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Cognitive impairment is an important aspect of schizophrenia, where cognitive remediation
therapy (CRT) is a promising treatment for improving cognitive functioning. While neuro-
biological dysfunction in schizophrenia has been the target of much research, the neural
substrate of cognitive remediation and recovery has not been thoroughly examined. The
aim of the present article is to systematically review the evidence for neural changes after
CRT for schizophrenia.The reviewed studies indicate that CRT affects several brain regions
and circuits, including prefrontal, parietal, and limbic areas, both in terms of activity and
structure. Changes in prefrontal areas are the most reported finding, fitting to previous
evidence of dysfunction in this region. Two limitations of the current research are the few
studies and the lack of knowledge on the mechanisms underlying neural and cognitive
changes after treatment. Despite these limitations, the current evidence suggests that
CRT is associated with both neurobiological and cognitive improvement. The evidence
from these findings may shed light on both the neural substrate of cognitive impairment
in schizophrenia, and how better treatment can be developed and applied.

Keywords: schizophrenia, cognitive remediation therapy, cognitive training, neuroimaging, neurocognition

INTRODUCTION
Neurocognitive impairment is considered a core feature of schiz-
ophrenia (1, 2) and is an important predictor of functional out-
comes, including social problem solving, continued daily activities
after disease onset (3), life satisfaction (4), and the ability to return
to work or school (5). Though neurocognitive impairment is
observed in a majority of patients with schizophrenia, it should
be noted that neurocognitive functioning is heterogeneous in this
patient group (6, 7). Some of the early questions in CRT research
were how important cognitive deficits are to functioning, what
the neural and cognitive deficits of cognitive dysfunction in schiz-
ophrenia are, and if effective treatment could be developed and
delivered (8). Today, some of these questions have been answered,
while others currently have promising suggestions. As noted above,
cognitive deficits are certainly important in many areas of life
(3–5); there is now also considerable evidence for the neural sub-
strates of these deficits [e.g., Ref. (9)], and promising treatments
exist (10). This progress has been supported by the development
of guidelines and standardized batteries of cognitive tests, such
as the NIMH-MATRICS Consensus Cognitive Battery (MCCB)
(11, 12) and other comparable batteries [e.g., Ref. (13)]. How-
ever, the issue of neurocognitive measurement is not settled, as
recent evidence indicates that neuropsychological deficits may bet
better conceptualized as a single construct rather than discrete
domains (14, 15).

The neurobiological dimension of cognitive dysfunction was
previously understood in terms of hypoactivity, primarily in
frontal areas (16, 17). However, several meta-analyses have since
described cognitive dysfunction as a complex interaction of

selective hypo- and hyperactivity in both cortical and subcortical
areas, including frontal, parietal, and limbic structures. This has
been associated with dysfunctions of distributed networks related
to attention, cognitive control, and working memory among oth-
ers (9, 18–21). Findings of increased activity, specifically in the
prefrontal cortex (PFC), cortical midline regions, parietal and
temporal cortex, insula, and amygdala have also been reported
(9). The increased activity may represent compensatory cogni-
tive responses or activity associated with characteristics other
than cognitive deficits, such as differing emotional experiences
(9). Increased activation in schizophrenia has also been linked to
inefficient processing (22–24). Progressive structural abnormali-
ties in schizophrenia have also been reported, both in adults (25)
and adolescents (26, 27), which may be an early predictor of later
transition to psychosis (28). Electrophysiological abnormalities in
schizophrenia include reduced amplitude for the N1 (29), P1 (30),
and P300 components, as well as increased P50 gating (31, 32).
Furthermore, while reduced P300 amplitude may be common to
both schizophrenia and schizophrenia-like symptoms, reduced N1
amplitude may be specific to schizophrenia (33). This shows that
schizophrenia is associated with deficits in both early and later
processing.

Based on the evidence that cognitive impairment and dysfunc-
tional neural activation are prevalent and clinically important
aspects of schizophrenia, many researchers have addressed the
need for more attention to the treatment of these aspects of
schizophrenia (2, 34, 35). However, the typical pharmacother-
apy in schizophrenia is not as effective as one would hope in
treating cognitive impairments (36). Two large trials, the Clinical
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Antipsychotic Trials of Intervention Effectiveness (CATIE) (37)
and the European First-Episode Schizophrenia Trial (EUFEST)
(38) showed mild to moderate improvement after atypical antipsy-
chotic treatment in long-term or first-episode schizophrenia and
schizophreniform disorder, respectively. Later studies report that
most antipsychotics, especially atypical antipsychotics, may at best
produce mild remediation of cognitive deficits (Cohen’s d between
0.20 and 0.40), while domain-specific cognitive treatment effects
have not been revealed (39–41). Also, in addition to the mixed
evidence for generalization to increased daily functioning, the pro-
cognitive effects of atypical antipsychotics may be even less when
accounting for practice effects (42).

