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Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of
speech. Jenson et al. (2014) used independent component analysis (ICA) and event
related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data
to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech
perception and production. The purpose of the current study was to identify and
temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream
in the same tasks. Perception tasks required “active” discrimination of syllable pairs (/ba/
and /da/) in quiet and noisy conditions. Production conditions required overt production
of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data
from all tasks identified bilateral “auditory” alpha (α) components in 15 of 29 participants
localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal
fluctuations in the spectral power of the α rhythm clusters across time. Production
conditions were characterized by significant α event related synchronization (ERS; pFDR
< 0.05) concurrent with EMG activity from speech production, consistent with speech-
induced auditory inhibition. Discrimination conditions were also characterized by α

ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with
PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-
induced suppression of auditory regions, possibly via efference copy. The presence
of the same pattern following stimulus offset in discrimination conditions suggests
that sensorimotor contributions following speech perception reflect covert replay, and
that covert replay provides one source of the motor activity previously observed in
some speech perception tasks. To our knowledge, this is the first time that inhibition
of auditory regions by speech has been observed in real-time with the ICA/ERSP
technique.
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Introduction

Human communication relies heavily on the functional integrity
of the auditory system. Auditory cortical regions reside bilaterally
in the temporal lobes, extending posteriorly along the superior
temporal gyri (STG) to include primary and association
regions. These regions allow humans to sense sounds and
are particularly tuned to speech, providing spectro-temporal
analysis of complex acoustic speech signals (Specht, 2014).
Auditory association regions, such as the posterior superior
temporal gyri (pSTG), comprise the posterior aspects of the
dorsal stream, which function in tandem with anterior regions
(e.g., the premotor cortex, PMC) of this network to facilitate
sensorimotor integration (SMI) for speech (Hickok and Poeppel,
2000, 2004, 2007; Rauschecker, 2012). While there is clear
evidence of dorsal stream activity in both speech perception and
production (Numminen and Curio, 1999; Callan et al., 2000;
Curio et al., 2000; Houde et al., 2002; Herman et al., 2013;
Jenson et al., 2014), its temporal dynamics are still not well
understood.

According to contemporary models of speech such as the
Directions into Velocities of Articulators (DIVA; Tourville
and Guenther, 2011; Guenther and Vladusich, 2012) and
State Feedback Control (SFC; Hickok et al., 2011; Houde and
Nagarajan, 2011), SMI for speech production is dependent
upon the integrity of the dorsal stream network. When
motor commands for speech are initiated, the PMC produces
a corollary discharge (i.e., efference copy) containing an
internal model of the expected sensory consequences of the
movement (von Holst, 1954; Blakemore et al., 2000; Wolpert
and Flanagan, 2001). The efference copy is sent from the
PMC to higher order association regions for comparison
with available acoustic reafferent feedback, delivered with the
execution of the motor commands (Guenther, 2006; Tourville
and Guenther, 2011; Guenther and Hickok, 2015). Any
mismatch between prediction and reafference (i.e., an error
signal) quickly results in corrective feedback sent to motor
planning regions (e.g., PMC) for online updating of subsequent
commands (Guenther et al., 2006; Houde and Chang, 2015).
However, during continuous error-free unperturbed speech
production, internally based predictions match the reafferent
feedback, minimizing the need for corrective feedback. This
accurate matching is thought to have a subtractive (i.e.,
canceling) effect, producing a net attenuation of activity in
auditory regions, which is paramount to distinguishing our
own speech from that of others (Blakemore et al., 2000;
Wolpert and Flanagan, 2001). This suppression of predicted
feedback is thought to enhance sensitivity to deviations from
the intended production, facilitating online monitoring of
speech (Niziolek et al., 2013; Sitek et al., 2013). This proposal
is supported by evidence of lowered auditory thresholds to
self-produced vs. externally produced sound (Reznik et al.,
2014).

Evidence of speech-induced suppression (SIS; Curio et al.,
2000; Sitek et al., 2013) has been demonstrated using various
neuroimaging techniques. Positron electron tomography (PET)
studies have shown reduced STG activation during speech

production compared to listening to playback of one’s own
speech (Frith et al., 1991; Hirano et al., 1997; Wise et al., 1999).
Similarly, in ERP studies, the amplitude of the N100/M100
response has been found to be reduced in normal overt speech
compared to replay tasks (Curio et al., 2000; Houde et al.,
2002; Greenlee et al., 2011; Chang et al., 2013), and when
compared to speech under altered auditory feedback conditions
(Heinks-Maldonado et al., 2005; Behroozmand and Larson,
2011; Kort et al., 2014). Using electrocorticography (ECoG),
Chang et al. (2013) found suppression of the pSTG in speaking
vs. listening conditions. Taken together, these PET, ERP, and
ECoG studies support the deactivation of posterior dorsal
stream auditory regions via efference copy during normal speech
production in accord with DIVA (Tourville and Guenther,
2011; Guenther and Vladusich, 2012) and SFC (Hickok et al.,
2011; Houde and Nagarajan, 2011) models. While the pSTG
appears to be the primary site of posterior dorsal stream activity
in speech, some studies have reported similar activity in the
posterior MTG (Christoffels et al., 2007; Herman et al., 2013;
Bowers et al., 2014). Functional magnetic resonance imaging
(fMRI) has also produced results that are consistent with these
models, identifying suppression in the pSTG during overt
speech production (Christoffels et al., 2011). However, some
fMRI studies have produced conflicting results. For example,
Reznik et al. (2014) reported enhanced responses in the auditory
cortex (i.e., pSTG) to self-generated sounds contrasted with
externally-generated sounds, interpreting this enhancement as
evidence of efference copy improving perceptual sensitivity.
Other studies have reported auditory suppression to self-
generated stimuli in anterior (i.e., medial) locations of the
STG while observing enhancement in posterior regions (Agnew
et al., 2013). These mixed findings have been interpreted as
representing two functionally distinct and spatially differentiated
processes (Agnew et al., 2013; Chang et al., 2013; Houde and
Chang, 2015), resolvable with the superior spatial resolution of
fMRI.

Though there is ample evidence for SIS around posterior
dorsal regions in speech production, a better understanding
of its functional role is likely to be achieved by temporally
mapping activity within the dorsal stream regions in reference
to speech events. Increased temporal precision also may
enhance understanding of the functional role of dorsal stream
activity observed during speech perception. While dorsal stream
activity is not typically observed during ‘‘passive’’ listening
tasks (Scott et al., 2009; Szenkovits et al., 2012; Bowers et al.,
2013), it has been reported in a variety of more challenging
‘‘active’’ perception tasks, such as discrimination of foreign
phonemes (Callan et al., 2006), segmentation (Burton et al.,
2000; LoCasto et al., 2004), and discrimination of speech in
noise (Bowers et al., 2013, 2014). These mixed findings leave
unanswered questions regarding the extent to which auditory-
to-motor mapping functionally supports accurate perception
vs. being merely a by-product of increased processing. One
way to address these questions is by examining the timing
of dorsal stream activity relative to stimulus presentation.
Early activity may be indicative of predictive coding (Sohoglu
et al., 2012), in which early motor representations are used
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to constrain the analysis of incoming sensory information
to aid accurate discrimination; a form of experience-based
Constructivist hypothesis testing (Stevens and Halle, 1967;
Callan et al., 2010; Skipper, 2014). In contrast, late activity
following stimulus offset might reflect covert replay (Burton
et al., 2000; Rogalsky et al., 2008; Jenson et al., 2014), in which
stimuli are covertly rehearsed in working memory to facilitate
discrimination (Baddeley, 2003). Thus, fine-grained temporal
data are critical to addressing the functional role of dorsal stream
activity in speech perception.

