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Due to an increase in the consumption of food, feed, fuel and to meet global food
security needs for the rapidly growing human population, there is a necessity to
breed high yielding crops that can adapt to the future climate changes, particularly
in developing countries. To solve these global challenges, novel approaches are
required to identify quantitative phenotypes and to explain the genetic basis of
agriculturally important traits. These advances will facilitate the screening of germplasm
with high performance characteristics in resource-limited environments. Recently, plant
phenomics has offered and integrated a suite of new technologies, and we are on
a path to improve the description of complex plant phenotypes. High-throughput
phenotyping platforms have also been developed that capture phenotype data from
plants in a non-destructive manner. In this review, we discuss recent developments
of high-throughput plant phenotyping infrastructure including imaging techniques and
corresponding principles for phenotype data analysis.

Keywords: plant phenotype, high-throughput phenotyping, environmental factor, imaging procedure, data
analysis

Introduction

Global agricultural demand is expanding rapidly, not the least because of a growing world
population but also due to indirect factors which are rendering agricultural production suboptimal,
such as unequal food distribution, competing claims for land use and increased demand for meat
and dairy due to a change in dietary habits in the G5 countries (emerging economics). Agriculture,
in particular, faces tremendous challenges for crop production in the coming decades. According
to a prediction by the United Nations Food and Agriculture Organization1, cereal production must
be doubled before 2050 to satisfy the demand for food by the growing world population, as well as
the increasing competition for crops as sources of bio-energy, fiber, and other industrial purposes.
Additionally, the supply of the major crop rice, a staple food throughout the world, has become
insufficient (Furbank et al., 2009). Besides the many biotic and abiotic factors, predicted changes in
temperature and rainfall patterns as a consequence of climate change may lead to further reduction
in yields (Sticklen, 2007). In order to meet the global challenges represented by the rapidly growing
human population and environmental changes, novel methods are required to improve the quality
and productivity of cereal grains (Tester and Langridge, 2010). For these reasons, there is a demand
for quantitative analyses of plant traits to accelerate the selection of crops that are better adapted to
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resource limited environments and soil conditions, which is also
a major constraint to global food production (Fiorani and Schurr,
2013).

Plant researchers have been trying to propose appropriate
strategies for plants that will be resistant to environmental stress,
insects and diseases, while still possessing high nutrient efficiency
(Zhang, 2007; Ahmed et al., 2013). As a way to improve cereal
crops, a lot of effort has been put into functional genomics studies
using high-throughput genomic tools (Ayliffe and Lagudah, 2004;
Xing and Zhang, 2010; Huang et al., 2013; Pallotta et al., 2014;
Valluru et al., 2014). However, more effort is required to map
genotype-phenotype relationships for the global development of
crop breeding (Tester and Langridge, 2010). Due to the rapid
progression of functional genomics and genetic technologies,
especially in the field of high-throughput sequencing technology
many plant genomes are now available. Their functional analysis
has entered the high-throughput phase, providing available
genetic information as well as enabling genomic analysis (Holtorf
et al., 2002). These sequenced genomes that are supposed to
represent a crop species often only constitute a single genotype.

The outdated phenotyping procedures- a technique dealing
with plant characteristics, in conjunction with available genetic
information, have not allowed a thorough functional analysis
and have not led to a functional map between genotype and
phenotype. A focus on overcoming these shortcomings has led
to an emerging and increasingly important branch of biological
sciences termed “phenomics” (Furbank, 2009; Furbank and
Tester, 2011). Phenomics is a technology that enables high-
throughput phenotyping for crop improvement in response to
present and future demographic and climate scenarios.

To meet the needs of current research, reliable, automatic and
high-throughput phenotyping platforms have been developed
(Hartmann et al., 2011). Multiple studies in phenomics
highlight findings, such as causal genes and background
variation, relationships between traits, plant growth behavior
as well as reproduction in various conditions (Furbank
and Tester, 2011; Yang et al., 2013; Brown et al., 2014).
In this way, the challenges of extracting multi-parametric
phenotypic information along with the genetic variability can
be adequately met. Current phenotyping platforms include a
variety of imaging methodologies to obtain high-throughput
non-destructive phenotype data for quantitative studies of
complex traits, such as growth, tolerance, resistance, architecture,
physiology, yield, and the basic measurement of individual
quantitative parameters that form the basis for more complex
traits (Chen et al., 2014b; Li et al., 2014).

High-throughput automated imaging is now the ideal tool
for phenotyping, and is becoming more advanced and popular,
with the capacity to measure multiple morphological and
physiological traits for an individual plant. There is also a
trade-off in speed versus accuracy when using high-throughput
imaging- manual measurement of several traits on one plant,
if done properly, is currently more accurate than automated
measurement, but much slower. Furthermore, through imaging
techniques, plant phenomics could offer plant scientists a new
way to discover the features and functionality of living plants
via scanning temperature profiles, measuring photosynthetic

rates, gauging growth rates, and getting insight into root
physiology (Finkel, 2009). These advances have also boosted
plant phenotyping to a new level. Therefore, we describe
phenotyping techniques based on various imaging systems.
In addition, we highlight the importance of phenotype data
analysis, analytical techniques, andmethods for plant growth and
developmental studies. We also highlight the major challenges
of high-throughput phenotyping and phenotype data analysis for
promising applications in plant phenomics.

Consequences of Environmental Factors
for Plant Phenotyping: A Big Challenge
for the Imminent Generation

Several studies have suggested that upcoming generations can
be influenced by the environmental factors experienced by the
earlier generation (Dawson et al., 2011). Recent studies indicate
that under rapid climate change phenotypic plasticity rather
than genetic diversity is more likely to play a crucial role
in allowing plants to persist in their environments (Vitasse
et al., 2010; Gratani, 2014). The plant reacts by exhibiting
phenotypic plasticity when the genotype is grown under various
environmental conditions, and this plasticity is particularly big
under extreme conditions such as frost, drought, and salinity.

