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It remains an ongoing investigation about how the neural activity alters with the diurnal
rhythms in human brain. Resting-state functional magnetic resonance imaging (RS-fMRI)
reflects spontaneous activities and/or the endogenous neurophysiological process of
the human brain. In the present study, we applied the ReHo (regional homogeneity)
and ALFF (amplitude of low frequency fluctuation) based on RS-fMRI to explore the
regional differences in the spontaneous cerebral activities throughout the entire brain
between the morning and evening sessions within a 24-h time cycle. Wide spread brain
areas were found to exhibit diurnal variations, which may be attributed to the internal
molecular systems regulated by clock genes, and the environmental factors including
light-dark cycle, daily activities and homeostatic sleep drive. Notably, the diurnal variation
of default mode network (DMN) suggests that there is an adaptation or compensation
response within the subregions of DMN, implying a balance or a decoupling of regulation
between these regions.
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INTRODUCTION

Circadian rhythm of sleep and wakefulness is a fundamental property of human physiology, which
is important for sustaining essential body functions. It has been reported that the physiology of
human brain is rhythmic genetically and systematically (Smale et al., 2008). The suprachiasmatic
nuclei (SCN), located in a small region of the hypothalamus, is considered to be the primary
circadian clock in mammals (Hastings et al., 2003; Saper et al., 2005). SCN activity fluctuates
on a daily basis (Hofman and Swaab, 1993). Understanding system properties intrinsic to the
SCN, as well as its regulation of peripheral oscillators throughout the brain and body will provide
a fundamental contribution to our understanding of the neurophysiological basis of human
circadian behavior.

The fluctuating activities of SCN and peripheral oscillators, in concert with the learning and
experience over the course of a day may influence neurons activity and the way brain regions
communicate with each other. Resting-state functional magnetic resonance imaging (RS-fMRI)
technique can investigate brain activity by measuring the variance in the spontaneous fluctuations
of the blood oxygen level dependent (BOLD) signal. Based on RS-fMRI, regional homogeneity
(ReHo) and amplitude of low frequency fluctuation (ALFF) methods have been used to analyze
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spontaneous low-frequency (<0.08 Hz) blood oxygenation level-
dependent fluctuations of the brain (Zang et al., 2004; Yang
et al., 2007). ReHo measures the coherence of low frequency
fluctuation within a given area, which can be used to assess the
synchrony of neural activity based on the hypothesis that brain
activities would more likely occur in clusters than in a single
voxel. ALFF is associated with field potential activity of local
brain regions (Logothetis et al., 2001) that could be employed
to evaluate the intensity of intrinsic or spontaneous neuronal
activity of the brain (Yu-Feng et al., 2007). Therefore, ReHo and
ALFF can serve as sensitive markers indicating the alteration of
brain function. For example, ReHo decreases in the posterior
cingulate cortex/precuneus (PCC/PCu) in the AD patients (He
et al., 2007), ALFF increases in the anterior portion of the dorsal
anterior cingulate cortex in subthreshold depression patients (Li
et al., 2014).

A recent research investigated if the brain networks are
stable during a 24-h period by acquiring RS-fMRI data from 12
young adults at 3-h intervals over 24 consecutive hours. The
authors found resting state sub-network dynamicity, especially
the dynamic fluctuations of default mode network (DMN)
connectivity and speculated that connectivity may have different
spatiotemporal properties on the neural level (Park et al.,
2012). Marek et al. (2010) also reported that the orienting
and executive attention neuronal networks present time-of-day
related variations with a stroop-like task performed five times a
day. In our previous work, we have found a diurnal variation
pattern of white matter microstructure which may function as
the substrates of the phasic neural activities in correspondence
to the environment adaptation in a light-dark cycle (Jiang et al.,
2014). These analyses of the spontaneous neural activities in
response to the diurnal rhythm may provide a new insight toward
better understanding of the brain physiology and sleep medicine.
Therefore, we aim to investigate the dynamic characteristic of
neural activity by evaluating the intra-individual variability of
ReHo and ALFF over one light-dark cycle.