The excellent temporal and spectral detail inherent to neural
oscillations makes them a prime candidate for evaluating the
dynamics of neural activity in anterior and posterior regions
of the dorsal stream (e.g., PMC, pSTG). These oscillations
originate from local synchrony between the action potentials
of neurons, giving rise to neuronal assemblies with periodic
variations in their activity levels (Schnitzler and Gross, 2005;
Buszaki, 2006). Fluctuations in spectral power relative to baseline
within frequency bands can be measured as relative increases
(event related synchronization, ERS) and decreases (event
related desynchronization, ERD) in activity, respectively. The
‘‘gating by inhibition’’ hypothesis (Jensen and Mazaheri, 2010)
proposes that spectral power within the alpha (α) band (8–13
Hz) can be interpreted as a measure of cortical activation.
In support of this hypothesis, α spectral power has been
shown to be inversely correlated with the fMRI BOLD signal
(Laufs et al., 2003; Brookes et al., 2005; Scheeringa et al.,
2009; Mayhew et al., 2013), leading to the interpretation
of α ERS and ERD as indices of cortical inhibition and
disinhibition, respectively (Klimesch et al., 2007; Weisz et al.,
2011).

α oscillations are ubiquitous across the brain, having been
implicated in the modulation of cortical activity found in both
attention (Muller and Weisz, 2012; Frey et al., 2014) and
working memory tasks (Jokisch and Jensen, 2007; van Dijk
et al., 2010). A growing body of evidence also points to the
existence of an independent auditory α rhythm distinct from
other known α generators (Tiihonen et al., 1991; Lehtela et al.,
1997; Weisz et al., 2011). Tiihonen et al. (1991) identified a
magnetoencephalographic (MEG) α rhythm that demonstrated
ERD during auditory stimulation that was not modulated by
opening the eyes or clenching the fist, concluding that this was a
distinct auditory α rhythm (Tiihonen et al., 1991; Lehtela et al.,
1997). Subsequent investigation has implicated this auditory α

rhythm in top-down attentional control during dichotic listening
(Muller and Weisz, 2012), neural excitability and stimulus
detection (Weisz et al., 2014), and auditory hallucinations (Weisz
et al., 2011). These studies demonstrate the utility of auditory α

oscillations to the investigation of cognitive processes underlying
speech.

The temporal precision, economy, and non-invasive nature
of electroencephalography (EEG) makes it well suited for
capturing oscillatory activity from SMI in speech perception and
production (Cuellar et al., 2012; Bowers et al., 2013; Jenson et al.,
2014). However, historically EEG analysis has been limited by
poor spatial resolution due to volume conduction (the fact that
each channel contains information frommultiple neural sources)

and its susceptibility to contamination by movement artifact.
Recently, independent component analysis (ICA) has offered an
effective means of overcoming these limitations. ICA is a method
of blind source separation that decomposes complex mixtures of
non-neural (i.e., artifact) and neural EEG signals into temporally
independent and spatially fixed components (Stone, 2004; Onton
et al., 2006). In effect, ICA provides a means of both separating
muscle movement from neural activity and reliably identifying
cortical sources of activity. Independent EEG components can be
further decomposed across time and frequency via event related
spectral perturbations (ERSP) to reveal patterns of ERS/ERD
that characterize regional neural activity in cognitive and motor
tasks. Identification of auditory α rhythm components can be
followed by ERSP analysis to better understand auditory activity
across the time course of speech production and perception
tasks.

This ICA/ERSP analysis is well established in perception tasks
(Lin et al., 2007, 2011; McGarry et al., 2012) and has more
recently been applied to speech perception, examining changes
in spectral activity in the sensorimotor µ rhythm components
(Bowers et al., 2013, 2014; Jenson et al., 2014). Consistent
with Callan et al. (2010) and constructivist interpretations
of predictive coding and analysis-by-synthesis (Stevens and
Halle, 1967), Bowers et al. (2013) found active syllable
discrimination produced more robust mu (µ) ERD (indicating
sensorimotor processing) than passive listening to syllables
or discriminating between tones. In addition to identifying
sensorimotor µ components, Bowers et al. (2014) reported
bilateral components from posterior superior temporal lobes
(pSTG) with characteristic α spectra, similar to those described
by Muller and Weisz (2012). Though ICA clearly has
demonstrated the capacity for identifying sources of neural
activity in perceptual tasks, its application to motor tasks
has been limited due to questions pertaining to its ability
to accurately localize and estimate cortical activity within
neural sources in the presence of competing myogenic activity
(Oken, 1986; Shackman et al., 2009; McMenamin et al., 2010,
2011).

Recently, Jenson et al. (2014) used an ICA/ERSP technique
to measure anterior dorsal stream activity in speech perception
and production. Specifically, they identified µ components with
characteristic α and beta (β; ∼20 Hz) peaks and related the
changes in spectral power within these peaks to sensory (α) and
motor (β) contributions to anterior dorsal stream activity in
various tasks. Participants listened to passive noise, discriminated
pairs of syllables with and without background noise, and
performed overt productions of syllable pairs and tri-syllable
nouns. ICA of concatenated raw EEG data from all (perception
and production) tasks yielded independent left and right µ

components localized to the PMC common to all conditions,
supporting the use of ICA in speech production. The ERSP
analysis revealed concurrent α and β ERD (reflecting sensory
and motor processing) time-locked to muscle movement during
overt production. The authors interpreted these findings as
evidence of a normal continuous sensorimotor loop for speech
production. Interestingly, this same pattern of concurrent α

and β µ ERD was observed in the discrimination conditions
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in the time period following acoustic offset. The authors
cautiously interpreted this µ ERD in discrimination conditions
as evidence of late covert rehearsal while the stimuli was being
held in memory prior to a response (Burton et al., 2000;
Baddeley, 2003). This interpretation supports the suggestion
that similar anterior dorsal stream sensorimotor processes can
be involved in covert and overt speech production (Gehrig
et al., 2012; Ylinen et al., 2014), However, to achieve a better
understanding of dorsal stream activity in speech perception
and production, it is necessary to also examine the temporal
dynamics of sensorimotor activity in the posterior aspects of the
network.

The purpose of the current study is twofold. The first is to
use ICA of raw EEG data to identify temporal lobe auditory
components common to speech perception and production
tasks. The second is to use ERSP analysis to provide high-
resolution temporal and spectral information regarding the
dynamics of this auditory α rhythm during speech perception
and production. It is hypothesized that ICA will identify bilateral
components with α spectra (∼10 Hz) localized to auditory
association regions, representing activity within posterior regions
of the dorsal stream. The second hypothesis is that ERSP
analysis of these components will reveal α ERS, representing
reduced activity in posterior aspects of the dorsal stream
(i.e., pSTG) by an efference copy while speech is being
produced. Though the current study employs no connectivity
measures, ERSPs from auditory components can be examined
alongside those from anterior sensorimotor µ components
reported in Jenson et al. (2014) to better understand dorsal
stream activity in speech perception and production. Thus, the
third hypothesis is that µ ERD and α ERS will be observed
simultaneously reflecting synchronous complementary activity
across anterior and posterior aspects of the dorsal stream.
Observing this pattern of activity following speech perception
will support the theory that dorsal stream activity in speech
discrimination is characterized at least in part by covert
replay.