The factor frost is one of the most important abiotic stresses
for the countries with severe winters, adversely affecting crop
development and yield production (Chinnusamy et al., 2007;
Li et al., 2011). Moreover, drought is a complex stress that
permanently affects the soil, which elicits a wide variety of plant
responses and limits crop yield (Pennisi, 2008; Honsdorf et al.,
2014). This is a worldwide threat for agricultural production,
and crop improvement of drought tolerance is a principal
target. Soil salinity is another major abiotic stress that threatens
sustainability of global crop production (Rengasamy, 2006). For
instance, in Southern Asia and South East Asia about 48 million
ha of potentially useful agricultural land is unusable due to saline
soils (Hairmansis et al., 2014). Also, in those regions fertile land is
often used to expand cities, and so crop production is decreasing
significantly (Hedhly, 2011).

To assess the performance of plant species, it is crucial to
increase the understanding about plant reactions to different
stress environments and in which ways genotypes differ in
such responses (Suter and Widmer, 2013). Moreover, for both
economic and social importance, there is a need to know
about the phenotype response to breed for increased yield and
yield stability in the face of changing climate and environment
(Brown et al., 2014). Hence, to improve crop production, it is
necessary to link suitable phenotyping protocols in all stages,
such as the screening of germplasm collections, mutant libraries,
mapping populations, transgenic lines, breeding materials, and
the design of “omics” and QTLs experiments (Salekdeh et al.,
2009). Scientists are using advanced approaches to explain
genetic mechanisms underlying the major plant phenotypic traits
(Salekdeh et al., 2009). Furthermore, additional exploration and
use of the novel plant development approaches are urgently
required for the imminent challenging decade.
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Importance of Advanced Phenotyping
and Phenomics in Modern Agriculture

With the rapid development of sequencing technologies, whole
genomes of many plant species are now available in online
databases. The sequencing of the genome of the model plant
Arabidopsis represented a landmark in plant genomics (Weigel
and Mott, 2009). There are also many economically important
crop varieties that have since been sequenced and annotated
(Cannon et al., 2009; Weigel and Mott, 2009). However, making
sense of, and exploiting genetic information for genomic analysis
still requires considerable effort.

The selection of high yielding and stress-tolerant plants
is necessary to ensure that crop production keeps pace
with population growth. By establishing the connection
between genotype and phenotype, it is possible to improve
agricultural production to satisfy the requirement of the growing
human population. Therefore, phenotyping is as important
as genotyping in establishing the relationship between genes
and traits. Indeed, phenotyping is rapidly becoming the major
operational bottleneck in limiting the power of genetic analysis
and genomic prediction.

Phenotyping tools in common use are labor-intensive, time-
consuming and costly, and require destruction of plants at
fixed times or at particular phenological stages. The goal of
current plant phenotyping is to raise the accuracy, precision,
and throughput of phenotype inference at all levels of
biological organization, while reducing costs and labor through
mechanization, remote sensing, improving data integration, and
experimental design. However, with technological advances in
plant breeding, genetic progresses through “omics” approaches
are being conducted to meet the ideal phenotype, which will
enable plants to have superior and stable yields under changes in
climate and environment. These large-scale “omics” approaches
are routinely used in various research disciplines of plants to
study cellular processes, their genetic control and interactions
with the environmental changes in molecular plant biology
(Deshmukh et al., 2014).

The available components of “omics” approaches contain
genomics, proteomics, transcriptomics, epigenomics, and
metabolomics (Chen et al., 2014a). Integrated “omics”
approaches have more potential in aiding crop breeding,
leading to a new approach- “phenomics”- involving high-
throughput analysis of physical and biochemical traits of an
organism. The concept of phenomics has altered the strategy
in crop development research, and it is defined as the study
of phenome- the full set of phenotypes of an organism. In
genomics, a sequenced genome is fully characterized, whereas in
phenomics, we cannot characterize the entire phenome due to
its highly dynamic and high-dimensional properties. However,
we can carry out high-throughput and high-dimensional
phenotyping of a set of particular traits. In plant phenotyping,
throughput refers to the number of individual units at particular
organizational levels within plants, and dimensionality refers
to the diversity of phenotypic traits measured at various spatial
and temporal regulations and in different categories, such as
plant structure, physiology, and performance. Dimensionality

also includes the number of genotypes and the diversity of
environmental conditions and treatments taken into account
upon phenotyping (Dhondt et al., 2013).

Genotype-phenotype mapping, along with the significant
rate of trait discovery, has enormously improved phenotypic
prediction (Topp et al., 2013). Integrated data from phenotype
and genome-wide approaches provide models of the biological
processes over time and across various scales. Quantitative
trait loci (QTL) mapping and genome-wide association studies
(GWAS) have been a useful tool for genetic analysis, giving
valuable information about genomes in various plant studies.
They have been broadly adopted for gene mapping (Yin et al.,
2004; Atwell et al., 2010; Huang et al., 2010; Wurschum
et al., 2011; Ranc et al., 2012; Wang et al., 2012; Topp
et al., 2013). Comprehensive phenome- wide data enable
plant similarity or dissimilarity to be studied across the
whole population. Consequently, phenomics studies increasingly
characterize all possible phenotypes, establishing the structural,
physiological, and performance related traits (biomass/ha, seed
yield) under different environmental conditions for a given
genotype.

Mechanism of Imaging Technologies:
Meeting Challenges and Needs in Plant
Phenomics

Imaging and image processing techniques with light sources from
visible to near infrared spectrum provide non-destructive plant
phenotype image datasets. These approaches have accelerated the
precision and speed of real-time, high-throughput, and high-
dimensional phenotype data for modeling and prediction of
plant growth and structural development (Tardieu and Tuberosa,
2010; Golzarian et al., 2011). The application of combined
image based novel technologies in phenomics and dedicated
high-throughput dynamic controlled environment facilities have
resulted in increased performance, and provide a new prospect
for improving plant phenotype.