MATERIALS AND METHODS

Subjects
This study was approved by the institutional review board of
Shenzhen Institutes of Advanced Technology. Informed consent
was obtained from each of the 16 healthy subjects (6 males, 10
females, 23–31 years, mean age 24.8 ± 2.0 years) prior to the
MRI examinations. All the subjects were graduate students whose
daily activities follow a campus routine in which the regular
meal time, bedtime (11:00 pm ± 1 h), and taking classes for the
rest time were followed. No participant was excluded because of
neurological or psychiatric illnesses, sleep disorder, drug, coffee,
smoking, or alcohol abuse.

MRI Data Acquisition
All the experiments were performed on a 3T Siemens MRI
scanner (Siemens Trio system, Erlangen, Germany) with a 12-
channel head coil in a scan room with temperature controlled
between 23 to 24◦C. High resolution T1 weighted whole brain

scan was acquired using MPRAGE sequence for anatomical
reference with TR/TE/TI 1900/2.53/900 ms, flip angle 9◦, field of
view (FOV) 250 mm, slice thickness 1 mm, acquisition matrix
256× 256. Resting state BOLD images were acquired axially with
an echo-planar imaging (EPI) sequence with TR/TE 3000/30 ms,
flip angle 90◦; FOV 210 mm, matrix 128 × 128, 30 slices,
thickness 3 mm, bandwidth 1395 Hz/pixel, 60 volumes. Subjects
were instructed to keep their eyes closed, relax their minds and
remain motionless as much as possible but were requested not
to fall asleep during the MRI data acquisition. Integrated parallel
acquisition technique (iPAT) with acceleration factor of 2 was
used to reduce the acquisition time and image distortion from
susceptibility artifacts.

For each subject the MRI data was acquired in the morning at
8:30 am ± 0.5 h and repeated in the evening at 7:30 pm ± 0.5 h
during a 24-h interval, about 0.5–1 h after meal before the MRI
acquisition.

Data Preprocessing
Data preprocessing was carried out using Data Processing
Assistant for Resting-State fMRI (DPARSF1). The first 10 volumes
of each time series were discarded for the instability of the
initial MRI signal and subjects’ adaptation. The remained
fMRI data were corrected for within-scan acquisition time
differences between slices. After head motion corrected by
realignment of all consecutive volumes to the first image
[using a least square approach and a six parameter (rigid
body) spatial transformation], the fMRI data were coregistered
(rigid-body transformation) to T1-weighted images, and then
spatially normalized (12-parameter affine transformation) to the
MNI (Montreal Neurological Institute) space and resample to
3 mm × 3 mm × 3 mm. Temporal band-pass filtering (0.01–
0.08 Hz) was then used to remove the linear trend of time courses
to reduce low-frequency drift and physiological high frequency
respiratory and cardiac noise. ReHo was defined by Kendall’s
coefficient of concordance (KCC) which was used to measure
ReHo of the time series of a given voxel with those of its nearest
neighbors according to formula 1 (Zang et al., 2004). In order
to reduce the effect of individual variability, ReHo was divided
by the global mean value for each subject. Then the ReHo map
was smoothed with a Gaussian filter of 4 mm full width at
half-maximum (FWHM).

W =
∑

R2
i − n(

−

R)2

1
12K

2(n3 − n)
(1)

where W is the KCC among given voxels, ranged from 0 to 1; Ri is
the sum rank of the ith time point; where R = ((n+ 1)K)/2 is the
mean of the Ri’s; K is the number of time series within a measured
cluster (27, one given voxel plus the number of its neighbors); n
is the number of ranks (here n= 50).

The filtered time series were converted to a frequency domain
using a Fast Fourier Transform. Then the square root of power
spectrum was calculated and averaged within the frequency range
between 0.01 and 0.08 Hz at each voxel. ALFF was defined by the

1http://www.restfmri.net
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averaged square root. In order to reduce the effect of variability
across participants, the ALFF of each voxel was divided by the
global mean ALFF value. A more detailed methodology of ALFF
can be found in previous studies (Yang et al., 2007; Yu-Feng et al.,
2007).

Statistical Analysis
A one sample t-test was performed within each scan session to
explore which brain regions show higher ReHo/ALFF than global
mean value (p < 0.001, FDR corrected). Paired t-test was applied
to compare the ReHo/ALFF difference between the morning
and evening scan sessions. Voxels with p < 0.05 and cluster
size >85 voxels were considered to be statistically significant
(corrected by AlphaSim program). Two statistic parametric files
were obtained during the paired t-test in ReHo and ALFF, which
were then used to extract the overlapped brain regions in ReHo
and ALFF by a homemade program implemented in MATLAB
(Mathworks, Natick, MA, USA). Parametric data was mapped to
the T1 weighted images to facilitate visualization.