Materials and Methods

Participants
Twenty-nine right-handed native English speakers were
recruited from the audiology and speech pathology program at
the University of Tennessee Health Science Center. Subjects (24
females, 5 males) had a mean age of 25.16 years (range 21–46)
and no history of cognitive, communicative, or attentional
disorders. The Edinburgh Handedness Inventory (Oldfield,
1971) was administered to establish handedness dominance for
each subject. The Institutional Review Board for the University
of Tennessee approved this study, and all subjects provided
informed consent prior to participation.

Stimuli
Perception
Syllable stimuli (/ba/ and /da/) for the active perception
conditions were generated with AT&T naturally speaking text-
to-speech software, which utilizes synthetic analogs of a male

speaker. Syllable stimuli were combined to create syllable pairs
such that half of the stimuli consisted of identical pairs (e.g., /ba
ba/) and half of the stimuli contained different pairs (e.g., /da
ba/). Syllable pairs were then low pass filtered at 5 kHz
and normalized for root-mean-square (RMS) amplitude. Each
syllable was 200 ms in duration and paired syllables were
separated by 200ms, yielding stimuli that were 600ms from onset
of the first syllable to offset of the second syllable.

One of the active perception conditions (discrimination in
noise—Ndis) required subjects to discriminate syllable pairs
embedded in white noise with a signal-to-noise ratio (SNR) of
+4 dB. This condition was included as previous studies have
reported that this SNR produces increased dorsal stream activity
while allowing participants to accurately discriminate between
the syllables (Binder et al., 2004; Osnes et al., 2011; Bowers
et al., 2013, 2014). Another discrimination condition (quiet
discrimination—Qdis) required participants to discriminate
syllable pairs in the absence of background noise. In order
to control for a discrimination response bias (Venezia et al.,
2012), an equal number of different and identical syllable pairs
were used in each discrimination condition. Discrimination
responses were made using a button press. The stimulus used for
the control (passive listening) condition was continuous white
noise.

Production
Targets for speech production consisted of the same syllable
pairings used in the discrimination conditions (e.g., /ba da/),
as well as tri-syllable nouns initiated with either /b/ or /d/ and
followed by a vowel (e.g., buffalo, daffodil). Visual stimuli for
production were presented at the center of the visual field on
Microsoft PowerPoint slides consisting of white text on a black
background (Arial font) subtending a visual angle of 1.14◦. The
timelines for perception and production tasks are illustrated in
Figure 1.

FIGURE 1 | 5000 ms epoch timelines for single trials in control (PasN),
discrimination (Qdis and Ndis), and production (SylP and WorP)
conditions.
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Design
The experiment consisted of a five condition, within subjects
design. The conditions were designed to require gradually
increased motoric demands, progressing from the perception
of white noise to the production of tri-syllable nouns. The five
conditions were:

1. Passive listening to white noise (PasN);
2. Discrimination of syllable pairs in quiet (Qdis);
3. Discrimination of syllable pairs in background noise (Ndis);
4. Overt production of syllable pairs (SylP); and
5. Overt production of tri-syllable nouns (WorP).

Condition 1 was a passive perception task, conditions 2–3 were
active perception tasks, and conditions 4–5 were production
tasks. The PasN condition required no discrimination, but was
used as a control task for the Qdis and Ndis conditions. To
control for the neural activity related to the button press response
required in the Qdis andNdis conditions, a button press response
was used in the PasN condition. Conditions 2–4 used paired /ba/
and /da/ syllables. Qdis and Ndis required active discrimination
of syllable pairs, while SylP required overt productions of /ba/
/da/ syllable pairs, respectively. The WorP condition required
overt production of tri-syllable nouns initiated by a /b/ or /d/
and followed by a vowel. Stimuli for the WorP condition were
selected from Blockcolsky et al. (2008).

Procedure
The experiment was conducted in an electrically and
magnetically shielded, double-walled, soundproof booth.
Participants were seated in a comfortable chair with their
head and neck supported. Stimuli were presented and button
press responses were recorded by a PC computer running
Compumedics NeuroScan Stim 2, version 4.3.3. A button press
response was embedded in the PasN condition for two reasons:
(1) to control for anticipatory β suppression which has been
previously reported in tasks requiring a button press response
(Makeig et al., 2004; Graimann and Pfurtscheller, 2006; Hari,
2006) and (2) requiring a button press response in a condition
with no active discrimination ensured that the subjects were
attending to and engaged in the task. The response cue for all
perception conditions was a 100 ms, 1000 Hz tone presented
at the end of the trial epoch (2000 ms post stimulus). In the
PasN condition, subjects were instructed to sit quietly, listen
to the stimulus (i.e., white noise), and press the button when
they heard the response cue. In the Qdis and Ndis conditions,
subjects were instructed to press one of two buttons after hearing
the response cue depending on whether the syllables were
judged to be the same or different. Handedness of button press
response was counterbalanced across all subjects and conditions.
Discrimination accuracy was determined as percentage of trials
correctly discriminated, and subjects who did not discriminate
at a level significantly above chance were excluded from the
analysis.

In the production conditions, visual stimuli were presented
on a monitor (69.5 × 39 cm) placed 132 cm in front of the
participant’s chair. Visual stimuli (syllable pairs and words)
remained on the screen for 1 s, and participants were instructed

to begin their production when the visual stimuli disappeared.
Thus, stimulus offset was the response cue in the production
conditions. In the SylP and WorP conditions, subjects were
instructed to produce the syllable pairs in their normal speaking
voice. All productions were complete within the 2000ms window
between the response cue and the end of the trial epoch. Each of
the five conditions was comprised of 2 blocks of 40 trials each,
yielding a total of 10 blocks (5 conditions × 2 blocks). Order of
block presentation was randomized for each subject.

EEG Acquisition
Whole head EEG data were acquired from 68 channels.
These channels included two electromyography (EMG) and
two electrocardiogram (EKG) electrodes. Data were recorded
with an unlinked, sintered NeuroScan Quik Cap, based on the
extended international standard 10–20 system (Jasper, 1958;
Towle et al., 1993). All recording channels were referenced to the
linked mastoid channels (M1, M2). The electro-oculogram was
recorded by means of two electrode pairs placed above and below
the orbit of the left eye (VEOL, VEOU) and on the medial and
lateral canthi of the left eye (HEOL, HEOR) to monitor vertical
and horizontal eye movement. The two EMG electrodes were
placed above and below the lips to capture labial lip movement
related to overt speech.