In lieu of effective pharmacological interventions for cog-
nitive impairment, there are several promising interventions
that target cognitive functioning, such as cognitive remediation
therapy (CRT) (43), cognitive enhancement therapy (44), and
neuroplasticity-based auditory training (45). A distinction can be
made between these approaches based on their focus on either
higher-level cognitive domains, such as attention, memory, and
executive function or on increasing and utilizing neuroplasticity
through more basic tasks, such as early perceptual processing and
working memory (46). However, though such a dichotomy is use-
ful in highlighting the differences between the approaches, it may
also underestimate the similarities between them, such as the use
of “errorless learning,” self-monitoring, scaffolding, and the role of
motivation in mediating treatment outcome (47). These forms of
therapy all provide some form of cognitive training, either using
“pen-and-paper” or through computerized exercises. The role of
the therapist is often to provide feedback, adjust task difficulty,
and provide strategies for learning and problem solving. Current
approaches vary in terms of using broad or narrow targets of cog-
nition, where some use very specific exercises, while others use
a wide variety of interventions. The approaches also differ on
whether they use extensive repetitions or share focus on repeti-
tions and daily implementation of strategies. The different forms
of cognitive interventions will be referred to as CRT from here on,
as the treatments share many attributes, and have similar cognitive
effects (10). CRT has been reported to have a small to moder-
ate influence on measures of global cognition (ds of 0.4), verbal
working memory (ds between 0.35 and 0.5), social cognition (ds
between 0.5 and 0.6), and daily functioning (d of 0.37) (10, 48,
49). Wykes et al. (10) found that the cognitive effects were durable
at follow-up for cognition and also indicated that increases in
functioning are better reached by adding CRT to other rehabili-
tation programs, and applying wider, strategic approaches rather
than a focus on drill and practice. This is further supported in
a recent study, which provided combined treatment of CRT and
sociocognitive training (50).

Since CRT may affect behavioral measures of cognitive process-
ing, it is reasonable to expect underlying neurobiological changes
as well. The relation between neurocognitive performance and
its neural substrates may also be influenced by other variables
such as clinical symptoms, motivation, and pharmacological treat-
ment. The use of neuroimaging in CRT research may indicate
whether neurocognitive changes are reflected in neural changes
and vice versa. Alternatively, they may indicate that though behav-
ioral changes are present, they do not reflect measurable changes

in the brain. Since the first exploratory studies on the neurobiol-
ogy of CRT (51–53), more recent and larger studies have emerged,
highlighting the need for a systematic review to map the current
findings and guide future research.

The aim of the present review was to systematically examine
the existing research on the neurobiological effects of cognitive
remediation in schizophrenia, by focusing on studies using func-
tional and structural neuroimaging measures before and after CRT.
A positive effect of CRT on the activity and integrity of brain
networks previously indicated in schizophrenia was expected.

METHOD
Relevant studies were identified through a systematic search of
the Embase, PsycInfo, and Medline databases. Manual reference
searches of relevant articles and studies were also used. The initial
systematic search aimed to encompass many forms of neuroimag-
ing, and therefore, included the terms “functional magnetic reso-
nance imaging (fMRI),” “magnetic resonance imaging,” “positron
emission tomography,” “magnetic resonance spectroscopy,” “elec-
troencephalography (EEG),” “diffusion tensor imaging (DTI),”
“near-infrared spectroscopy (NIRS),” and “magnetoencephalog-
raphy (MEG).” Inclusion criteria were that studies had to use a
form of cognitive remediation or training for cognitive impair-
ment, a measurement of neural activity to investigate potential
neural changes, and that all included patients were adults.

RESULTS
We identified 13 studies published from 2002 to 2014. Seven stud-
ies used fMRI, one used structural MRI, three used MEG, one used
EEG, and one used NIRS. No studies using PET or MRS were iden-
tified. Table 1 describes the characteristics of each study, listed by
date of publication.

fMRI AND NIRS
Four of the fMRI studies primarily used n-back tasks as the exper-
imental tasks as such tasks during 2-back load typically engage
cognitive processes relevant to working memory. Wykes et al. (54)
provided the participants in the CRT group with 40 sessions of one
on one “pen-and-paper” exercises related to memory, planning,
and cognitive flexibility, while another group was provided con-
trol therapy focused on relaxation and role-play. During a visual
n-back task, the authors reported increased activation in right
inferior frontal gyrus and bilateral occipital cortex for the CRT
patients compared to controls. Both treatment groups also sig-
nificantly differed from controls in left frontal, orbitofrontal, and
right insula activity. All CRT patients improved more than 1 SD
on one measure of cognitive flexibility and one dual memory span
task. All nine patients used typical antipsychotics during the study,
while three used atypical.

