two detectors, were mainly
attributed to the tissue (cortex) absorption.

Moreover, the null hypothesis that the coherence value
is due to a chance relationship preserved over a limited
number of correlated measurements must be considered when
using the coherence to detect a causal relationship between
signals (Sheppard et al., 2012). Low-frequency components are

represented by fewer periods than high-frequency components
in finite-length signals. Thus, limited variation in the phase
difference occurs at low frequencies and results in artificially
increased phase coherence.

Data Analysis
The ∆[HbO2] signals obtained from four channels in the left
sensorimotor areas were averaged as one single channel, which
is the same as in the right sensorimotor areas. Thus, the four
channels, which include two channels in the PFC, resulted in six
channel pairs. The WPCO of each channel pair were calculated.
The data of RT was recorded according to the difference between
the time when the numbers appear and the time when the
participants brake the pedal.

Statistical Analysis
This study adopted the Kolmogorov–Smirnov test and Levene
test to ensure that the values fulfilled the assumption required
by the ANOVA analysis. P values for differences of RT between
two period of the task (task t1 and task t2) were calculated using
t-test for means and SDs. The Wilcoxon rank sum test was used
to determine the significance level of the five frequency intervals
of WPCO at the group level. One-way repeated ANOVA with
interval as an independent variable was used to assess the main
differences of WPCO between the resting and task condition.
Post hoc analyses were performed using Bonferroni correction
for multiple comparisons. A value of p < 0.05 was considered
statistically significant.

RESULTS

Figure 4 shows the changes of mean RT during the task periods.
P values for differences were calculated using t-test formeans and
SDs. The RT shows an increase in Task t2 compared with that in
Task t1. However, this difference was not statistically significant
between the two time periods (p= 0.272).

FIGURE 4 | Changes in mean reaction time (RT) in Task t1 and Task t2.
Vertical bars represent the SD. P values for differences are calculated using
t-test for means and SDs. The RT shows an increase in Task t2 compared
with that in Task t1. However, no significant difference was found between the
two time periods.
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FIGURE 5 | Functional connectivity (FC; frequency intervals III–V) and global connectivity (GC; frequency intervals I and II) maps are revealed by the
significant WPCO in the rest state (A) and task state (Task t2) (B). The presence of a significant WPCO value between two channels was considered to imply
connectivity and marked with a blue line. The five frequency intervals are 0.6–2 Hz (I), 0.145–0.6 Hz (II), 0.052–0.145 Hz (III), 0.021–0.052 Hz (IV), and
0.0095–0.021 Hz (V).

Figure 5 shows the connectivity maps revealed by WPCO in
the five frequency intervals in the resting and Task (t2). The
blue lines in the map indicate significant WPCO values. The
connectivity maps showed compact connectivity (the ratio of
the channels with significant WPCO values to total channels is

higher than 50%) in intervals from I to IV and sparse connectivity
in interval V among different brain regions. However, the map
in interval I showed reduced connectivity between the prefrontal
lobe and sensorimotor areas in Task t2, in which the GC
decreased by 50% compared to resting state.
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One-way repeated ANOVA revealed that the WPCO was
significantly lower in Task t2 than at rest between left prefrontal
and left sensorimotor cortex areas (F = 8.108, p = 0.007;
Figure 6A), left prefrontal and right sensorimotor cortex areas
(F = 10.705, p = 0.002; Figure 6B), right prefrontal and left
sensorimotor cortex areas (F = 7.258, p = 0.01; Figure 6C),
right prefrontal and right sensorimotor cortex areas (F = 9.044,
p= 0.005; Figure 6D).

DISCUSSION

The current study measures the phase coherence between
the Delta [HbO2] signals from different cortical areas during
a sustained attention task using WPCO method. RT is
characterized as a method to define the level of attention
(Derosière et al., 2014). The RT results demonstrated a decreased
attention level in Task t2 compared with that in Task t1.

The cerebral NIRS signals recorded on a human head are
considered to be composed of neurovascular coupling and
systemic activity components (Scholkmann et al., 2014). The
systemic signals including respiratory and cardiovascular are
commonly considered as global interference (Zhang et al., 2007).
Cerebral response and systemic signals observed in functional
near-infrared spectroscopy (fNIRS) and fMRI in the range of low
frequency range between 0.1 Hz and 0.01 Hz are the basis of FC
mapping (Sasai et al., 2011; Kirilina et al., 2012). Wu et al. (2008)
demonstrated that the correlations among cortical networks
are concentrated within ultra-low frequencies (0.01–0.06 Hz),
while connections within limbic networks distribute over a
wider frequency range (0.01–0.14 Hz). In the present study,
the significant WPCO in intervals III–V (0.0095–0.145 Hz),
which might reflect the neurovascular coupling activity, was
defined as FC maps while significant WPCO in intervals I and II
(0.145–2 Hz), which reflects the respiration and cardiac activities
(systemic or global activities), defined as GC.

The wavelet-based coherencemethod decomposes time-series
signals from the time domain into time–frequency domain.
Several characteristic frequency intervals have been identified
using wavelet analysis, which indicates the possible regulatory
mechanisms of the cerebral tissue Delta [HbO2] signals (Li et al.,
2010, 2013). The WPCO indicates the phase synchronization
even at low common power (Grinsted et al., 2004; Bernjak et al.,
2012; Han et al., 2014a; Tan et al., 2015, 2016). The high value
of WPCO indicates a synchronization of Delta [HbO2] signals of
different cortical areas.