EEG data were recorded using Compumedics NeuroScan
Scan 4.3.3 software in tandem with the Synamps 2 system. EEG
data were band pass filtered (0.15–100 Hz) and digitized with
a 24-bit analog to digital converter with a sampling rate of
500 Hz. Data collection was time locked to stimulus onset in the
perception conditions, and to the response cue in the production
conditions. The visual stimuli to be produced were displayed
on the screen for 1 s prior to disappearing, which served as the
response cue for production. Thus, time zero was defined as
stimulus onset for the perception conditions, and stimulus offset
served as time zero for the production conditions.

EEG Data Processing
Data processing and analysis were performed with EEGLAB 12
(Brunner et al., 2013), an open source MATLAB toolbox. Data
were processed at the individual level and analyzed at both the
individual and group level. The following steps were performed
at each stage:

1. Individual processing/analysis:

(a) Preprocessing of 10 raw EEG files for each participant (5
conditions × 2 blocks);

(b) ICA of preprocessed files across conditions for each
participant; and

(c) Localization of all neural and non-neural dipoles for each
independent component.

2. Group analysis:

(a) Two separate analyses using the STUDY module of
EEGLAB 12; one study targeting neural components only
(‘‘in-head’’) and the other targeting neural and myogenic
components (‘‘all’’);
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(b) Components common across participants clustered by
means of Principal Component Analysis (PCA);

(c) Left and right STG clusters identified from the ‘‘in-
head’’ STUDY analysis, while peri-labial EMG cluster was
identified from the ‘‘all’’ STUDY;

(d) Left and right STG clusters localized by equivalent current
dipole (ECD) and current source density (CSD) methods;
and

(e) ERSP performed to yield time-frequency analysis of
activity in STG and EMG clusters.

Analysis for Hypothesis 1
Data Preprocessing
Raw EEG data files from both blocks of each condition were
appended to create one dataset per condition per participant,
and then downsampled to 256 Hz to reduce the computational
requirements of further processing steps. Trial epochs of 5000ms
(ranging from −3000 to +2000 ms around time zero) were
extracted from the continuous EEG data. The data were then
filtered from 3–34 Hz, which allowed for clear visualization of
α and β bands, while filtering muscle artifact from surrounding
frequency bands. All EEG channels were referenced to the
mastoids (M1, M2) to remove common mode noise. Trials
were visually inspected, and all epochs containing gross artifact
(in excess of 200 µV) were removed. Additionally, trials
were rejected if the participant performed the discrimination
incorrectly, or if the response latency exceeded 2000 ms. A
minimum of 40 useable trials per subject per participant was
required in order to ensure a successful ICA decomposition.

ICA
Following data preprocessing and prior to ICA analysis, data
files for each participant were concatenated to yield a single
set of ICA weights common to all conditions. This allowed
for comparison of activity across conditions within spatially
fixed components. The data matrix was decorrelated through
the use of an extended Infomax algorithm (Lee et al., 1999).
Subsequent ICA training was accomplished with the ‘‘extended
runica’’ algorithm in EEGLAB 12 with an initial learning rate of
0.001 and the stopping weight set to 10–7. ICA decomposition
yielded 66 ICs for each participant, corresponding to the number
of recording electrodes (68 data channels–2 reference channels;
M1, M2). Scalp maps for each component were generated by
projecting the inverse weight matrix (W-1) back onto the original
spatial channel configuration.

After ICA decomposition, equivalent current dipole
models (ECD) were generated for each component by
using the boundary element model (BEM) in the DIPFIT
toolbox, an open source MATLAB plugin available at
sccn.ucsd.edu/eeglab/dipfit.html (Oostenveld and Oostendorp,
2002). Electrode coordinates conforming to the standard 10–20
configuration were warped to the head model. Automated
coarse-fitting to the BEM yielded a single dipole model for each
of the 1914 ICs (29 participants × 66 ICs). Dipole localization
entails a back projection of the signal to a potential source that
could have generated the signal, followed by computing the best
forward model from that hypothesized source that accounts for

the highest proportion of the scalp recorded signal (Delorme
et al., 2012). The residual variance (RV) is the mismatch between
the original scalp recorded signal and this forward projection of
the ECD model. The RV can be interpreted as a goodness of fit
measure for the ECD model.

STUDY (Group Level Analyses)
Group level analyses were performed in the EEGLAB STUDY
module. The STUDY module allows for the comparison of ICA
data across participants and conditions. The STUDY module
also allows for the inclusion or exclusion of ICs based on RV
and location (in head vs. outside head). Two different STUDY
analyses were performed on participants’ ICA files containing
dipole information. The ‘‘in head’’ analysis (neural) was limited
to dipoles originating within the head, and the RV threshold was
set to <20%.

In order to capture peri-labial EMG activity, a second STUDY
(‘‘all’’) was performed, which included dipoles originating both
within the head and outside the head. Additionally, the RV
threshold was lifted to <50% to account for the fact that EMG
activity inherently contains higher levels of RV. Peri-labial EMG
activity was extracted from the ‘‘all’’ STUDY, while all neural data
were analyzed within the ‘‘in head’’ study only.

PCA Clustering
In both of the STUDY analyses (‘‘in head’’ and ‘‘all’’), IC pre-
clustering was performed based on commonalities of spectra,
dipoles, and scalp maps. The K-means statistical toolbox was
used to group similar components across participants based on
the specified criteria via PCA. ICs from the ‘‘in head’’ analysis
were assigned to 25 neural clusters, from which left and right
auditory clusters were identified. ICs from the ‘‘all’’ analysis were
assigned to 66 possible clusters (both neural and non-neural),
one of which contained peri-labial EMG activity.

Designation to auditory (STG) clusters for the ‘‘in head’’
STUDY was based primarily on the initial results of PCA,
followed by inspection of all ICs in the auditory cluster and
surrounding clusters based on spectra, dipoles, and scalp maps.
Inclusion criteria for the auditory clusters were based on
previously observed posterior dorsal stream activity in speech
and, therefore, included components that were localized to the
pSTG or pMTG regions, showed a characteristic α spectrum, and
could be localized with RV <20%.

The majority of the 66 clusters generated in the ‘‘all’’
STUDY contained non-neural (myogenic) activity. The cluster
containing peri-labial EMG activity was identified based on
dipole location and verified by ERSP analysis, demonstrating
activity during the overt speech conditions only.

Source Localization
Source localization for ECD clusters identified in the STUDY
module is the mean of the Talairach coordinates (x, y, z)
for each of the contributing dipole models (identified by the
DIPFIT module). A further method of source localization is
standardized low-resolution brain electromagnetic tomography
(sLORETA), which addresses the inverse problem by using
CSD from scalp recorded electrical signals to estimate source
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location (Pascual-Marqui, 2002). Solutions are based on the
Talairach cortical probability brain atlas, digitized at the
Montreal Neurological Institute (MNI). Electrode locations are
co-registered between both spherical models (BESA) and realistic
head geometry (Towle et al., 1993). The 3-D brain space was
divided into 6,239 voxels, yielding a spatial resolution of 5 mm.
The inverse weight projections from the original EEG channels
for each component contributing to the temporal α clusters
were exported to sLORETA. Cross-spectra were computed and
mapped to the Talairach atlas and cross-registered with MNI
coordinates, resulting in CSD estimates for each contributing
component. The analysis of statistical significance of CSD
estimates across participants was performed in the sLORETA
software package. The analysis was non-parametric, based on
the estimation (via randomization) of the probability distribution
of the t-statistic expected under the null hypothesis (Pascual-
Marqui, 2002). This method corrects for multiple comparisons
across all voxels and frequencies (3–34 Hz). Voxels that were
significant at p < 0.001 were considered to be active across
participants. Group level source localizations are based on the
CSD source estimates computed via sLORETA, though the ECD
localizations are also reported as they serve to demonstrate the
inter-subject variability present in the data.

