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Immune responses in the central nervous system (CNS), which involve both resident glial
cells and infiltrating peripheral immune cells, play critical roles in the progress of brain
injuries and neurodegeneration.To avoid inflammatory damage to the compromised brain,
the immune cell activities in the CNS are controlled by a plethora of chemical mediators
and signal transduction cascades, such as inhibitory signaling through programed death-1
(PD-1) and programed death ligand (PD-L) interactions. An increasing number of recent
studies have highlighted the importance of PD-1/PD-L pathway in immune regulation in
CNS disorders such as ischemic stroke, multiple sclerosis, and Alzheimer’s disease. Here,
we review the current knowledge of the impact of PD-1/PD-L signaling on brain injury
and neurodegeneration. An improved understanding of the function of PD-1/PD-L in the
cross-talk between peripheral immune cells, CNS glial cells, and non-immune CNS cells is
expected to shed further light on immunomodulation and help develop effective and safe
immunotherapies for CNS disorders.
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INTRODUCTION
The central nervous system (CNS) was traditionally thought to tol-
erate the invasion of antigens without an inflammatory response.
The presence of an intact blood–brain barrier (BBB) and the lack
of lymphatic vessels in the brain was believed to restrict the infil-
tration of peripheral immune cells into brain parenchyma under
physiological conditions and maintain the CNS in a so-called
“immune-privileged” state (Engelhardt, 2008). Recent research,
however, has resulted in a revision of this concept. Compelling data
now suggest that the CNS is actually immunocompetent and not
completely immune-privileged. A series of neuroinflammatory
responses, involving both resident CNS glial cells and periph-
eral immune cells invading via the damaged BBB, are promptly
launched in response to noxious stimuli (Zipp and Aktas, 2006).
These immune cells are important for defense against CNS infec-
tion, injury, or neurodegeneration and for CNS repair and regen-
eration. Their activities, however, have to be carefully regulated to
avoid inflammatory damage to already compromised and highly
vulnerable tissues of the CNS.

The tendency of the immune system to damage bystander tis-
sue is kept in check by a series of self-regulating, inhibitory systems
that preserve immune homeostasis. For example, inhibitory sig-
naling through programed death-1 (PD-1) and programed death
ligand (PD-L) interactions is an important mechanism underlying
immune regulation in many pathological circumstances, such as
autoimmune diseases, cancer, and organ transplantation. Recent
evidence indicates that the PD-1/PD-L system is also critical in
reducing the inflammatory responses in CNS diseases such as

stroke, multiple sclerosis (MS), and Alzheimer’s disease (AD)
(Kroner et al., 2005; Ren et al., 2011b; Saresella et al., 2012).
Here, we review our accumulated understanding of the PD-1/PD-
L pathway, with a special emphasis on its potential role in brain
injuries and neurodegenerative diseases.

FUNCTIONS OF PD-1/PD-L1 IN IMMUNE RESPONSES
Programed death-1 (or CD279) is a 50–55 kDa member of the
CD28 family of T-cell regulators (Riley and June, 2005). It is
expressed at a low level on naïve T-cells and can be induced
upon activation in many types of immune cells, including T-
cells, B cells, natural killer (NK) cells, monocytes, and dendritic
cells (DCs). Structurally, PD-1 is composed of an N-terminal
IgV-like domain, an approximately 20 amino acid-long stalk, a
transmembrane domain, and a cytoplasmic domain. The cyto-
plasmic domain contains two tyrosine-based signaling motifs:
an immunoreceptor tyrosine-based inhibitory motif (ITIM) and
an immunoreceptor tyrosine-based switch motif (ITSM), both
of which are essential for PD-1 function (Zhang et al., 2004).
PD-1 has two binding ligands: PD-L1 (CD274) and PD-L2
(CD273). Both of these ligands are members of the B7 fam-
ily of costimulatory molecules. PD-L1 is broadly expressed on
a variety of hematopoietic cells (including T-cells, B cells, DCs,
and monocytes) in addition to many non-hematopoietic cells,
such as epithelial and endothelial cells. In contrast, the expres-
sion of PD-L2 is mainly restricted to antigen presenting cells
(APCs), including macrophages, DCs, and specific B cell sub-
populations (Zhong et al., 2007). In general, PD-L2 is expressed
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at lower levels but binds to PD-1 with higher affinity than PD-
L1 (Ghiotto et al., 2010).