Materially, plant phenotyping is not a new research for
recording quantitative and qualitative plant traits. It has been
the backbone of most studies in ecology, agronomy, and
eco-physiology to explore plant functional diversity, compare
the performance of species, or study plant responses to the
environment (Granier and Vile, 2014). Phenotyping has been
progressing from the manual, non-destructive or destructive,
study of a few different genotypes, which can only be done for
a few replications. Non-destructive phenotyping is performed
for intact plants; while destructive phenotyping is an invasive
measurement where the plants can no longer be used for further
experiments. The developmental course (kinetics) of the same
organ cannot be monitored destructively. Basically, destructive
measurements are more complicated, time consuming, and
demand high labor costs. However, when measurements are
carried out manually, non-destructive phenotyping can be even
more time consuming and labor intensive.

The advanced imaging-based phenotyping procedure is ideal
for combining controlled irrigation and phenotype protocols
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(Berger et al., 2010). They enable studies to establish potential
heritable traits and understanding the complex regulatory
networks underlying adaptive phenotypic variation on a
population with fully sequenced genome in high-throughput
quantitative studies (Cooper et al., 2009; Munns et al., 2010;
Furbank and Tester, 2011). Imaging-based high-throughput
plant phenotyping platform has led to popular tools for plant
biology, underpinning the field of plant phenomics (Paproki
et al., 2012). Various imaging methodologies, such as visible
light imaging, infrared imaging, fluorescence imaging, imaging
spectroscopy, etc., are being used to collect multi-level phenotype
data from macroscopic to molecular scale over a few seconds to
weeks (Sozzani et al., 2014).

Since imaging methodologies are the key technologies in
plant phenomics with increasing importance, the main goal is to
measure quantitative phenotype through the interaction between
plants and light, such as reflected photons, absorbed photons,
or transmitted photons. The best phenotyping practice also
requires standardized experimental protocols, including imaging
sensor calibration and a precise definition of raw data processing
routines.

Available Imaging Devices for
High-Throughput Phenotyping
Visible Light Imaging
In plant science, visible light imaging has been broadly adopted
due to its low cost and simplicity. Using this imaging system, with
a similar wavelength (ranging from 400 to 700 nm) perception
as the human eye, two-dimensional (2D) images can be used to
analyze numerous phenotypic characteristics and to record the
changes in plant’s biomass (Tackenberg, 2007; Bylesjo et al., 2008;
Duan et al., 2011; Golzarian et al., 2011). To spread the spatial and
volumetric information of phenotype images, three-dimensional
(3D) imaging approaches have been developed, which could
provide more accurate estimations of the morphological features
(Clark et al., 2011; Paproki et al., 2012).

Therefore, during the integration of 2D and 3D image
analysis, visible light imaging techniques are popular components
for the integrated plant phenotyping platform (Yang et al.,
2013). It represents raw data of a phenotype image in spatial
matrices based on the intensity values relating to photon fluxes
(red∼600 nm, green∼550 nm, blue∼450 nm) of the visible light
spectral band. Although, it is the most trivial method in plant
phenotyping, the drawback is that visible images only provide
physiological information, and the common problem is created
by the overlapping adjacent leaves and soil background during
segmentation process (Fiorani and Schurr, 2013; Li et al., 2014).

Infrared Imaging
Infrared imaging technologies are used for screening objects of
internal molecular movements which emit infrared radiation
(Kastberger and Stachl, 2003). Two popular infrared imaging
devices- a near-infrared (NIR) and a far-infrared (Far-IR, also
called IR thermal)- can be used to screen radiation images.
Many studies have combined visible and NIR imaging to detect
vegetative indices due to the fact that healthy plants reflect
a large proportion of NIR light (800–1400 nm), whereas soil

reflects little NIR light. Moreover, soil and unhealthy plants
reflect considerably more red light as compared with healthy
plants (Yang et al., 2013).

The major advantage of visible light and NIR imaging are
that they can assess plant health status response to different
stress conditions. Visible and NIR digital imaging techniques are
more suitable for screeningmulti-traits and nitrogen status under
stress condition (Rajendran et al., 2009). For drought resistance,
IR thermal imaging can be used to visualize temperature
differences. A thermal infrared imaging technique has been
introduced in both, laboratories and fields, and can characterize
mutant screens, drought tolerance, salinity tolerance, osmotic
tolerance, tissue tolerance, and Na+ exclusion. It can be
used to compare chlorophyll pigments, leaf color and canopy
temperature (Merlot et al., 2002; Jones et al., 2009; Munns et al.,
2010). Infrared imaging has improved drought resistance and/or
salinity resistance research by quantifying the osmotic tolerance
in response to drought or salinity stress (Munns et al., 2010).

The benefits of the infrared imaging technologies are that they
provide spatial resolution and more precise measurement under
changing environmental conditions, and in field trials a large
number of plots can be imaged at the same time (Li et al., 2014).
One limitation of thermal imaging in the field is that it needs to
include correction of soil background, wind impact and effects of
transient cloudiness (Jones et al., 2009;Munns et al., 2010; Fiorani
and Schurr, 2013).

Fluorescence Imaging
Fluorescence imaging is used from laboratory to field. This
imaging technique describes the information about the plant
metabolic status that can be obtained by the artificial excitation of
the plant photo systems and observation of the relevant responses
(Li et al., 2014). It is based on charge-couple device (CCD)
cameras with sensitive fluorescence signals, where the signals
occur by illuminating samples with visible or ultraviolet light.
There are two types of fluorescence (red to far red region and
the blue to green region) generated by the ultraviolet illumination
ranging from 340 to 360 nm, and is expressed as a principle
of underlying multi color fluorescence imaging. This technique
offers the simultaneous capture of fluorescence emission, and
provides a quick way to probe photosystem II status in vivo
(Schreiber, 1986; Daley et al., 1989; Maxwell and Johnson, 2000;
Baker, 2008).