Analysis for Hypotheses 2 and 3
ERSP
ERSP analyses were used to measure fluctuations in spectral
power (in normalized decibel units) across time in the frequency
bands of interest (3–34 Hz). Time-frequency transformations
were computed using a Morlet wavelet rising linearly from three
cycles at 3 Hz to 34 cycles at 34 Hz. Trials were referenced
to a 1000 ms pre-stimulus baseline selected from the inter-
trial interval. A surrogate distribution was generated from 200
randomly sampled latency windows from this silent baseline
(Makeig et al., 2004). Individual ERSP changes across time
were calculated with a bootstrap resampling method (p < 0.05
uncorrected). Single trial data for all experimental conditions for
frequencies between 4 and 30 Hz and ranging from −500 to
1500 ms were entered into the time-frequency analysis.

In the ‘‘in head’’ study, permutation statistics (2000
permutations) were used to assess inter-condition differences.
The significance threshold was set at p < 0.05, and Type 1
error was controlled by false discovery rate (FDR) correction
(Benjamini and Hochberg, 2000). Statistical analyses used a 1
× 5 repeated measures ANOVA design (PasN, Qdis, Ndis, SylP,
WorP). Further post hoc analyses of differences in perception and
production conditions used 1 × 3 and 1 × 2 repeated measures
ANOVA designs, respectively.

Results

Discrimination Accuracy
All subjects that contributed to the temporal α clusters performed
the discrimination tasks with a high degree of accuracy. As it has
been shown that activity in sensorimotor regions is susceptible
to the effects of response bias (Venezia et al., 2012), d’ values
also are reported to tease out the differential effects of sensitivity

and response bias on perceptual accuracy. The average number
of useable trials (out of 80) for each condition was: PasN =
74.4 (SD 6.9), Qdis = 74 (SD 4.77), Ndis = 69.1 (SD 12.52),
SylP = 73.73 (SD 5.19), and WorP = 73.14 (SD 6.39). Subjects
performed the discrimination with similar high accuracy in both
the Qdis [96.5%, SD 2.55; d’ 3.38, SE 0.09] and Ndis [94.5,
SD 8.69; d’ 3.63, SE 0.19] conditions. The greater variability in
the Ndis condition was due primarily to one participant, who
performed the task with 65% accuracy. A paired t-test on d’
values for each condition indicated that subject accuracy for
these two conditions was not significantly different (p > 0.05).
The mean reaction time for discrimination conditions was
506.3 ms in the Qdis conditions (SD 133.3) and 568.1 ms in
the Ndis condition (SD 298.3). A paired t-test indicated that the
mean response latency between conditions was not significantly
different (p > 0.05). Taken together, these findings indicate
that subjects performed both discrimination tasks with similar
levels of accuracy and efficiency. A response contingent analysis
was performed in which incorrectly discriminated trials were
excluded from subsequent analysis, and thus the analysis of
neural data was restricted only to those associated with correctly
discriminated trials.

Results Pertaining to Hypothesis 1
Temporal α Cluster Characteristics
In line with the hypothesis that ICA would identify bilateral
α components localized to pSTG, 15/29 participants generated
components with less than 20% RV contributing to both the left
and right temporal α clusters. The clusters had peaks at 10 Hz on
both the left and right. For the ECD dipole models, the average
dipole localization was at Talairach [−48, −45, 15] for the left
temporal cluster and Talairach [57, −42, 10] on the right. The
percentage of unexplained variance for these two clusters was
11.7% and 11.9%, respectively. The CSD model computed with
sLORETA showed active voxels (p< 0.001) localized to the pSTG
on the left and the pMTG on the right. In both hemispheres,
activation spread across the pSTG and pMTG. CSD source
maxima were localized to MNI [−50, −55, 10] on the left and
MNI [55, −45, 0] on the right. The Euclidean distance between
ECD and CSD sources were 11.4 mm on the left and 10.6 mm on
the right. The peri-labial EMG cluster, identified on the basis of
dipole location and the time course of activity, consisted of non-
neural components with an average of 20.07% RV. Figures 2, 3
demonstrate: (A) the average scalp map; (B) the spectra; (C) the
distribution of ECD dipoles; and (D) CSD source localization
for the left and right temporal clusters, respectively. As the
component activations were generated from data concatenated
across conditions, the source localizations reported pertained to
temporal lobe clusters from all experimental conditions.

Results Pertaining to Hypothesis 2
ERSP Analysis in Production (SylP, WorP)
The second hypothesis was that ERSP analysis of auditory α

clusters would reveal α ERS in time periods coinciding with
overt production. Figure 4 shows van Essen maps (computed
with sLORETA) demonstrating activated voxels at (p < 0.001)
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FIGURE 2 | Results for left temporal cluster. (A) Scalp distribution, scaled in root-mean-square (RMS) microvolts, (B) Mean spectra of cluster components,
(C) equivalent current dipole (ECD) localization for cluster components demonstrating inter-subject variability, (D) current source density (CSD) cluster localization
projected onto a van Essen cortical model. Active voxels are significant at p < 0.001 (corrected for multiple comparisons).

FIGURE 3 | Results for right temporal cluster. (A) Scalp distribution, scaled in RMS microvolts, (B) Mean spectra of cluster components, (C) ECD localization for
cluster components demonstrating inter-subject variability, (D) CSD cluster localization projected onto a van Essen cortical model. Active voxels are significant at
p < 0.001 (corrected for multiple comparisons).

in the (A) left and (C) right hemisphere temporal clusters.
ERSP analyses show differential patterns of ERS/ERD measured
against baseline across the two production conditions (SylP,
WorP), within the 4–30 Hz bandwidth. The final column
shows significant differences (pFDR < 0.05) compared to PasN.
Figure 4B shows the average ECD localization for the EMG
cluster corresponding to peri-labial muscle activity, as well as the
ERSP analysis of that component cluster.

In the left temporal cluster, α ERD in production conditions
(SylP, WorP) began prior to stimulus onset, peaking after the cue
to produce speech. Approximately 500 ms after the production
cue, α ERD began to decrease accompanied by the emergence of
α ERS, which extended into low β frequencies. As in perception
conditions, the right temporal cluster showed identical patterns
of activation, though with weaker spectral power.

Temporal Alignment Between Temporal α,
Sensorimotor µ, and Peri-labial EMG Activity
EMG activity was found in the SylP and WorP conditions
only. EMG ERS (corresponding to speech production) began at
approximately 300 ms and peaked at about 500 ms post response
cue. These response latencies are within the expected range for
speech production tasks (Heinks-Maldonado et al., 2005). α ERS
in left and right temporal clusters was aligned temporally with
EMG ERS in the SylP and WorP conditions.