Haut et al. (57) provided 25 h of group-based computerized
CRT. Using visual n-back tasks containing words or pictures, as
well as a lexical decision task, the authors demonstrated over-
lapping increases in activity in the left dorsolateral PFC, anterior
cingulate, left dorsal PFC, right frontopolar PFC, and left fron-
topolar cortex, with CRT patients displaying greater increases for
all foci. CRT patients improved on word and picture 2-back (ds of
0.89 and 1.4, respectively), and CRT patients improved more than
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Table 1 | Summary of the reviewed studies.

Authors Participants Experimental

task

Treatment(s) Study design Imaging

method

Neural treatment effects Direction of

change

Wykes et al. (54) 12 SCZ

6 HC

N-back CRT Treatment,

placebo, HC

fMRI R inferior frontal gyrus and bilateral occipital activity ↑

Adcock et al. (55) 55 SCZ Syllable

discrimination

AT Treatment,

placebo

MEG M1 attenuation ↑

Eack et al. (56) 53 SCZ N/A CET, EST 2 Treatments MRI Loss of GM in temporal cortex, among them the L parahippocampal

gyrus, L amygdala, bilateral anterior cingulate, and L hippocampus

↓

GM in L amygdala ↑

Haut et al. (57) 21 SCZ

9 HC

N-back, lexical

task

CRT, CBSST 2 Treatments, HC fMRI L prefrontal activity ↑

Bor et al. (58) 20 SCZ

15 HC

N-back CRT Treatment,

wait-list, HC

fMRI L inferior/middle frontal gyrus, cingulate gyrus and inferior parietal

lobule activity

↑

Popov et al. (59) 39 SCZ Passive listening AT, Cogpack 2 Treatments MEG M50 gating ratio ↓

Popov et al. (60) 36 SCZ Passive listening AT, Cogpack 2 Treatments MEG Gamma-band activity and alpha-band desynchronization ↑

Rass et al. (61) 44 SCZ Passive listening CRT Treatment,

placebo, TAU

EEG None

Subramaniam

et al. (62)

31 SCZ

16 HC

Word generation

and recognition

AT Treatment,

placebo, HC

fMRI Medial PFC activity ↑

Penadés et al.

(63)

30 SCZ

15 HC

N-back CRT, social

training

Treatment,

placebo, HC

fMRI,

DTI

L superior parietal lobule and bilateral middle frontal gyri activity ↑

DMN activity in L precuneus and middle frontal gyrus ↓

FA in CC and R posterior thalamic radiations ↑

Vianin et al. (64) 16 SCZ Verbal fluency CRT Treatment, TAU fMRI Inferior parietal lobule, precentral gyrus, Broca’s area, middle occipital

cortex, middle cingulate cortex, and superior parietal lobule activity

↑

Pu et al. (65) 31 SCZ N-back CRT Treatment, TAU NIRS Bilateral dorsolateral PFC, left ventrolateral PFC, and right frontopolar

PFC activity

↑

Subramaniam

et al. (66)

30 SCZ

15 HC

N-back AT Treatment,

placebo, HC

fMRI Middle frontal and inferior frontal gyri activity ↑

SCZ = schizophrenia patients; HC = healthy controls; CRT = cognitive remediation therapy; fMRI = functional magnetic resonance imaging; R = right; AT = auditory based training; EEG = electroencephalography;

N/A = not applicable; CET = cognitive enhancement therapy; EST = enriched supportive therapy; MRI = magnetic resonance imaging; GM = gray matter; L = left; CBSST = cognitive behavioral social skills training;

MEG = magnetoencephalography; DTI = diffusion tensor imaging; TAU = treatment as usual; NIRS = near-infrared spectroscopy.
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the control treatment group. All patients were on antipsychotics,
which remained unchanged throughout treatment.

Bor et al. (58) reported that CRT patients exhibited higher levels
of activation for left inferior/middle frontal gyrus, cingulate gyrus,
and inferior parietal lobule/precuneus during a visual 2-back test
after 28 h of computerized CRT, compared to baseline measures.
CRT patients improved on measures of strategic efficiency and
sustained attention (ds of 0.88), which was superior to wait-list
controls. Patients were on stable doses of atypical antipsychotics
throughout the study.