RESULTS

Diurnal Variations of ReHo
The results of inner-group ReHo analysis were shown in Figure 1.
Voxels in the middle occipital gyrus and the DMN including
PCC, PCu, medial prefrontal cortex (MPFC) and bilateral inferior
parietal lobe (IPL) exhibited significantly higher ReHo relative
to the rest brain areas. The neural activity of the AM and PM
sessions were comparable in pattern but different in strength.

Compared to the PM session, the AM data showed a
significant ReHo increase in the areas including bilateral middle
and inferior occipital gyrus (BA17, BA18, BA19), lingual gyrus,
fusiform gyrus, precentral and postcentral gyrus, cuneus and
paracentral lobule, left middle and superior temporal gyrus and
decreased in bilateral superior and middle frontal gyrus, medial-
and inferior-orbital frontal gyrus, superior frontal gyrus, anterior
cingulate, PCC, PCu, parahippocampal gyrus, hippocampus,
caudate, amygdala and right inferior-orbital frontal gyrus
(Figure 2) (summarized in Tables 1 and 2). In summary, the
ReHo mainly increased in the morning session in the occipital,
parietal and left temporal lobes, and decreased in frontal and
anterior-posterior cingulate midline.

Diurnal Changes of ALFF
For the inner-group ALFF analysis, significant increased ALFF
was shown in PCC, MPFC, PCu, and the non-specific areas
including ventricles and cisterns (Figures 3A,C) within AM
and PM sessions. As ALFF is sensitive to physiological noise
irrelevant to brain activity (Zou et al., 2008), fractional ALFF
(fALFF) method, a ratio of the power of each frequency at
the low-frequency range (0.01–0.08 Hz) to that of the entire
frequency range, was applied to suppress the non-specific signal
components in the rs-fMRI and improve the sensitivity in
detecting regional spontaneous brain activity. Higher fALFF was
found in bilateral occipital lobes, PCC, PCu, cuneus, IPL, MPFC,

middle and superior temporal gyrus, precentral and postcentral
gyrus, as shown in Figures 3B,D.

Compared to the PM session, significant increased morning
ALFF occurred in left precentral and postcentral gyrus, middle
and superior temporal gyrus, bilateral paracentral lobule, lingual
gyrus, cuneus, superior and middle and inferior occipital gyrus,
and decreased in the area including bilateral anterior cingulate,
rectus, medial- and inferior-orbital frontal gyrus, superior frontal
gyrus, and right posterior cingulate, amygdala, hippocampus,
parahippocampal gyrus, PCu, middle and inferior temporal gyrus
(Figure 4) (summarized in Tables 3 and 4).

Brain Areas with Both ReHo and ALFF
Variations
Compared to the PM session, ReHo and ALFF of the morning
session were both increased in bilateral middle and inferior
occipital gyrus (BA17, BA18, BA19), lingual gyrus, cuneus,
paracentral lobule, left precentral and postcentral gyrus, left
middle and superior temporal gyrus, and decreased in bilateral
anterior cingulate, superior frontal gyrus, rectus, medial- and
inferior-orbital frontal gyrus, amygdala, right PCC, inferior
temporal gyrus and parahippocampal gyrus (Figure 5).

DISCUSSION

The current study demonstrated the diurnal rhythmic dynamic
of the neural activity of human brain. Circadian rhythms are
widespread in human brain and influenced by the interactions
between internal molecular systems and environmental cues
(Cirelli, 2009; Mohawk et al., 2012). Core clock genes are
known to comprise transcriptional-translational auto-regulatory
complexes. These genes make up a group of auto-regulatory
loops with diurnal variation of activity and present rhythmic
expression of their own and their regulatory target transcrips. Li
et al. (2013) reported that there exists a rhythmic rise and fall
in the transcriptional activity of hundreds of genes [including
three Period homolog (PER 1-2-3) genes; brain and muscle Arnt-
like protein-1 (BMSL1) and so on] initiating or responding to
the regulation of 24-h behavioral and hormonal cycles. Vicentic
et al. (2005) also found that CART (cocaine- and amphetamine-
regulated transcript) peptides exhibit a diurnal rhythm in several
brain regions including nucleus accumbens, hypothalamus and
amygdala. Muto et al. (2016) investigated the local modulation
of human brain responses by circadian rhythmicity and sleep
debt. They found that the response of some subcortical regions
like thalamus, head of caudate nucleus and putamen follows
a 24 h circadian rhythmicity, and some brain regions were
affected significantly by sleep debt, and some are affected by the
interaction of the two factors (Muto et al., 2016). The circadian
rhythmicity may substrate the physiological mechanisms of the
diurnal variation of ReHo and amplitude fluctuation of neural
activity occurred in some of the structures mentioned above in
the current study.