Jenson et al. (2014) analyzed data from the same subject pool
in identical conditions and interpreted concurrent α and β ERD
over the PMC as evidence of covert replay during perception and

overt production of speech. In the current study, the emergence
of α ERS in the temporal cluster also was aligned temporally with
the peak α and β ERD in the sensorimotor µ rhythm reported
by Jenson et al. (2014) in both perception and production.
Figure 5 demonstrates the temporal synchrony between α ERS
in the temporal lobe, sensorimotor α/β ERD (representing SMI
during production), and EMG ERS, as well as the alignment
of temporal α ERS and sensorimotor α/β ERD (consistent with
covert rehearsal) during discrimination tasks.

Results Pertaining to Hypothesis 3
ERSP Analysis in Perception (PasN, Qdis, Ndis)
The third hypothesis was that ERSP analysis of auditory α

clusters in discrimination conditions would demonstrate α

ERS during time periods of µ ERD, consistent with the
interpretation of PMC activity during speech discrimination
as evidence of covert replay. Figure 6 shows van Essen maps
(computed with sLORETA) showing activated voxels (p< 0.001)
in the left (A) and right (B) hemisphere temporal clusters.
ERSP analyses show differential patterns of ERS/ERD measured
against baseline across the three perception conditions (PasN,
Qdis, Ndis), within the 4–30 Hz bandwidth. The final column
shows significant differences (pFDR < 0.05) among the three
conditions.

For the left temporal cluster, α ERD began subsequent
to acoustic stimulation and persisted until approximately
500 ms post stimulus offset. At approximately 500 ms post
stimulus offset, α ERD began to decrease, giving way to
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FIGURE 4 | The first column in rows (A) and (C) show sLORETA source solutions for left and right temporal α clusters, respectively, while the first
column in row (B) shows the mean ECD localization of the peri-labial EMG cluster. The middle columns show event related spectral perturbation (ERSP)
analyses, mapping ERS and ERD in the control condition (PasN) and production conditions (SylP and WorP). The far right column shows significant time-frequency
differences in spectral power across conditions (p < 0.05, corrected for multiple comparisons). Time courses across ERSP analyses were identical, though rows
(A,B) reference speech onset while row (C) references the timeline from Figure 1.

α ERS in both discrimination conditions (Qdis and Ndis) that
extended into low β frequencies. A post hoc comparison of
the two discrimination conditions (Qdis and Ndis) revealed no
significant differences between conditions. The right hemisphere
temporal cluster showed the same patterns of α ERD fading to
ERS as the left temporal cluster, though with weaker spectral
power. Post hoc comparisons of Qdis and Ndis to the PasN
condition produced identical results to those found in the left
temporal cluster.

Discussion

The first hypothesis (that ICA would identify bilateral α clusters
localized to auditory association regions) was well supported
by the data obtained from the left hemisphere. This finding is
consistent with the MEG/EEG findings of Weisz et al. (2011)

who also found evidence of an independent auditory α rhythm.
Clusters of neural activity emanating from these regions with
<20% unexplained RV were localized to the pSTG via both
ECD and CSD localization methods (although their exact source
averages varied by ∼1 cm). This localization is in agreement
with previous findings of auditory α oscillatory activity identified
via EEG/ICA (Bowers et al., 2014) and MEG (Muller and
Weisz, 2012) and is consistent with a left-hemisphere dominance
for dorsal stream activity in speech-based tasks (Hickok and
Poeppel, 2004). In the right hemisphere, the two localization
techniques also produced source averages that were separated
by ∼1 cm. However, the average ECD source was in the pSTG,
while the average CSD source was located slightly inferiorly in
the pMTG, possibly highlighting the uncertainty of EEG source
localization and a reduced role of the right hemisphere in speech
processing.
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FIGURE 5 | The first column shows (B) sLORETA source solutions for the sensorimotor µ (reproduced from Jenson et al. (2014) with permission) and
temporal α clusters, as well as mean spectra for (A) the sensorimotor µ cluster and (C) the temporal α cluster. Subsequent columns show ERSP
analyses depicting patterns of corresponding ERS and ERD in the neural and (D) peri-labial myogenic clusters. In production conditions (SylP and WorP), the onset
of peak peri-labial EMG activity (D) temporally aligns with the emergence of sensorimotor µ ERD (A) and temporal α ERS (C). In perception conditions (Qdis and
Ndis), the emergence of sensorimotor µ ERD (A) temporally aligns with the emergence of temporal α ERS (C).

The finding that only 15/29 participants contributed to the
clusters requires examination. Reasons for this include (1) the
application of a standard head model reducing localization
accuracy; (2) the location of auditory regions along the Sylvian
fissure. As anatomic variability increases at greater distances
from midline, the potential impact of a standard head model
may have been maximal along the lateral and dorsal surfaces
of the STG; (3) EEG’s superior sensitivity to signals arising
from cortical gyri rather than sulci; and (4) the fact that only
components from pSTG and pMTG regions were included
though all participants produced temporal lobe components. It
should be noted that α activity has been observed across more
anterior portions of the STG in addition to the pSTG (Weisz
et al., 2011). However, due to the possibility that anterior and
posterior regions of the STG perform functionally distinct tasks
(Agnew et al., 2013; Chang et al., 2013; Houde and Chang, 2015)
and that the current goal was to examine dorsal stream activity,

only components localized to posterior regions were included
in this study. Therefore, it is likely that these inclusion criteria
limited the number of contributors to the clusters. Even with
the inherent limitations in source localization, the ERSP analyses
produced significant changes in α spectral power across time
in both speech perception and production conditions, providing
evidence of auditory cortical deactivation that can be interpreted
in light of current models.

Auditory α ERS/ERD in Speech Production
Auditory α activity in both production conditions (SylP, WorP)
was characterized by ERD prior to production with no significant
differences in activity between the two conditions. Before
initiating speech, participants read the target and prepared to
speak while attending to the visual cue to do so. Early activation
of the auditory cortex (following stimulus presentation and
prior to production) has previously been demonstrated during
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FIGURE 6 | Rows (A,B) show sLORETA source solutions for left and right temporal α clusters, respectively, followed by ERSP analyses from passive
listening (PasN) and active discrimination conditions (Qdis, Ndis) displaying patterns of ERS and ERD relative to baseline in the middle columns. The
far right column shows significant time-frequency differences in spectral power across conditions (p < 0.05, corrected for multiple comparisons). Time courses
across ERSP analyses were identical, though row (A) references stimulus onset and offset while row (B) references the timeline from Figure 1.

silent and overt reading (Kell et al., 2011). Reduced levels of α

activity in sensory regions prior to stimulus presentation have
been shown to facilitate detection of near-threshold stimuli in
the somatosensory domain (Weisz et al., 2014), and a similar
mechanism in the auditory domain may facilitate monitoring of
speech by an SMI loop. Additionally, α ERD also is known to
result from simple increases in attention (Jensen and Mazaheri,
2010). Therefore, considering that the current speech production
tasks required the coordination of multiple cognitive processes
prior to speaking, all of which rely on attention to some extent,
it is not possible to parse out the individual contributions of all
cognitive processes to ERD prior to speech. Rather, it is likely
that pre-speech α ERD resulted from contributions of attention,
reading, and integration of auditory regions into an error-free
SMI loop for speech.