Subramaniam et al. (62) investigated how computerized cogni-
tive training influences neural activity in regions associated with
reality monitoring, using tasks of word generation and recognition
of words produced by oneself or others during fMRI. Treatment
consisted of either computerized cognitive training, which also
included emotional identification tasks or placebo video games.
Cognitive training was associated with improved source memory
(d of 0.86 compared to placebo video games), while the placebo
and healthy controls groups did not improve. The authors reported
that patients exhibited less activation in the medial PFC during
word-recognition for words produced by the participant at base-
line, which somewhat normalized after CRT, though patients still
had less activity than healthy controls. Because of the region of
interest approach used by the authors, the study did not describe
other possibly relevant changes in activity. Nearly all patients used
atypical antipsychotics during the study.

Penadés et al. (63) investigated the effect of CRT using fMRI
and DTI, providing the patients with 40 h of “pen-and-paper”
CRT exercises focused on planning and working memory aided by
a therapist. After treatment, decreases in activation were greater
for patient who received CRT compared to social skills training.
Decreased activation during a visual n-back task was found in
the left superior parietal lobule and bilateral middle frontal gyri.
Decreased activity in the default-mode network was found in the
left precuneus and middle frontal gyrus, among others. Cognitive
improvements on measures of verbal and non-verbal memory
were small (ds of 0.23 and 0.38, respectively). All patients used
stable doses of atypical antipsychotics during the study.

Vianin et al. (64) provided patients with 14 weeks of CRT train-
ing or treatment as usual and measured neural changes using a
verbal fluency task during fMRI. For the CRT patients, the authors
reported increased activation in the inferior parietal lobule, pre-
central gyrus, inferior frontal gyrus (Broca’s area), middle occip-
ital cortex, middle cingulate cortex, and superior parietal lobule,
compared to the control group after treatment. Neurocognitive
performance also increased during Stroop (d of 0.45), matrix rea-
soning (d of 0.84), and Tower of Hanoi tasks (d of 0.34), and the
CRT group increased more than the control group for all measures
except for Tower of Hanoi. Nearly all patients received stable doses
of atypical antipsychotics during the study.

Pu et al. (65) measured changes in prefrontal activity dur-
ing n-back tasks using NIRS, after patients had received 60 h of
computerized CRT sessions. The authors reported increased activ-
ity in bilateral dorsolateral PFC, left ventrolateral PFC, and right
frontopolar PFC for the CRT group. Neurocognitive performance
increased on some measures (d of 0.9 for verbal memory, 0.59 for
executive function), but not for measures of working memory or

verbal fluency. All patients used antipsychotics and seven patients
in the CRT group changed daily dosage levels during the study.

Subramaniam et al. (66) presents the most recent fMRI study
of CRT, using n-back tasks, providing 80 h of computerized audi-
tory and sociocognitive training, compared to active videogame
placebo and healthy controls. They reported baseline hypoactiva-
tion in the middle frontal gyrus. After treatment activity increased
more in the middle frontal and inferior frontal gyri for the group
who received auditory training, which also demonstrated superior
gains in task performance. All patients remained on stable doses
of antipsychotics during the study.

Functional magnetic resonance imaging is the most commonly
used method of studying changes in the brain following CRT,
indicating that improved cognitive performance is associated with
distributed neural changes in many areas of the brain, converging
in prefrontal regions.

EEG AND MEG
Adcock et al. (55) performed the very first study of MEG and CRT,
which compared participants receiving auditory training for 50 h
with healthy controls. They investigated the M1 response to two
presented syllables, which relates to signal attenuation between
the first and second presented syllables (Dale, 2010). After treat-
ment, they found a decreased lateralization of the M1 response in
the patient group, as well as changes toward normalization of the
M1 (i.e., increased response in the left hemisphere, and decreased
in the right). The patients also improved on measures of global
cognitive functioning, verbal working memory, and learning and
memory (ds of 0.86, 0.58, and 0.86, respectively), but not on mea-
sures of non-verbal and visual memory. Furthermore, changes
in left hemisphere attenuation correlated with increases in verbal
learning. The patients all remained on stable antipsychotic doses
during the study.