The DMN is supposed to be involved in self-referential
functions such as internal mentation, recollection and
imagination and conceptual processing, containing a set of
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FIGURE 1 | One sample t-test results of mean ReHo maps within the AM group (Top) and PM group (Bottom) (MNI coordinates x = −1, y = −35,
z = 29). Statistical maps were overlapped on the anatomical template for visualization.

FIGURE 2 | Diurnal changes of ReHo. The final statistical maps are visualized by eight views (The first row from left to right is lateral view of left hemisphere, top
side, lateral view of right hemisphere. The second row from left to right is medial view of left hemisphere, bottom side, medial view of right hemisphere. The third row
is frontal and back side). Color bar indicates t-value (Red–yellow, AM > PM, blue–green, AM < PM).

interacting brain areas that are functionally connected. It can
be divided into sub-networks contributing to specific tasks or
intrinsic cognitive demand (Mayer et al., 2010; van Buuren et al.,
2010). The current study demonstrated that overall the DMN is

involved in greater neural activity at resting state in both morning
and the evening as compared to the other brain areas, which is
consistent with previous findings (Raichle et al., 2001; Fransson,
2005). But some of the structures were found to be more subject
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TABLE 1 | Summary of brain regions with significant increased ReHo in
AM group compared to PM group.

Brain regions Peak coordinate Cluster size Maximum
t-value

Cuneus_R (21 −96 12) 187 5.9733

Occipital_Mid_R 116

Lingual_R 172

Occipital_Sup_R 190

Occipital_Inf_R 54

Fusiform_R 50

Calcarine_R 140

Postcentral_R 297

Precentral_R 71

Paracentral_Lobule_R 78

Cuneus_L 167

Occipital_Mid_L 336

Lingual_L 325

Occipital_Sup_L 228

Occipital_Inf_L 142

Fusiform_L 117

Calcarine_L 189

Postcentral_L 203

Precentral_L 92

Paracentral_Lobule_L (−6 −36 72) 82 4.636

Temporal_Mid_L 262

Temporal_Sup_L (−54 −6 0) 85 4.3854

to the diurnal alterations at the neural activity level, such as
MPFC, medial temporal lobe, PCu and PCC. The divergence
of the diurnal variation in these structures may suggest the
functional coordination of the anatomically independent gyri.
It has been reported that perturbations in DMN activity during
wakefulness display co-occurring abnormalities of sleep in a
number of disorders (Cherkassky et al., 2006; Garrity et al., 2007;
Zhao et al., 2007). The DMN functional connectivity was found
to be reduced in sleep deprivation (De Havas et al., 2012). The

TABLE 2 | Summary of brain regions with significant decreased ReHo in
AM group compared to PM group.

Brain regions Peak coordinate Cluster size Maximum
t-value

Frontal_Sup_Orb_R (18 21 −15) 27 −5.887

Frontal_Mid_Orb_R 31

Frontal_Sup_R 128

Frontal_Mid_R 117

Frontal_Sup_Medial_R 111

Frontal_Inf_Orb_R 96

ParaHippocampal_R 111

Hippocampus_R 96

Amygdala_R 36

Precuneus_R (−21 −39 27) 100 −6.2167

Cingulum_Ant_R 102

Cingulum_Post_R 32

Caudate_R 14

Frontal_Sup_Medial_L 234

Frontal_Sup_L 65

Frontal_Sup_Orb_L 17

Frontal_Med_Orb_L 20

Frontal_Mid_L 15

ParaHippocampal_L 32

Hippocampus_L 49

Amygdala_L (−27 −3 −15) 26 −4.173

Precuneus_L 60

Cingulum_Ant_L 41

Cingulum_Post_L 28

Caudate_L 64

PCu and PCC, which demonstrated increased activity in the PM
group, play a pivotal role in the mediation of intrinsic activity
through DMN (Fransson and Marrelec, 2008). In the contrast,
the activity of medial temporal lobe decreased in the PM group.
Considered in the context of these findings, it’s reasonable
to hypothesize that diurnal changes in DMN activity reflect