There have been several uses of fluorescence imaging proposed
for early detection of stress responses to biotic and abiotic factors
before a decline in growth can be measured (Baker, 2008; Jansen
et al., 2009; Konishi et al., 2009; Munns et al., 2010; De Smet et al.,
2012; Chen et al., 2014b). To screen large mutant collections and
to characterize mutants with different photosynthetic pigment
composition, portable fluorometers, and fluorescence cameras
are widely used (Niyogi et al., 1998; Lu et al., 2011). Furthermore,
fluorescence imaging technique provides powerful diagnostic
tool to resolve the heterogeneity problem of leaf photosynthetic
performance, and is used in many areas of plant physiology
(Baker, 2008). Most of the fluorescence imaging applications are
limited to the seedling level or the single leaves of model crop.
However, it is necessary to develop more robust software and
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standard procedures for the fluorescence image phenotyping,
processing, and data analysis.

Spectroscopy Imaging
The use of spectroscopy imaging is very promising for plant
phenotyping. It measures the interaction of solar radiation with
plants, and originated from remote sensing of vegetation research
(Kokaly et al., 2009; Li et al., 2014). Spectral measurements of the
electromagnetic spectra can be obtained through multispectral or
hyperspectral cameras that are capable of scanning wavebands
of interest at high regulation (Fiorani and Schurr, 2013).
Multispectral and hyperspectral measurements of the absorption
band in the infrared range are used to describe various water
statuses that estimate the canopy water content. The best usable
examples of spectral measurements is the derivation of a number
of reflectance vegetation indices from simple differences between
two wavelength reflectance values to normalized reflectance
values. The reflected spectra carry the information about plant
architecture and health condition, which can be used to evaluate
growth characteristics.

Beyond visible and infrared imaging methods, hyperspectral
imaging method can divide images into bands, thus providing
a huge portion of the electromagnetic spectrum of the images
(Yang et al., 2013). The high spectral resolution of hyperspectral
technologies make it an essential method for detecting the
severity of damage caused by insects (Huang et al., 2012;
Yang et al., 2013). The application of spectroscopy imaging is
well-suited for field phenotyping when combined with aerial
platforms, but the cost of the spectral cameras and its related
infrastrucres are relatively expensive.

Structural Tomography and Other Imaging
In recent times, modern optical 3D structural tomography and
functional imaging techniques have been developed and extended
to improve living plant visualization. Functional imaging such
as chlorophyll fluorescence imaging and PET (Positron emission
tomograpy) are used for finding photosynthetic performance,
stress, and focuses on physiological changes (Baker, 2008). The
combination of structural tomography and functional imaging
can screen more precise physiological activity of plant. Another
novel imaging technique, MRI (magnetic resonance imaging) is
used for imaging of internal physiological processes occurring
in vivo (Borisjuk et al., 2012). Screening the dynamic changes
in plant functions and structures by the combining technique of
MRI and PET provides a novel functional and structural imaging
procedure (Jahnke et al., 2009).

The FRET (Förster resonance energy transfer) sensor is
another of the non-invasive advanced imaging technologies
for high-resolution measurement of small molecules in living
tissue based on genetically encoded, ratiometric fluorescent
sensors that bind to and report on levels of the target molecule
(Jones et al., 2014). It is used for molecular phenotyping,
and a single FRET sensor can lead to discoveries of multiple
pathways and processes involved in the dynamics of the sensor
target. The cellular/subcellular location of interest has to be
properly characterized and expressed by a FRET sensor, and
measurements can be easily acquired with high temporal and

spatial resolution (Okumoto et al., 2012). As the application
example, FRET has been used in plant tissue to study calcium and
zinc dynamics with subcellular spatial and real-time temporal
resolution, the characterization of sugar transport in roots of
insect seedlings, the identification of novel sugar transporters
(Jones et al., 2014). To address many basic questions of
plant growth and development, FRET could be an outstanding
technology for advanced phenotyping.

Each of these digital photonics-based systems acquire
phenotype image data from plant laboratories, greenhouse or
fields, and monitors these with special imaging sensor via
a remote system. Table 1 illustrates a summary of optical
photonics-based key techniques and applications in advanced
phenotyping.

Experiment Setup and Large-Scale Phenotype
Data Collection
High-throughput experimental samples are prepared in a control
phenotyping station by selecting different genotypes under
normal and various treatments and conditions (Figure 1). The
commencement and intensity of those conditions (biotic or
abiotic) can be defined and controlled during the experiment.
Since acquiring data must be analyzed with respect to the
micro-climate and environmental conditions, it is very difficult
to monitor and combine experimental materials in a dynamic
process (Sadok et al., 2007; Parent et al., 2010). Advances
in automation of plant phenotype, robotic- and sensor-based
monitoring have enabled phenotype data acquisition, performed
at regular time intervals throughout the life cycle of the
plant in an automated manner for a given experiment. High-
throughput phenotyping facilities of these type of experiments
are commercially available, but many laboratories are now
developing their own systems (Granier et al., 2006; Walter et al.,
2007; Jansen et al., 2009; Skirycz et al., 2011; Tisne et al., 2013;
Yang et al., 2014). Currently, various research institutes, e.g.,
IPK Gatersleben, Germany2; Crop Design, Gent, Belgium3; The
Plant Accelerator, Adelaide, Australia4; PhenoArch, Montpellier,
France5 are using these facilities. Another more advanced
and dominant phenotyping platform developed by LemnaTec6
provides many software and tools for plant phenotype screening
and image analysis.

In the modern phenotyping platforms, a fully automated
control house enables plants to be delivered via conveyor belts
to watering, weighing, and imaging stations, and several 100
individual plants can be imaged per day automatically. Such
imaging platforms are designed by either moving plants to
a stationary camera or robotically moving the camera to a
stationary plant. After designing suitable experiments, high-
throughput phenotyping platforms non-destructively capture
multi-categories [infrared (IR), fluorescence (FLUO), visible
(VIS) spectra, etc.] plant images for dissecting the phenotypic

2www.ipk-gatersleben.de
3www.cropdesign.com
4www.plantphenomics.org.au
5www.phenome-fppn.fr
6www.lemnatec.com
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TABLE 1 | Key of imaging techniques and applications purpose.