The breadth of expression of PD-1 and PD-L in multiple
types of immune cells suggests a wide range of functions in
immunomodulation. First and foremost, the main role of PD-
1/PD-L1 is to act as a negative regulatory system to fine-tune T-cell
and B cell activity. The engagement of T or B cell-expressed PD-1
with PD-L on APCs relays inhibitory signals that down-regulate
T-cell receptor (TCR) or B cell receptor (BCR)-mediated cell acti-
vation (Freeman et al., 2000; Latchman et al., 2001; Okazaki et al.,
2001; Yokosuka et al., 2012). As a consequence of this interac-
tion and downstream effect, the PD-1/PD-L system plays critical
roles in many T or B cell-mediated immune responses, including
immunity to infection, antibody production, immune tolerance,
and autoimmunity (Okazaki et al., 2013). For example, mounting
evidence reveals the importance of the PD-1/PD-L pathway in the
maintenance of central and peripheral tolerance. On the one hand,
PD-1/PD-L1 interactions regulate T-cell selection and shape T-
cell repertoires in the thymus (Blank et al., 2003; Keir et al., 2005).
Absence of PD-1 alters the signaling threshold during T-cell devel-
opment in thymus and leads to increased emergence of CD4/CD8
double-negative αβ T-cells. On the other hand, the PD-1/PD-L1
pathway also induces T-cell tolerance and inhibits self-reactive T-
cell proliferation and cytokine production in peripheral lymph
organs or tissues (Probst et al., 2005). Deficiency of PD-1 or
blockade of PD-1/PD-L signaling results in the development or
exacerbation of autoimmune diseases in mouse models of lupus-
like glomerulonephritis/arthritis, cardiomyopathy, type I diabetes,
experimental autoimmune encephalomyelitis (EAE), and autoim-
mune enteritis (Nishimura et al., 1999, 2001; Salama et al., 2003;
Fife et al., 2009; Reynoso et al., 2009). These findings suggest that
PD-1/PD-L signaling plays an important protective role against
multiple types of autoimmune disorders. Interestingly, there is
some variation in the autoimmune disease phenotype depending
on the genetic background of different mouse stains, indicating
perhaps that lymphocyte regulation through PD-1/PD-L is highly
antigen specific (Okazaki et al., 2013).

Recent studies reveal that the PD-1/PD-L interaction also reg-
ulates the functions of cells other than lymphocytes through
multiple mechanisms. First, the PD-1/PD-L1 interaction between
T-cells and APCs may be bidirectional, enabling some degree of
reciprocal communication. For example, PD-1 on T-cells activates
PD-L1 on macrophages and induces a regulatory macrophage
profile with enhanced IL-10 and reduced IL-6 production (Lee
et al., 2013). Second, PD-1 signaling may function in APCs inde-
pendently of TCR or BCR activation. One example is that the
ligation of monocyte PD-1 with PD-L1 directly stimulates IL-10
production, leading to reversible CD4+ T-cell dysfunction after
HIV infection (Said et al., 2010). In addition, cross-linking of
PD-L2 on DCs with specific IgM directly stimulates DC func-
tions and activates groups of genes involved in cell migration
and survival (Blocki et al., 2006). These studies demonstrate that
PD-1/PD-L signaling blunts immune overreaction and prevents
cellular toxicity.

Unfortunately, our current knowledge about PD-1/PD-L func-
tions in different immune cells is still limited. Further exploration
of this field is expected to extend our understanding of the impact

of this inhibitory signaling system and evaluate its therapeutic
potential in immune-related diseases.