This study showed a significant lower GC level in interval I in
Task t2 than that at rest in the four channels pairs. The cardiac
activity serves as a pump that drives blood through the vessels
and the oscillation in interval I reflects this effect (Li et al., 2010;
Shiogai et al., 2010). The level of WPCO in interval I reflects
the synchronous contribution of cardiac activity to the ∆[HbO2]
oscillations in the cerebral regions. As we know, the regulation of
cerebral blood flow (CBF) is an integrative process that involves
the marked influence of cardiovascular function (Willie et al.,
2014). The brain controls the distribution of blood flow and
redirects flow from other circulatory districts to the cerebral
circulation through the humoral and neural influence over the

cardiovascular system. When the activity of a brain region
increases, CBF to that region also increases (Iadecola, 2004). This
mechanism, termed functional hyperemia, controls substrate
delivery and the removal of by-products of metabolism (Iadecola,
2004). In this study, a low WPCO value in interval I indicates a
reduced phase synchronization of cardiac activity in the PFC and
sensorimotor areas. The lower phase synchronization suggests
a reduced coordinated regulation of cardiac activity to cerebral
circulation between PFC and sensorimotor areas and this might
affect substrate delivery and the removal of by-products of
metabolism.

It has been demonstrated that strong FC existed among
spontaneous fluctuations of the different brain regions in the
low frequency during the resting state (Biswal et al., 1995; Zhang
et al., 2010). FC between homologous regions in the contralateral
hemisphere shows high coherence over a wide frequency interval
(0.009–0.1 Hz; Sasai et al., 2011). The FC maps in the present
study show a reduced FC in interval III in task state, particularly
the connectivity between the left PFC and bilateral sensorimotor
regions. The cerebral oscillation in interval III originated locally
from the intrinsic myogenic activity of smooth muscle cells in
the resistance vessels, which is under the autonomic control
and associated with changes in the peripheral sympathetic nerve
activity (Rowley et al., 2007; Shiogai et al., 2010). The present
results indicate that the vigilance task leads to a decreased
synchronization between the PFC and bilateral sensorimotor
regions when subjects transitioned from rest to the task.
Hermundstad et al. (2013) reported that the FC decreased during
attention task but increased during memory task compared
with that at rest. Fishburn et al. (2014) found increased FC
with working memory load (n-back task) between frontal and
parietal regions, between hemispheres for homologous frontal
and parietal regions. This study confirmed that the FC would
decrease in the attention state, and the significant decrease was
only found in the latter half of the task (Task t2). This suggests
that the change in GC at the range of 0.6–2 Hz was not attributed
to the vigilance task per se, but the interaction effect of vigilance
task and time factors. As indicated by the increased RT, the
subject exhibited a low processing efficiency in Task t2. This may
in turn contribute to the reduced GC.

A task-related decrease in synchronization between prefrontal
and bilateral sensorimotor regions may be the result of a task-
related increase of functional lateralization. An unconstrained
resting state may have greater inter-hemispheric connectivity
than a task that places demands on functions that are strongly
lateralized. The lower phase synchronization suggests a reduced
coordination between PFC and sensorimotor areas and this
might impact task performance negatively.

Studies suggested that the cerebral oscillation in frequency IV
might be regulated by neurovascular coupling and neurogenic
activity on the vessel wall (Zhang et al., 2002). The neurogenic
regulation allows the human body to adapt to a new environment
based on internal or external factors. No significant changes
of WPCO in interval IV were shown in this study. However,
significant WPCO was determined more in interval IV between
the bilateral sensorimotor areas than between the PFC and
sensorimotor areas.
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FIGURE 6 | Comparison of the WPCO value in the five frequency intervals between the left prefrontal regions and left sensorimotor area (A), between
the left prefrontal regions and right sensorimotor area (B), between the right prefrontal regions and left sensorimotor area (C), and between the right
prefrontal regions and right sensorimotor area (D). Task t1 and Task t2 refer to the task at the first and second task sessions, respectively. Significant
differences are marked with $(p < 0.05) or $$(p < 0.01) between the rest and task periods (i.e., Task t1 and Task t2, respectively). The five frequency intervals are
0.6–2 Hz (I), 0.145–0.6 Hz (II), 0.052–0.145 Hz (III), 0.021–0.052 Hz (IV), and 0.0095–0.021 Hz (V).

The oscillations in frequency interval V correspond to NO-
related metabolic activity (Stefanovska et al., 1999) and this
metabolic regulation facilitates blood flow to satisfy the need

for cell oxygen (Humeau et al., 2004). Interestingly, the WPCO
in interval V (0.0095–0.021 Hz) between the left PFC and left
sensorimotor areas, as well as the right PFC and left sensorimotor
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areas, exhibited a higher level in Task t1 than in the resting state.
The higher WPCO between the PFC and left sensorimotor areas
suggest an enhanced synchronization of metabolic activity in
response to the vigilance task.

CONCLUSION

This study demonstrated that the GC levels in interval I was
significantly lower in the task state than in the resting state.
Significant difference was found only between resting state and
later half of the task. The results showed that the change in
FC at the range of 0.6–2 Hz was not attributed to the vigilance
task per se, but the interaction effect of vigilance task and time
factors. The findings suggest that the decreased attention level
might be partly attributed to the reduced GC levels between
the left prefrontal region and sensorimotor area. The present

results provide a new insight into the vigilance task-related brain
activity.
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