Imaging system Description Phenotypic trait parameters Application purpose

Visible light The visible light imaging technique is
camera sensitive and produces gray or
color scale images.

Image-based projected biomass,
dynamic growth, color, shape
descriptors, root architecture, seed
morphology, panicle traits, etc.

This imaging technique can be used to assess plant growth
status, biomass accumulation, nutritional status, or health
status (Golzarian et al., 2011; Camargo et al., 2014; Yang
et al., 2014).

Thermal infrared Thermal infrared imaging sensor includes
near-infrared, multispectral line scanning
cameras. This imaging technique produces
time series or single-time-point analysis
based data.

Leaf area index, shoot or leaf
temperature, surface temperature,
insect infestation of grain, leaf and
canopy water status, composition
parameters for seeds, disease
severity, etc.

This imaging technique used to characterize the plant
temperature responses to the water status and transpiration
rate and detect difference in stomatal conductance of the
plant for adoption abiotic stress (Chen et al., 2014b).

Fluorescence Fluorescence imaging technique detects
chlorophyll and other fluorophores signals
using fluorescence cameras.

Photosynthetic performance,
quantum yield, non-photochemical
quenching, leaf disease severity
assessments, leaf health status,
etc.

It provides a fleet way to probe photosystem status in vivo,
diagnosing early stress responses before decline growth
(Fiorani and Schurr, 2013), useful for disease detection in
genetic disease resistance (Chen et al., 2014b), mapping
QTLs for growth-related traits (El-Lithy et al., 2004),
characterizing mutants with numerous photosynthetic
pigment compositions (Niyogi et al., 1998), etc.

Hyperspectral This imaging technique use hyper spectral,
thermal cameras produced continuous, or
discrete spectra raw data.

Water content, leaf growth and
health status, panicle health status,
grain quality, pigment composition,
etc.

This imaging technique used to measure spatiotemporal
growth patterns during the experiment and provide insight
into the diversity of growth dynamics (Chen et al., 2014b).

CT It is based on X-ray digital
radiography/computed tomography.

Grain quality, tiller, morphometric
parameters, water content, flow
velocity, etc.

This imaging is widely used to asses tissue density (Aerts
et al., 2014), measuring tiller numbers (Yang et al., 2014),
grain quality, etc.

PET Positron emission tomography. Water transport, flow velocity, etc. This is used to visualize distribution and transportation of
radionuclide-labeled tracers involved in metabolism-related
activities (Jahnke et al., 2009; Granier and Vile, 2014).

MRI Magnetic resonance imaging. Water content, morphometric
parameters, etc.

The purpose of this imaging technique is to visualize
metabolites, provides structural information, and monitor
internal physiological processes occurring in vivo (Borisjuk
et al., 2012; Granier and Vile, 2014).

components (Brien et al., 2013; Dhondt et al., 2013; Klukas et al.,
2014). In the case ofArabidopsis, the top view of the rosette image
is sufficient for measuring rosette area (Walter et al., 2007; Skirycz
et al., 2011; Tisne et al., 2013). But monocot plant morphology
is complicated and the top view image alone is insufficient for
morphological operation. Thus, a side view image is also required
(Sozzani et al., 2014). Automated phenotyping process acquires
large numbers of side-view and top-view images from different
angles in regular time intervals and stores them in an image data
management server (Figure 1).

On the other hand, image processing is one of the major
tasks for acquiring accurate traits or features from these images
(Hartmann et al., 2011; De Vylder et al., 2012; Klukas et al., 2014).
Many general image processing software and tools are available
for phenotype image processing and morphological operation
of plants (Lobet et al., 2013). We illustrated a summary of
phenotyping platforms and open source plant image processing
and analysis software and tools in Tables 2 and 3, respectively.

Principles of Phenotype Data for
Forecasting Plant Performance

High-throughput phenotyping provides multi-categorical
phenotypic traits, and corresponding trait analysis is essential

for the understanding of (a) stress resistance, (b) insect and
disease resistance and for the (c) yield and quality improvement
(Yang et al., 2013). The most often investigated phenotypic
traits include leaf area index, biomass, canopy temperature,
leaf number, seed yield, water content, leaf expansion rate, leaf
shape, rate of photosynthesis, number of layers, tissue thickness,
mesophyll conductance, cell size, cell division rate, and cell
turgor (Tackenberg, 2007; Duan et al., 2011; Golzarian et al.,
2011; Dhondt et al., 2013). The phenotype data attained by the
imaging system can afford high-throughput phenotypic traits
based on image color, shape, and texture (Aerts et al., 2014;
Klukas et al., 2014). Color-related trait categories depend on
visible/RGB cameras used for multiple phenotype images and
expressed with the color intensity/pixels, and other traits depend
on different geometrical and mathematical measurements, e.g.,
area, compactness, circumference, roundness, plant height,
plant width, plant length (Klukas et al., 2014). These traits
help to determine the similarity/dissimilarity among the
different genotypes and treatments, different stress status and
its effects on the phenotype (Chen et al., 2014b). Phenotypic
features also depend on its corresponding camera being used
in the phenotype imaging system, for example, fluorescence-
related features, tomography-related (CT) features (Konishi
et al., 2009; Aerts et al., 2014; Klukas et al., 2014; Yang et al.,
2014).
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FIGURE 1 | High-throughput plant phenotyping and data accumulation.
In the phenotyping platforms for high-throughput phenotype imaging, plants are
cultured under controlled environmental conditions in robotic control house
systems for sample preparation. Each plant with a special treatment such as
stress and/or mutant treatment is located in a container with controlled nutrient
supply which is transported by the conveyor belt to the required position. The
platform automatically screens germplasm resources and populations, and

captures multiple top view/side view images. After image acquisition, the data
should be transferred and managed by the data management system with
recording environmental data and genotype information. Then image processing
methods are used to calculate phenotypic traits/features from the image data.
Data mining methods are used to acquire the values of the extracted features,
or to statistically model and simulate the phenotype data in order to produce
phenotype-genotype models in different environmental scenarios.