FIGURE 3 | One sample t-test results of mean ALFF (A,C, left column) and fALFF (B,D, right column) maps within the AM group (top row) and PM group
(bottom row) (MNI coordinates x = −1, y = −35, z = 29). Statistical maps were overlapped on the anatomical template for visualization.
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FIGURE 4 | Diurnal changes of ALFF. The final statistical maps are visualized by eight views (The first row from left to right is lateral view of left hemisphere, top
side, lateral view of right hemisphere. The second row from left to right is medial view of left hemisphere, bottom side, medial view of right hemisphere. The third row
is frontal and back side). Color bar indicates t-value (Red–yellow, AM > PM, blue–green, AM < PM).

TABLE 3 | Summary of brain regions with significant increased ALFF in AM
group compared to PM group.

Brain regions Peak coordinate Cluster size Maximum
t-value

Lingual_L (−18 −75 −12) 160 5.8333

Occipital_Mid_L 250

Occipital_Sup_L 131

Occipital_Inf_L 50

Calcarine_L 162

Cuneus_L 123

Temporal_Mid_L 153

Postcentral_L (−51 −18 51) 89 4.5896

Precentral_L 23

Paracentral_Lobule_L 47

Occipital_Sup_R 74

Occipital_Mid_R 68

Occipital_Inf_R 17

Cuneus_R 134

Lingual_R 66

Paracentral_Lobule_R (6 −27 66) 16 3.977

adaptation or compensation response under continued wakeful
condition. It may also imply that there is a balance of neural
activity within DMN subregions, or a decoupling of regulation
between these regions.

The occipital lobe shows significant decrease in ReHo and
ALFF map in the PM group than that in the AM group. These
findings are contrary to our initial assumption. The occipital lobe

TABLE 4 | Summary of brain regions with significant decreased ALFF in
AM group compared to PM group.

Brain regions Peak coordinate Cluster size Maximum
t-value

Amygdala_R (24 0 −21) 24 −6.4419

ParaHippocampal_R 64

Hippocampus_R 56

Fusiform_R 30

Precuneus_R 26

Frontal_Sup_R 94

Frontal_Mid_R 142

Frontal_Inf_Orb_R 86

Frontal_Sup_Medial_R 87

Rectus_R (3 54 −15) 77 −6.2089

Cingulum_Ant_R 36

Cingulum_Post_R 20

Temporal_Inf_R (51 −33 −21) 44 −4.3871

Temporal_Mid_R 28

Frontal_Sup_L 33

Frontal_Med_Orb_L 31

Frontal_Inf_Orb_L 26

Cingulum_Ant_L 20

Rectus_L 72

is mainly related to the visual information processing. The photic
stimulus duration has an effect of “temporal integration” on
neurons (Dkhissi-Benyahya et al., 2000), which means the neural
activity should increase in the PM group. Also, decreased ADC
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FIGURE 5 | Axial sections show areas with significant diurnal variations of both ReHo and ALFF. The left hand side of the image is the right side of the
brain (radiology convention). The hot color indicates increased ReHo and ALFF in AM compared to PM, and cool color indicates decreased ReHo and ALFF.

(apparent diffusion coefficient) mainly occurred in the occipital
lobe in the PM group in our previous study on diurnal variation
of white matter using diffusion tensor imaging (DTI), which is
believed to associate with the increased neuron activation (Jiang
et al., 2014). But Buysse Daniel et al. (2004) measured relative
glucose metabolism in the morning and in the evening with
PET, and found significantly lower glucose metabolism in the
evening than in the morning in occipital lobe, including cuneus,
medial occipital gyrus, lingual gyrus, and occipitotemporal gyrus,
which was interpreted to reflect increasing homeostatic sleep
drive and/or the restorative effect of sleep. Muto et al. (2016)
reported that the neural response of occipital gyrus are modulated
by the interaction of circadian rhythmicity and sleep debt. These
investigations suggest that sleep debt may have dominant control
in the occipital lobe in the evening under current experiment
condition.