PD-1/PD-L1 SIGNALING PATHWAY
PD-1/PD-L1 signaling has been studied most extensively in T
and B lymphocytes. In these cells, PD-1 ligation induces signal
transduction only when there is simultaneous activation of BCR
or TCR. The binding of PD-1 with PD-L1, along with antigen
recognition, results in the phosphorylation of tyrosine residues in
the ITSM and subsequent recruitment of SH2 domain-containing
phosphatase-2 (SHP-2), or less frequently, SHP-1 (Freeman et al.,
2000; Latchman et al., 2001; Okazaki et al., 2001; Yokosuka et al.,
2012). SHP-2 and SHP-1 are two highly related tyrosine phos-
phatases that dephosphorylate proximal signaling molecules such
as Syk downstream of BCR or Zap70 downstream of TCR (Okazaki
et al., 2001; Sheppard et al., 2004). This dephosphorylation atten-
uates the signaling cascades engaged by antigen recognition and
diminishes the ensuing biological effects. The PD-1/PD-L1 acti-
vated signaling pathways in other types of cells remain to be
characterized.

PD-1 AND PD-L1 IN ISCHEMIC STROKE
Stroke is an acute brain injury closely associated with strong and
persistent inflammation. Post-stroke inflammation is character-
ized by the activation of local microglia and the rapid accumu-
lation of peripheral immune cells in the ischemic brain (Iadecola
and Anrather, 2011). The antigen-non-specific immune responses
mediated by innate immune cells (microglia, macrophage, neu-
trophil, NK cells, etc.) commence very early after stroke. In
contrast, the lymphocyte-mediated adaptive immune responses
become prominent at later stages (since 3–4 days after onset) of
stroke, although these lymphocytes may migrate into the ischemic
boundary within the first 24 h of reperfusion (Gelderblom et al.,
2009). Mounting evidence demonstrates that lymphocytes play
pivotal roles in both brain injury and brain recovery. For instance,
deficiency of either CD4+ or CD8+ T-cells resulted in the reduc-
tion in infarct volume and improvement in neurological perfor-
mance in experimental models of stroke, suggesting detrimental
roles of CD4+ and CD8+ T-cells after stroke (Yilmaz et al., 2006;
Liesz et al., 2011). However, some specific lymphocyte popula-
tions, including regulating T-cells and regulating B cells, have been
shown to be protective to ischemic brain or promote brain recovery
after stroke (Liesz et al., 2009; Li et al., 2013). Further elucidat-
ing the mechanisms underlying intricate immunoregulation after
stroke is critical not only for basic research of the immune sys-
tem and CNS injury but also for the clinical translation of new
therapeutic candidates.

Several recent publications have highlighted the importance
of PD-1 and PD-L1 signaling in post-stroke inflammation and
brain injury (Figure 1). For example, it has been reported that the
expression of PD-L1 and PD-L2 on peripheral B cells is signifi-
cantly increased 4 days after transient middle cerebral artery occlu-
sion (MCAO), an established experimental model of stroke (Ren
et al., 2011b). In the meantime, the expression of PD-1 is elevated
on activated resident microglia and on infiltrating macrophages.
These elevations in PD-1/PD-L support the notion that this co-
inhibitory pathway is intimately involved in the regulation of
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FIGURE 1 | PD-1/PD-L signaling in ischemic stroke. PD-1/PD-L signaling
may influence post-stroke inflammation and functional outcomes by
negatively regulating the following cell–cell interactions. (A) PD-L1/PD-L2
expression on B cells inhibits the activation of microglia, macrophages, or
effector T-cells, thereby reducing inflammation in the ischemic brain.
(B) PD-L1 expression on regulatory T-cells (Tregs) inhibits neutrophil-derived

matrix metalloproteinase-9 (MMP-9) through PD-L1–PD-1 interactions and
reduces subsequent blood–brain barrier (BBB) damage in the acute phase
after stroke. (C) PD-L1/PD-L2 inhibits immunoregulatory CD8+CD122+

suppressor T-cells, reducing their recruitment into the CNS from the spleen
after stroke. As a result, post-stroke inflammation and brain injury are
enhanced.