Advanced mathematical and statistical methods are
required to predict plant development performance using
these multiple traits. For a better interpretation of results, the
integration of experimental metadata within data schemas for
the ensured phenotype, genomic data, and environmental
data are also required. A variety of methods and tools
are widely used for phenotype data analysis. A choice of
statistical univariate and multivariate methods are used
for hypothesis testing and measuring interrelationships
among the traits. Path analysis is used to control for
covariations between variables and test hypothetical causal
graphs for an interpretative approach (Granier and Vile,
2014). Computer-vision based measurements and assorted
data mining techniques are a more useful infrastructure

for phenotype data analysis. The uses of such analytical
approaches select robust genotype and describe variation of
plant phenotypic characteristics, which have implications
for crop development and food security (Camargo et al.,
2014).

Phenotype data analysis and modeling offer a meaningful
structure of plant studies. The analysis results of phenotype data
explain different relationships of traits-traits, traits-environment,
phenotypic variations as well as important features for plant
response, and phenotype–genotype associations. Here, we
described high-throughput phenotype data analysis principles
and methods (Figure 2) which can be of help to plant researchers
to analyze large-scale phenotype image data for studying plant
growth and development.
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TABLE 2 | Image based automated or semi-automated high-throughput plant phenotyping platforms.

Name URL Description

PHENOPSIS http://bioweb.supagro.inra.fr/phenopsis Represents specific setups for automated phenotyping, allowing a culture of approximately
200–500 Arabidopsis plants in individual pots with automatic watering and imaging system
(Granier et al., 2006).

WIWAM http://wiwam.be Like PHENOPSIS, WIWAM is an automated imaging platform simultaneously handling a large
number of plants and measuring a variety of plant growth parameters with automatic watering
and imaging system at regular time intervals (Skirycz et al., 2011).

PHENOSCOPE http://www.observatoirevegetal.inra.fr/
observatoirevegetal_eng/Scientific-platforms/
Phenoscope

This automated phenotyping platform is an integrated device, allowing simultaneous culture of
735 individual Arabidopsis plants and high-throughput acquisition, storage and analysis of
quality phenotypes (Tisne et al., 2013).

GROWSCREEN http://www.fz-juelich.de/ibg/ibg-2/EN/methods_
jppc/GROWSCREEN

This platform was developed to study plant leaf growth fluorescence and root architecture from
seedling under control condition for visual phenotyping of large plant populations (Walter et al.,
2007; Jansen et al., 2009).

TraitMill http://www.cropdesign.com High-throughput gene engineering platform developed by Crop Design. This is a highly versatile
tool that enables large-scale transgenesis and automated high resolution phenotypic plant
evolution (Reuzeau, 2007).

PHENODYN http://bioweb.supagro.inra.fr/phenodyn This platform monitors plant growth and transpiration rate with stressful environmental
condition.

Plant Scan http://www.csiro.au/Outcomes/
FoodandAgriculture/HRPPC/PlatScan.aspx

This is an automated high-resolution phenomic center which provides non-invasive analysis of
plant structure, morphology and function by utilizing cutting edge information technology
including high resolution cameras and 3D reconstruction software.

LemnaTec http://www.lemnatec.com Visualize and analysis 2D/3D non-destructive high-throughput imaging, monitor plant growth
and behavior under entirely controlled conditions in a robotic greenhouse system.

QubitPhenomics http://qubitphenomics.com Integrated conveyor and robotic high-throughput plant imaging system for the laboratory,
growth chamber and field phenotype screening and phenotyping.

HRPF N/A High-throughput rice phenotyping facility (HRPF) designed with two main sections: rice
automatic phenotyping (RAP) and yield trait scorer (YTS). This high-throughput platform was
developed for automatic screening of rice germplasm resources and populations throughout
the growth period and after harvest (Yang et al., 2014).

TABLE 3 | Open source high-throughput plant phenotype image processing software or tools.

Name URL Description

ImageJ http://imagej.nih.gov/ij A popular, powerful, and extensible application used to process and measure a
large quantity of phenotypic traits captured by images.

IAP http://iap.ipk-gatersleben.de Large-scale plant phenotyping image analysis software for different species based
on real-time imaging data obtained from various spectra (Klukas et al., 2014).

HTPheno http://htpheno.ipk-gatersleben.de A high-throughput (top and side view) plant phenotyping image analysis pipeline
implemented as a plug-in for ImageJ (Hartmann et al., 2011).

Rosette tracker http://telin.ugent.be/∼jdvylder/RosetteTracker Time-lapse visual, chlorophyll fluorescence, or thermal sequence of image analysis
tool for quantification genotype effects of Arabidopsis thaliana, implemented as a
plug-in for ImageJ (De Vylder et al., 2012).

PANorama http://ricediversity.org Flexible software which simultaneously measures multiple architectural and
branching phenotypes from images (Crowell et al., 2014).

HPGA https://www.msu.edu/∼jincn/HPGA A high-throughput phenotyping tool for plant growth modeling and functional
analysis (Tessmer et al., 2013).

Phenophyte https://vphenodbs.rnet.missouri.edu/PhenoPhyte/index.php A web-based application which measures area-related phenotypic traits from
imagery and multiple experimental setup (Green et al., 2012).

SmartGrain http://www.nias.affrc.go.jp/qtl/Smart Grain Image analysis software for high-throughput phenotyping measurements of seed
shape (Tanabata et al., 2012).

HYPOTrac http://phytomorph.wisc.edu/HYPOTrace/download/index.htm Automated hypocotyl growth and shape measuring software from grayscale images
of Arabidopsis seedlings (Wang et al., 2009).

LAMINA http://lamina.sourceforge.net Automated leaves image analysis tool which measures a variety of characteristics
related to leaf shape and size (Bylesjo et al., 2008).

Leaf Analyzer http://leafanalyser.openillusionist.org.uk/doku.php An automated software for rapid and large-scale analyses of leaf shape variation
(Weight et al., 2008).