Precentral and postcentral gyri have higher homogeneous
neural activity and low frequency fluctuation in the morning
than in the evening. This may suggest that during the evening
hours, the somatosensory and motor functions represent a
weakened response to the afferent and/or efferent signals.
The exact biological mechanisms behind ReHo and ALFF
remain unclear up to date. ReHo was defined as the temporal
homogeneity of the regional BOLD signal (Zang et al., 2004),
while ALFF reflects the amplitude of low-frequency fluctuation
in the range of 0.01–0.08 Hz (Yu-Feng et al., 2007). Logothetis
and Wandell (2004) reviewed that the hemodynamic response
primarily reflects the neuronal input to the relevant area of
the brain and synaptic potentials are the strongest cause of
the BOLD response. The lower ReHo and ALFF in precentral
and postcentral gyri found in this study may indicate that the
synchronization of neural activity in these areas is disrupted
and the amplitude of low-frequency fluctuation of BOLD
signal decreases, possibly corresponding to the deteriorated
somatosensory and motor response to the external stimulus and

weakened local field potential as a result of increased level of
exhaustiveness, sleepiness, and absentmindedness after a day
experience.

The prefrontal cortex (including medial- and inferior-orbital
frontal gyrus, and anterior cingulate) shows greater cerebral
BOLD response in the PM group than in the AM group.
These regions are reported to be involved in alertness, attention
and higher-order cognition processes. However, Thomas et al.
(2000) found that brain activity and function decrease in
prefrontal cortex and thalamus after 24 h of sleep deprivation
using positron emission tomography (PET), which implies
that the need for recuperation in these areas is greater
than other brain regions. On the contrary, Drummond and
Brown (2001) reported that prefrontal cortex and parietal lobes
showed increased activation in verbal learning and divided
attention tasks after total sleep deprivation using fMRI, which
may suggest a specific compensatory mechanism designed
to combat increased sleepiness. Increased evening activity in
the prefrontal cortex was also identified in this study. We
hypothesize that the increased sleepiness or fatigue after a
day of activity may induce neurochemical consequences for
the brain to adapt to fulfillment the demand for the alertness
as well as the higher cognitive performance as dark cycle
approaches.

LIMITATIONS OF CURRENT STUDY

It should be noted that there are several limitations in this study.
For example, the resting state fMRI signal is partially affected
by cardiac pulsation, respiration, vasoconstriction, instrumental
and thermal sources of noise. We didn’t record the physiological
parameters mentioned above during the fMRI data acquisition.
During the data preprocessing procedure, a temporal band-pass
filter was used to reduce low frequency drift and high frequency
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physiological noise. This may alleviate, although not completely
eliminate the effect on accuracy and reliability for the current
study.

Sex related difference in cerebral structure and function was
not taken into account in this study, which may confound the
interpretation of the results. Evidences have been accumulating
that sex disparity matters in the circadian modulation of mammal
brain (Mong et al., 2011). Women are found to have shorter
intrinsic periods and earlier phase of melatonin rhythms as
well as greater night-time impairment in cognitive performance
as compared to men (Duffy et al., 2011; Santhi et al., 2016),
but the intrinsic circadian periods of both gender are close
to 24 h. In addition, healthy people have different preferences
in sleep pattern such as morning “lark” or evening “owl”
chronotypes. This may also embed complicated mechanisms
of rhythmic dynamics of human brain that this study did not
reach.

Lastly, the fMRI data were acquired from only 16 young
subjects at two time points. The sample size was relatively small.
This can’t and limit us in providing more significant findings.
A larger sample size covering multiple age groups and time
points are expected to provide stronger statistical power with
reduced individual effects and enable a more detailed tracking
of neural activities during the time course of a day–night
cycle.

Further study is needed to optimize the experiment design,
like recruitment of single gender subjects, melatonin assays
to assess circadian phase, performing different cognitive tasks

that are differentially affected by sleep drive and circadian
rhythmicity.

CONCLUSION

Neural activity of healthy young human brain exhibits a
diurnal pattern which may be related to circadian plasticity or
accumulated waking, which may substrate the neurobiological
and behavioral mechanisms of sleep hygiene and sleep disorders.
Factors of time of day should be taken into account in the
functional neuroimaging based neural studies even under resting
conditions.
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