ischemic brain injury. Interestingly, experiments using PD-1 or
PD-L1 knockout mice have shown diametrically opposed results.
As would be expected from a protective role for PD-1, deficiency
in PD-1 enlarges brain infarct sizes and exacerbates neurological
deficits at 4 days after MCAO, and these events are accompa-
nied by increased infiltration of CD3+ T-cells, Gr1+ neutrophils,
macrophages, and exaggerated microglial activation (Ren et al.,
2011b). In contrast, another study from the same research group
using PD-L1 or PD-L2 knockout mice revealed that PD-L exac-
erbates post-stroke inflammation and plays a detrimental role
in stroke outcomes (Bodhankar et al., 2013b). Mechanistically,
the protective effects of PD-1 are attributed to its expression on
B cells and subsequent inhibition of inflammatory responses in
other immune effector cells (Ren et al., 2011b). The detrimen-
tal effects of PD-L1, however, may depend on its inhibition of
the recruitment of immunoregulatory CD8+CD122+ suppres-
sor T-cells from the spleen into the ischemic brain (Bodhankar
et al., 2013b). CD8+CD122+ regulatory T-cells are known to
regulate other CD8+CD122− T-cells, which cause tissue dam-
age when over-activated (Rifa’i et al., 2004). Thus, PD-L1 may
release CD8+CD122− T-cells from inhibition and thereby elicit
injury. The opposing nature of PD-1 and PD-L in these stud-
ies may reflect the frequently dualistic nature of the immune
system. Future immunotherapies will therefore have to account
for the general complexity of immunomodulation in the injured
brain.

A potential caveat of research on PD-1/PD-L is worth dis-
cussing here. All the above-mentioned studies on PD-1 and PD-L
in stroke rely on global gene knockout mice. Although these results
provide valuable information about the overall effects of PD-1
and PD-L on stroke outcome, they are by themselves not suffi-
cient to define the cell-specific functions of PD-1 and PD-L in
stroke. In this regard, further studies using transgenic mice with

cell-specific gene manipulations are necessary. In vitro studies
are also warranted to confirm direct cell–cell interactions. One
recent study from our group demonstrated direct interactions
between regulatory T-cells (Tregs) and neutrophils through PD-
L1 and PD-1 (Li et al., 2014). This interaction was found to
be essential for Treg-mediated suppression of neutrophil-derived
matrix metalloproteinase-9 (MMP-9). In view of the importance
of MMP-9 in early BBB disruption after stroke (Asahi et al., 2001;
Rosell et al., 2006), we further showed that PD-L1 expression on
Tregs mediates Treg-afforded neuroprotection against experimen-
tal stroke through the inhibition of peripheral neutrophil-derived
MMP-9 and through subsequent preservation of BBB integrity
(Li et al., 2014). In addition, another study demonstrated that
adoptive transfer of IL-10-producing B cells into the stroke mice
could increase the expression of PD-1 in peripheral CD4+ T-cells
(Bodhankar et al., 2013a), suggesting that PD-1/PD-L1 inter-
action might also be important in regulatory B cell-provided
neuroprotection after stroke (Ren et al., 2011a; Bodhankar et al.,
2013a).

Thus far, all the research on PD-1/PD-L in stroke has focused
on their short-term effects. Given the persistent immune responses
after stroke and their contribution to brain recovery, the long-term
influence of these inhibitory molecules in the ischemic brain is an
important direction to pursue in the future.

PD-1/PD-L1 PATHWAY IN NEURODEGENERATIVE DISEASES
ALZHEIMER’S DISEASE
Alzheimer’s disease is an age-related neurodegenerative disease
characterized by memory loss, progressive cognitive impairment,
and neuropsychiatric disturbances. The pathological hallmarks
of AD are the extracellular accumulation of amyloid plaques
and intracellular deposition of neurofibrillary tangles (Liu et al.,
2013). Aβ accumulation in amyloid plaques leads to chronic
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neuroinflammation in the brain, thereby contributing to dis-
ease progression and poor functional outcomes (Rubio-Perez and
Morillas-Ruiz, 2012). A reduction in suppressor cell function in
the periphery has been observed in AD patients, as manifested by
loss of balance in immune cell populations and decreased IL-10
production in the blood (Guerreiro et al., 2007; Speciale et al.,
2007). Therefore, activation of immunoregulatory mechanisms
during the progression of AD might be able to re-establish immune
homeostasis.