Leaf Processor http://gips.group.shef.ac.uk/resources.html An application that semi-automatically stores a number of single-metric parameters
and PCA analysis for leaf shape and size including contour bending energy
(Backhaus et al., 2010).
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FIGURE 2 | A general workflow for the high-throughput image data analysis. The workflow describes image data processing steps for the extraction of the
quantitative traits (left) and the analytical methodology (right).

High-Throughput Phenotype Data Analysis
Image data is pre-processed for determining quantitative or
qualitative values of phenotypic traits of a plant/genotype in a
given environment. Again, post-processing of phenotypic traits
is also required for prediction of plant behavior using statistical
analysis. Different statistical methods and algorithms are used for
analyzing the process phenotype image data set, so as to move
from the raw data to final results.

Hypothesis
Before starting the image data analysis, a proper hypothesis is
required that corresponds to the expectation of the experiment
within an appropriate statistical framework (Vasseur et al., 2012;
Vile et al., 2012; Aerts et al., 2014).

Data Quality
The selection of an inadequate part of a trait often affects
the data quality in a negative manner. Noisy images highly
affect the dataset and could bias the results. Data normality
tests and outlier detection is necessary to improve the data
quality. Among the many data normalization and outlier
test methods, Shapiro normality test with appropriate log-
transformed and Bonferroni outlier tests are commonly used
(Camargo et al., 2014). Grubb’s test is another outlier detection
method that performs better for any single outlier test existing
in a particular sample (Grubbs, 1950). These methods provide

a powerful statistic for the data normality test and control
outliers in the data set. Also, phenotype data quality is
affected by throughput and image resolution (Dhondt et al.,
2013).

Data Dimension
Phenotypic traits which are extracted from the high-throughput
image dataset can be high-dimensional and be highly correlated.
Therefore, analyzing this high-dimensional dataset can be
difficult due to the limitations of current analytical techniques.
To overcome these difficulties the data size can be reduced with
as little information loss as possible. Here, we mention two
statistical methods that are popular for dimensionality reduction
and projection of the high-dimensional data set.

(a) PCA model (principle component analysis model): PCA
identifies new features in a dataset, the principle components,
which are linear combinations of the original features.
Suppose thatXnxp is an adjusted phenotype data matrix. Thus
the basic equation of PCA is- in matrix notation- given by

Y = WTX

where Y is a matrix of new features, called PCA, constructed
as a weighted average of the original traits/features and W is
a matrix of coefficients determined by PCA.
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(b) FA model (factor analysis model): FA is another data
reduction tool which removes redundancy or duplication
from a set of correlated phenotypic traits. Under some
assumption basic model of FA expressed as:

X = λF + e

where X represents observed features, F represents latent
feature, e is the measurement error and λ is the loading value
for X.

These statistical methods can easily select important traits and
reduce the data size to explore the relationships between traits,
their variations, relationships with the environmental factors, and
also shows a feature’s contribution in a specific study (Vile et al.,
2012).

Data analysis by thesemethods can be described as phenotypic
variation in different conditions and enable to distinguish
plants of different agronomic groups (Chen et al., 2014b).
One can compute the intra-class correlation coefficients for the
reliable analysis and inference to evaluate the stability of the
selected features obtained from these methods (Aerts et al.,
2014).

Model Selection
An appropriate model is needed for phenotypic variance
and biomass prediction. Linear mixed-effect models can be
used for phenotypic variance decomposition. Phenotypic
variance decomposition results show the effect of genetic
and environmental sources and their interaction for the
phenotypic traits. By the likelihood estimation of mixed-
effect models, it is possible to test the effect’s significance
with respect to phenotypic variance (Joosen et al., 2013;
Chen et al., 2014b). However, linear mixed-effect modeling
approaches are more appropriate alternatives when dealing
with time series data, in case observation variances are unequal
or there is a degree of correlation between measurements
(Camargo et al., 2014). Linear models and/or generalized linear
models are widely used for biomass prediction (Golzarian
et al., 2011; Camargo et al., 2014). To select the effective
predictors for biomass prediction Akaike’s information criteria
provides all relevant regression models (Yang et al., 2014).
During the selection, it is necessary to check the heterogeneity
and to solve the auto-correlation problem for phenotype
data. Since, phenotype datasets may contain redundant
and reproducible features and therefore, stepwise variable
selection methods can be used to select an optimal set of
explanatory variables for an appropriate statistical model by
removing the multi-colinearity (the correlation among the
independent variables of a regression model) problem among
the features. Such a model provides more accurate biomass
information.

Relationship Measurement
A bivariate relationship study is a powerful tool that describes
numerous relationships among the traits-traits and traits-
environment for a given genotype. This study provides the

relationships between phenotypic traits, and its treatments, or
other biotic and abiotic effects on the phenotype (Vasseur
et al., 2012). The bivariate relationship study includes correlation
of traits, allometric relationships, and QTLs relationship to
demonstrate strong genetic and phenotypic relations of the same
categorical traits (Chen et al., 2014b; Granier and Vile, 2014).
These are also useful for measuring the genetic overlap and
phenotypic similarity of different traits. A phylogenetic method
within the data analysis can be used to infer the causation
relationship history of both a gene and its corresponding
phenotype (Kaplan and Pigliucci, 2001; Fiorani and Schurr,
2013).

Networking
Network analysis is also essential to find the relationships
among the significant traits. To describe the network relations
among the phenotypic traits, structural equation models,
and Bayesian networks are used for the causal relationship
and correlative network analyses, respectively. The objective
of structural equation modeling is to quantify the relative
contributions of correlated causal sources of variance once
a certain network of interconnected features with biological
significance has been accepted (Hershberger, 2001; Tisne
et al., 2008). The Bayesian networks can be used to visualize
genetic and/or phenotypic structure using the trait–trait genetic
correlation and/or trait–trait phenotypic correlation (Chen et al.,
2014b).