The hypothesis that speech production would be
characterized by increases in oscillatory α power was supported.
A positive shift in auditory α power emerged concurrently with
robust peri-labial EMG activity (i.e., muscle movement) that
marked the initiation of speech. These patterns of neural and
muscular activity were observed after ∼300 ms (i.e., reaction
time) from the cue to speak (time 0, Figure 4). It should be
noted that these ERS/ERD changes were measured in reference
to a ‘‘silent baseline’’ prior to each trial and that they were
statistically significant when compared to a control passive
listening condition in which little pSTG α activity was observed.
As α ERS is associated with reduced activity (Laufs et al., 2003;

Brookes et al., 2005; Scheeringa et al., 2009; Mayhew et al.,
2013), the current findings are consistent with speech-induced
suppression (i.e., modulation of auditory cortical activity during
speech production; Frith et al., 1991; Hirano et al., 1997; Curio
et al., 2000; Houde et al., 2002; Heinks-Maldonado et al., 2005;
Christoffels et al., 2007, 2011). However, it is also interesting to
note that though auditory oscillatory activity was characterized
by α spectra, the observed ERS spread into higher frequencies
and may be somewhat consistent with ECoG and fMRI studies
that have implicatedmodulations in auditory gamma frequencies
during speech production (Greenlee et al., 2011; Agnew et al.,
2013; Reznik et al., 2014).

It is also important to note that both myogenic and auditory
activity during speech production is characterized by ERS, which
may raise questions pertaining to the possibility ofmuscle activity
contaminating neural activity. There are multiple reasons to
refute this notion. First, if ICA was not able to adequately
separate neural signals from myogenic artifact, muscle activity
would have overwhelmed the α and β ERD recorded in the
sensorimotor µ cluster (Jenson et al., 2014). Second, α ERS was
noted in the perception conditions (coinciding with periods of
covert rehearsal—see below), during which no overt response
was required. Together, this evidence suggests that α ERS resulted
from neural activity as opposed to myogenic artifact.

The larger picture of dorsal stream activity in speech
production becomes apparent when the current data are viewed
alongside those of Jenson et al. (2014). Data from the same
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participants in the same conditions showed sensorimotor µ

ERD (i.e., disinhibition) beginning with muscle movement in
speech production. Thus, when viewed together, sensorimotor
disinhibition and auditory inhibition coincided with speech
production (as indicated by EMG activity; see Figure 5). Current
models of SMI for speech indicate that the sensorimotor loop
is initiated by the generation of a motor plan in PMC (Tian
and Poeppel, 2010; Houde and Nagarajan, 2011; Jenson et al.,
2014). Concurrent with the delivery of this motor plan to primary
motor cortex (M1), an efference copy of the expected sensory
consequences is sent to auditory regions for comparison with
the goals and outcomes of the movements. Any deviations from
expectations are detected and corrective feedback is sent to the
PMC. As true auditory and somatosensory reafferent feedback
is received, this information is also integrated into feedback to
the PMC (Tian and Poeppel, 2010). During normal error-free
production, articulatory predictions are matched to the available
sensory (i.e., auditory) information, resulting in the observed net
deactivation in auditory association regions. Based on this model,
it was not surprising to see near perfect temporal concordance
between α/β µ ERD, auditory α ERS, and peri-labial EMG activity
in normal, unperturbed speech production. Thus, the results of
the current study demonstrate inhibition of auditory regions
during overt speech, consistent with the suppression that would
be expected based on the delivery of an efference copy from the
PMC.

Auditory α ERS/ERD in Accurate Speech
Discrimination
In both the quiet (Qdis) and noisy (Ndis) discrimination
conditions, participants listened to pairs of syllables and
then waited ∼1400 ms to make an active same/different
discrimination response. Considering that only correct responses
were analyzed, the following interpretations of the oscillatory
data are made in reference to accurate speech discrimination.
Auditory activity prior to and during stimulus onset was
characterized by α ERD. During this same time period, β ERD
was observed within the µ components localized to anterior
regions of the dorsal stream (e.g., PMC; Jenson et al., 2014).
This pattern of PMC β ERD activity has previously been
explained as early predictive coding (i.e., hypothesis generation
via internalmodeling) followed by hypothesis testing via auditory
to motor integration (Alho et al., 2014), according to analysis
by synthesis theories (Stevens and Halle, 1967). The current
data from auditory regions which indicate increased auditory
activity prior to and during stimulus presentation continue to
support this interpretation, though it is necessary to consider
how a predictive coding explanation might be favored over one
of simple attention, which has also been known to modulate β

activity in cognitive tasks (van Ede et al., 2014). Participants were
briefed on the task prior to each discrimination condition and
therefore knew what to expect. In addition, only four syllable
pairs were possible. Therefore, across 80 trials per condition, it
is likely that participants were able to formulate general internal
models of the expected stimuli (i.e., syllables) to help constrain
the upcoming sensory analysis. Further support for speech-
related predictive coding comes from Bowers et al. (2013),

who reported early µ β ERD in similar syllable but not tone
discrimination tasks.

The time period following stimulus offset and prior to
the response was characterized by temporal α ERS, similar
to that observed in the production conditions. Jenson et al.
(2014) found sensorimotor µ ERD in the same time period.
They interpreted this as evidence of covert rehearsal, during
which the syllables were held in working memory to facilitate
accurate discrimination and response. The current findings
support this explanation. Clearly, it can be seen in Figure 5
that in both Qdis and Ndis conditions, sensorimotor µ ERD
is aligned temporally to auditory α ERS; a pattern similar to
that observed in the production conditions. It should be noted
that covert rehearsal has been used to explain motor activity
sometimes observed in speech perception tasks (Burton et al.,
2000; Baddeley, 2003; Jenson et al., 2014; Roa Romero et al.,
2015). However, this assertion lacks support without temporal
data showing when activity occurred relative to stimulus onset
and offset. By demonstrating anterior sensorimotor disinhibition
aligned with auditory inhibition following stimulus offset in the
absence of peri-labial EMG activity, these data support the theory
that covert rehearsal can account for some of the motor activity
observed during accurate speech discrimination tasks such as
these (Burton et al., 2000; Wilson et al., 2004; Callan et al.,
2006, 2010; Bowers et al., 2013; Jenson et al., 2014). However, it
should be noted, as indicated above, that covert rehearsal may
not be the only explanation for this activity. Prior to and during
syllable discrimination there is evidence of anterior sensorimotor
activity characterizing internal modeling (Bowers et al., 2013,
2014; Jenson et al., 2014).