Expression of PD-1 on CD4+ T-cells and PD-L1 on CD14+

monocyte/macrophage significantly decrease in AD patients and
patients with mild cognitive impairment (MCI), underscoring
the importance of these molecules in AD (Saresella et al., 2012).
Impairments in PD-1/PD-L1 are associated with inhibition of
IL-10 production, suggesting an effect of this signaling system
in boosting IL-10 production. IL-10 has been shown to limit
inflammatory responses and ameliorate AD pathology in ani-
mal models (Koronyo-Hamaoui et al., 2009). A recent study
showed that although the IL-10 serum levels are comparable in
AD patients and healthy controls, the frequency of CD4+ T-
cells expressing IL-10 in AD group is much higher than that in
controls, indication a systemic effort to counterbalance the pro-
inflammatory responses in the AD brain (Torres et al., 2013).
Thus, it is conceivable that a decrease in this protective cytokine in
AD patients synergizes with an increased activity in Aβ-reactive
T-cells, thereby enhancing neuroinflammation and exacerbat-
ing brain pathology. In addition, the PD-1/PD-L1 interaction
is shown to induce the apoptosis in Aβ-specific CD4+ T-cells
(Saresella et al., 2012).

The expression of PD-1 on Tregs is also affected by AD pathol-
ogy (Saresella et al., 2010). The number of PD-1+ Tregs is increased
both in patients with fully developed AD and with MCI. In con-
trast, PD-1− Tregs are significantly increased only in MCI patients,
but not in full-blown AD patients. Although PD-1 has been known
to promote Treg differentiation (Wang et al., 2010), the functional
differences between PD-1− Tregs and PD-1+ Tregs are not clear.
Therefore, the significance of altered PD-1 expression on Tregs in
AD and MCI patients awaits further investigation.

To date, our knowledge of the function of PD-1/PD-L1 in the
pathology of AD is very limited. Further work is necessary to elu-
cidate the cellular and molecular mechanisms of PD-1 or PD-L1
actions in AD, such as their contribution to immune cell cross-talk
in the CNS.

MULTIPLE SCLEROSIS
Multiple sclerosis is a chronic inflammatory neurodegenerative
disease characterized by the demyelination of white matter and
focal infiltration of immune cells in the CNS (Minagar et al., 2004;
Compston and Coles, 2008). The CD4+ effector T-cells have long
been considered as the most important infiltrating cells in MS. The
involvement of other T-cell subtypes (interleukin-17-producing
T-cells, CD8+ T-cells, Tregs, and γ/ϕ T-cells), APCs, and microglia
has also been supported (Viglietta et al., 2004; Langrish et al., 2005;
Tzartos et al., 2008).

Mounting evidence highlights the importance of PD-1 and PD-
L in MS. The expression of PD-1 is significantly increased on