Growth Modeling
Another major part of phenotype data analysis is plant modeling
(Kaitaniemi et al., 1999; Fournier and Andrieu, 2000; Buck-
Sorlin, 2002; Evers et al., 2007; Buck-Sorlin et al., 2008; Xu
et al., 2011). Visual 3D plant modeling and simulation provide
a deeper understanding of plant growth and its relationship
with the environment. Plant growth modeling helps us to
test hypotheses and carry out virtual experiments concerning
plant growth processes (Fourcaud et al., 2008). Functional–
structural (FS) plant growth models are extremely important for
integrating biological processes with environmental conditions in
3D virtual plants (Vos et al., 2010). Nowadays for more advanced
research in plant sciences, time-lapse imaging-based phenotype
data provides an opportunity to fit models and predict plant
growth under numerous conditions. To observe the dynamic
behavior of plant growth, many models have been established for
different patterns of growth (Paine et al., 2012). It is well known
that among the available models a sigmoid model (logistic,
Gompertz) performs better for interpreting individual plant
growth (Damgaard and Weiner, 2008; Karadavut et al., 2010;
Chen et al., 2014b). Other population growth models, such as
linear, exponential, power law, and monomolecular are also used
for plant growth and pathological studies. In plant pathology,
these models are often used for studying disease progression over
time.

Classification
Classification methods are useful for biological image analysis
and have simplified numerous tasks (Kamber et al., 1995;
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Warfield et al., 2000; Cocosco et al., 2003; Li and Chen,
2009). For example, there is a need to control diseases and
numerous stresses to maintain food quality worldwide and
to reduce food-borne illness originated from infected plants
(Schikora et al., 2008). A wide variety of plant stress and diseases
caused by the environmental factors (such as light quantity,
light quality, CO2, nutrients, air humidity, water, temperature,
drought, salinity) or other organisms (such as fungi, bacteria,
and viruses) have high impact to decrease grain production
and grain quality. Thus, it is important to detect and classify
the plant infestations (Granier and Vile, 2014). In most cases
symptoms of stress and disease in plants result is the change
of the plant color. Therefore, classification approaches can be
used to classify the color-related traits obtained from the plant
phenotype image pixels under the biotic and abiotic conditions
(Schikora et al., 2012; Chen et al., 2014b). There are many
popular classification algorithms that are very helpful for plant
research, such as SVM (support vector machine), Bayesian
classifier, neural network (Schikora et al., 2010, 2012; Chen et al.,
2014b).

Similarity/Dissimilarity Measurement
Clustering approaches provide important information regarding
the similarity/dissimilarity among the significant features. For
phenotype data analysis, these can be used to measure plant
stress sensitivity between control and stress plants, phenotypic
trait similarity of different genotypes, identifying unknown
groups of plant species, and for supporting the idea of the
phenotypic profiles corresponding to the similar genotype (Chen
et al., 2014b). K-means clustering, hierarchical clustering, SOM
(self-organizing map) are very popular approaches for cluster
analysis of various types of dataset. Furthermore, neighbor-
joining trees and phylogenetic trees are useful methods to show
the phenotypic similarity and evolution of plants of various
origins, revealing clusters of similar phenotypic patterns (Aerts
et al., 2014). This type of analysis helps distinguish phenotypic
trait’s patterns, provide important trait information and support
further evaluation of the defined traits. Therefore, it is possible to
find the significant association between trait profiles or pairs of
the same groups or between groups of genotypes and phenotypes
using correlation coefficient and test statistic (e.g., χ2 test, one-
sided Mann–Whitney U-test; Aerts et al., 2014; Chen et al.,
2014b).

Conclusion and Future Indication

Research in plant biology has benefited and continues to
benefit from developing high-throughput traits measurement
methodologies at different levels including metabolomics,
proteomics, and transcriptomics data (Granier and Vile,
2014). Advanced phenotyping technologies combine molecular
techniques and non-invasive sensors with computer vision
approaches. These approaches contribute to the momentous
progression of high-throughput plant development research.
This advanced research enables observation of high-
throughput phenotypic traits and how these traits change

depending on environment and genotype. These studies
generate large-scale multidimensional data sets, requiring
proper data management and analytical frameworks for
their interpretation (Fiorani and Schurr, 2013; Klukas et al.,
2014).

Most high-throughput phenotyping platforms accumulate
huge amounts of image data, but these automated workflows
may also increase the risk of data quality deterioration, and
they might miss interesting phenotypes if proper checkpoints
are not implemented at different stages of the imaging and
image processing (Arvidsson et al., 2011; Dhondt et al., 2013).
Therefore, it is necessary to manage and process data efficiently.
Although different techniques and analytical frameworks provide
a solution for handling this big data problem, these are
designed individually to discuss a few specific questions and
trait information (Sozzani and Benfey, 2011). Hence, the major
problem is the modeling and analysis of phenotype data.
There are existing statistical techniques and methods, which
are often useful for dimension reduction, significant feature
extraction, data pattern identification, and inference analysis
(Granier et al., 2006; Karkee et al., 2009; Yang et al., 2009;
Golzarian et al., 2011; Romer et al., 2011; Camargo et al.,
2014).

In the near future, there is an urgent need to develop
more adaptable, less expensive and sophisticated data analysis
infrastructures for analyzing high-dimensional phenotype
datasets in the phenomics area. In case more efficient statistical
methods are being developed, multidisciplinary simulation
models might support the proper experiment design and
an improved acquisition of phenotype data. These aspects
will support the promotion and explanation of plant growth,
development, or responses to adverse environments. In this
review, we have discussed different imaging techniques,
phenotyping platforms, image analysis pipelines and phenotype
data analysis methods for the high-throughput plant study.
Based on our discussion we suggest that scientists should address
the future challenges to enable the development of optimal
digital phenotyping platforms. These challenges are, e.g., the
reduction of phenotyping and other related laboratory costs,
the development of an efficient data storage and less expensive
analytical tools, as well as the improvement of the statistical
methods to explore the plant dynamic phenotypic components
and their properties.
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