While the presence of anterior dorsal stream activity during
covert production is relatively well established (Neuper et al.,
2006; Gehrig et al., 2012; Jenson et al., 2014), it remains unclear
how a subtractive mechanism in posterior dorsal stream regions
could function in the absence of re-afferent feedback. It has been
proposed that auditory inhibition is linked to the delivery of
an efference copy. As no overt production took place during
the discrimination conditions, it may seem surprising that
the auditory cluster should demonstrate α ERS during covert
rehearsal as the observed auditory suppression is thought to
be contingent on efference copy delivery linked to motor plan
execution. These findings are not without precedent, however,
as lip-reading (Kauramäki et al., 2010; Balk et al., 2013) and
covert speech (Tian and Poeppel, 2015) have been shown to
reduce auditory cortical responses. There is also evidence that
failure of this sensory suppression in covert productions may
be associated with some of the positive symptoms (i.e., auditory
hallucinations) of schizophrenia (Ford et al., 2001; Ford and
Mathalon, 2004, 2005), indicating that auditory suppression
during covert production is critical to normal function. One
possible explanation for auditory suppression when efference
copy delivery is questionable is that in the absence of an
efference copy, auditory suppression may be based on higher
order processes (Crapse and Sommer, 2008). In line with
this explanation, sensory inhibition has recently been linked
to motor intention prior to overt activity (Stenner et al.,
2014). Additionally, it is possible that during covert production,
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auditory suppression may be based on the comparison of sensory
predictions to a higher-level sensory goal. This is consistent with
a recent proposal by Skipper (2014), who suggested that the
auditory hypotheses being evaluated are internal in nature based
on context and prior experience rather than being dependent on
available acoustic information. However, further investigation is
warranted to better explain how auditory inhibition can occur
during covert speech processing.

Summary
These results illustrate how fluctuations in oscillatory power in
time characterize posterior dorsal stream activity across speech
perception and production. Viewing these data alongside activity
from anterior dorsal regions (Jenson et al., 2014; Figure 5)
provides a window for understanding the temporal dynamics of
dorsal stream activity in speech discrimination and production
events. Prior to speech production, the pSTG is active (as
evidenced by α ERD) and primed to receive speech. In this
experiment, α ERD occurred as participants read the stimuli to
be produced. As speech was initiated, anterior dorsal regions
(e.g., PMC, µ ERD) became active as activity in the pSTG was
attenuated (α ERS). The patterns of oscillatory activity across
these cortical regions aligned temporally with muscle activity
and are suggestive of auditory suppression arising from an
efference copy driven sensorimotor loop that enables online
monitoring during normal speech production (Guenther et al.,
2006; Tian and Poeppel, 2010, 2015; Hickok et al., 2011; Houde
and Nagarajan, 2011; Arnal and Giraud, 2012; Hickok, 2012).
However, this interpretation is based solely on descriptions of
the strength and timing of activity across regions and should be
made with caution. Connectivity measures across these regions
are necessary to provide more direct evidence of the efference
copy mechanism.

Perhaps not surprisingly, dorsal stream activity in accurate
speech discrimination is more complex. Prior to stimulus onset,
anterior dorsal regions (e.g., PMC) are active, most likely
reflecting the recruitment of motor/attentional mechanisms for
internal modeling that help constrain the ensuing auditory
analysis. Both anterior and posterior regions of the dorsal
stream become active while stimuli are presented (evident by
µ ERD), most likely indicative of hypothesis testing (analysis
by synthesis). Finally, following stimulus offset and in the
absence of reafferent feedback from overt production, activity
in anterior dorsal regions is further enhanced (µ ERD), while
activity in posterior regions (temporal α ERS) is suppressed. This
pattern of late dorsal stream activity is similar to that observed
during speech production and indicative of covert rehearsal
following stimulus offset, potentially driven by efference copy.
Based on these findings, it is feasible that the dorsal stream
plays a variety of roles across the time course of stimuli
expectancy, presentation, and rehearsal to facilitate accurate
perception. However, because there were insufficient data
from inaccurate discrimination trials for comparison, it is not
currently possible to determine the extent to which each of
these processes individually contributes to perceptual acuity.
Oscillatory fluctuations reflecting activation changes across the
time course of speech discrimination suggests a dynamic rather

than static role for the dorsal stream. Activity before, during,
and after stimulus presentation may be explained as internal
modeling, analysis by synthesis (or perhaps direct realism),
and covert production, respectively. Taken together, the results
converge on a dynamic constructivist perspective espousing the
notion that speech discrimination is facilitated by embodied
articulatory representations, attention, experience, and short-
term memory (Callan et al., 2006, 2010, 2014; Galantucci et al.,
2006; Bowers et al., 2013, 2014; Jenson et al., 2014).

Limitations and Future Directions
While the results of this study provide compelling evidence
that the neural dynamics of the temporal α oscillator and the
sensorimotor µ rhythm work in synchrony to accomplish online
monitoring of speech in production and hypothesis testing in
perception, certain limitations should be addressed. The source
localization of auditory α clusters should be interpreted with
caution based on the inherent uncertainty of source localization
when performing EEG with 68 electrodes. In this study, the
uncertainty was illustrated by the difference between ECD and
CSD source localizations. The hypothesized communication
between these two clusters of independent components in this
study is based purely on temporally aligned concordant patterns
of ERS/ERD. While it is clear that these regions are co-active
in time periods that could support a sensorimotor feedback
loop, direct transfer of information cannot be inferred solely
on the basis of the data presented. Direct evidence for cortico-
cortical communication between these two regions during speech
perception and production requires further analysis with a
measure that is able to assess coherence between cortical regions
(e.g., any frequency-sensitive variant of Granger causality).
However, such connectivity analyses are beyond the scope of this
paper. In addition, analyses in the current study were restricted
(according to our hypotheses) to activity in the α band, which
characterized the spectrum of the components in the region of
interest. However, there was also evidence of differential activity
in other frequencies (e.g., theta-gamma nesting; Giraud and
Poeppel, 2012), though their analysis was beyond the scope of
the current study.

It should also be noted that the tasks used in this study
(discrimination and production of syllable pairs in isolation) may
not be representative of normal human communication (Hickok
and Poeppel, 2000; Skipper, 2014). They lack normal audiovisual
and semantic contextual cues, potentially requiring greater levels
of processing than would be required in normal communicative
situations. Despite these potential shortcomings, the temporal
alignment of sensorimotor µ ERD, peri-labial EMG activity, and
temporal α ERS strongly suggests the presence of a sensorimotor
feedback loop for online monitoring and hypothesis testing, and
warrants further investigation with methods able to establish
cortico-cortical communication. Finally, deeper understanding
of typical sensorimotor activity for speech enables the analysis
and description of neural activity in clinical populations such
as individuals who stutter, in whom auditory regions are found
to show even greater deactivation than normal, possibly due to
compromised SMI during speech production (Max et al., 2003;
Brown et al., 2005; Watkins et al., 2008).
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Conclusion

ICA identified components over auditory association cortices
with expected characteristic α spectra. ERSP analysis of temporal
α components demonstrated reduced activity concurrent with
periods of overt and covert production. These findings
demonstrate the utility of the ICA/ERSP analysis for localizing
and temporally delineating neural activity in speech events.
The temporal alignment of auditory α ERS, sensorimotor
µ ERD, and peri-labial EMG activity in production tasks
supports previous interpretations of temporal α ERS indexing
a relative deactivation of auditory regions which may possibly

be attributed to an efference copy mechanism involved in the
online monitoring of ongoing speech. In perception conditions,
the synchrony of temporal α ERS and sensorimotor µ ERD
likely represent a similar mechanism as subjects engaged in
covert rehearsal of syllable pairs held in working memory.
These observed phenomena reflecting the interactions of
multiple dorsal stream regions may provide a framework
for describing normal speech-related sensorimotor activity.
The non-invasive and cost-effective nature of the technique
supports its continued application to investigating neural
network dynamics in normal and clinical populations of
all ages.
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