myelin basic protein (MBP)-stimulated CD4+ and CD8+ T lym-
phocytes isolated from the peripheral blood of patients with stable
MS compared to lymphocytes from patients with acute remis-
sions and relapses. Correspondingly, PD-L1-expressing APCs are
increased in stable MS patients. Up-regulation of PD-1/PD-L1
enhances the apoptosis of MBP-specific cells, which is associ-
ated with disease remission in MS patients (Trabattoni et al.,
2009). Moreover, an intronic 7146G/A polymorphisms within
the PD-1 gene, which result in reduced inhibitory function of
PD-1 on cytokine production and T-cell activation, are associ-
ated with a progressive disease course in MS patients (Kroner
et al., 2005). These findings demonstrate a potential role of PD-
1/PD-L1 in slowing the progression of MS. Consistent with these
human studies, animal experiments in the EAE model of MS have
shown that genetic ablation or pharmacological blockade of PD-1
or PD-L1 enhances the activation and expansion of T-cells and
aggravates pathological alterations in the CNS (Latchman et al.,
2001; Salama et al., 2003). In contrast, PD-L2 knockout mice
develop similar pathologies as wild-type mice with no significant
difference in severity (Carter et al., 2007). Furthermore, PD-L2
on microglial and CNS infiltrating APCs has been shown to be
less potent than PD-L1 in the regulation of cytokine (IFN-γ, IL-
17, etc.) production and the activation of auto-reactive T-cells
(Schreiner et al., 2008). A study of PD-L1 or PD-L2 blockade in
several mouse strains further suggests that differential effects of
these two PD-L isoforms on the susceptibility and progression
of EAE may be attributed to differences in genetic background
(Zhu et al., 2006).

Mechanistic studies suggest that PD-1/PD-L signaling actively
modulates the onset and progressive course of MS via the regu-
lation of various types of immune cells, such as effector T-cells,
DCs, Tregs, and NK T-cells (Latchman et al., 2004; Chang et al.,
2008; Schreiner et al., 2008; Brandl et al., 2010). These mechanisms
have been recently reviewed elsewhere (Joller et al., 2012) and are
therefore not discussed further here. Due to the importance of
the PD-1/PD-L system in MS, therapeutic strategies targeting PD-
1/PD-L1 interactions can be envisioned as an immunosuppressive
treatment for MS patients. For example, estrogen has been shown
to effectively protect against EAE through upregulating PD-L1
expression on B cells and increase the amount of IL-10-producing
regulatory B cells (Bodhankar et al., 2011). It also induces B-cell-
dependent up-regulation of PD-1 on CD4+Foxp3+ Tregs, which
provide further protection against EAE (Bodhankar et al., 2012).
IL-12, a cytokine mainly produced by APCs, is also shown to sup-
press the development of EAE through stimulating IFN-γ produc-
tion in APCs and enhancing downstream PD-1/PD-L1 signaling
(Cheng et al., 2007). Further studies are warranted to assess the
effectiveness of PD-1/PD-L1 modulation as a therapeutic strategy
in MS patients.

CONCLUSION
The expression of PD-1 and PD-L on many immune and non-
immune cells surely allows for multiple tiers of immunoregu-
lation in the CNS and remains an active area of investigation.
Increasing numbers of clinical and experimental studies have
shed light on the critical role of the PD-1/PD-L1 system in
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the regulation of resident microglia in the CNS and peripheral
immune cells after brain injury and neurodegeneration. How-
ever, given the complexity of inflammatory responses in the
CNS, our current understanding of the function of PD-1/PD-
L in the cross-talk between peripheral immune cells, CNS glial
cells, and non-immune CNS cells still lies in its infancy. As
an example, the expression of PD-L1/PD-L2 is up-regulated in
inflamed endothelial cells, with an intention to inhibit T-cell
transmigration through BBB (Pittet et al., 2011). In particu-
lar, the impaired expression of PD-L2 on endothelial cells may
contribute to the cerebral inflammation in MS patients. The mol-
ecular mechanism underlying the PD-L2-afforded BBB resistance
to T-cell infiltration, however, is not clear. Similarly, the expres-
sion of PD-L on astrocytes has been reported in a model of
nerve injury (Lipp et al., 2007), however, whether and how astro-
cytic PD-L plays a role in restricting local inflammation in CNS
has not been examined. It will also be important to determine
whether modulation of PD-1/PD-L signaling pathway during
CNS injury or neurodegeneration influence the balance between
debris clearance, brain repair, and inflammatory damage. Fur-
ther investigations of the PD-1/PD-L pathway in CNS disorders
are warranted to improve our understanding of the mechanisms
underlying immunomodulation and to develop effective and safe
immunotherapies.
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