Popov et al. (59) applied MEG to investigate the neural effects of
auditory-focused cognitive exercises and computerized cognitive
training (Cogpack) in relation to the M50 component, with a treat-
ment period of 4 weeks. The M50 and P50 components underlie
sensory gating, arising from the superior temporal gyrus (67),
and are characterized by increased P50/M50 amplitude in schiz-
ophrenia (31). Increased M50 amplitude was also found in this
study at baseline, compared to controls. However, after treatment,
M50 amplitude in the auditory-focused group did not differ from
controls, while P50 in the Cogpack group did not significantly
change. The auditory-focused group improved more on measures
of working memory (d of 0.80), and California Verbal Learning
Test (CVLT) immediate recall (0.78), and as much as the Cogpack
group on CVLT delayed recall (1.28). The patients were largely
on atypical antipsychotics during the study. In another report,
Popov et al. (60) found an increase in time-locked gamma-band
activity (60–80 Hz) as well as increased non-time-locked alpha-
band (8–12 Hz) desynchronization. Only after auditory training
was alpha desynchronization associated with M50 and improved
verbal memory.

Rass et al. (61) investigated cognitive and neurophysiological
changes following 40 h of computerized auditory and visual train-
ing, compared to a video game placebo condition and TAU. Their
results revealed no treatment effects for the P300 nor Auditory
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Steady State Response components, in addition to no treatment-
related cognitive gains on cognitive measures. The non-significant
treatment effects could be affected by the higher cognitive per-
formance of the active placebo and TAU groups at baseline, few
participants, or too low intensity in the remediation exercises.

In summary, electrophysiological studies mostly indicate that
both early perceptual processes and cognitive functioning change
toward normalization after CRT, though null findings have also
been reported. These findings complement the functional findings
using fMRI by providing evidence for early time-locked activ-
ity, compared to the slower, but more spatially accurate, BOLD
response.

MRI AND DTI
The only study using structural MRI reported neuroprotective
effects and potential increases in gray matter as an effect of cog-
nitive remediation and enriched supportive therapy (EST) in a
longitudinal study lasting 2 years (56). A main effect of time indi-
cated loss of gray matter in areas such as the bilateral cerebellum,
left medial, and posterior cingulate. Notably, an interaction effect
of time and treatment indicated that CRT was more effective than
EST for reducing gray matter loss in medial temporal areas, among
them the left parahippocampal gyrus, left amygdala, bilateral ante-
rior cingulate, and left hippocampus. The authors also reported
increases in left amygdala gray matter volume for the CRT group.
Neurocognitive performance increased after CRT for the for CVLT
short free recall (d of 0.5), Trails B (d of 0.83), for the ratio between
initiation to execution time during a Tower of London task (d of
1.0), where the CRT group improved more than the EST group.
All patients were on stable doses of antipsychotics for the duration
of the study.

Penadés et al. (63) reported increased fractional anisotropy
after treatment with CRT in the body and genu of the corpus callo-
sum and right posterior thalamic radiations using DTI. Social skills
training group, however, exhibited decreased fractional anisotropy
in the bilateral superior longitudinal fasciculus, and left inferior
longitudinal fasciculus, further indicating how CRT may have
neuroprotective effects compared to other treatments.

Though reports of structural changes are the least numerous,
they provide preliminary evidence for neuroprotection, regrowth
of gray matter, and increased fractional anisotropy, providing opti-
mistic results on how progressive degradation damage may be
preventable in schizophrenia.

DISCUSSION
The current findings of neural changes associated with CRT con-
verge in frontal areas, including prefrontal and middle frontal
areas. The studies also report changes in parietal, temporal,
parahippocampal, and limbic regions. Also, neural changes were
accompanied by varying improvement in neurocognitive perfor-
mance, which strengthens the relation between the neurobiologi-
cal and behavioral changes.

The findings suggest that CRT can positively affect processing
in distributed areas, fitting to both Wykes et al. (10) findings of the
somewhat wide cognitive effects of CRT, as well as Nuechterlein
et al. (5) reports of dysfunction in distributed cortical and subcor-
tical areas. The reported changes have mostly been of increased

activation, while the Penadés et al. (63) finding of decreased
frontal activity after treatment may be related to improvement of
inefficient processing (24). The studies applying MEG and struc-
tural MRI indicate that cognitive remediation can affect temporal
regions as well (56, 60). Findings of increased gating activity in
parietal and temporal areas after training using MEG, and reduced
gray matter loss in temporal areas using MRI also fit the pro-
posed distributed processing network of Minzenberg et al. (9).
The reduced loss, and even increases, in medial temporal gray
matter reported by Eack et al. (56) indicate that CRT may prevent
degradation of functions related to memory and affect.

Cingulate activation, especially of the anterior regions, is often
abnormal in schizophrenia, where one meta-analysis concluded
that patients had lower activity in the right anterior cingulate, and
higher activity in the left anterior cingulate (9). This was partly
replicated in the reviewed studies, where Haut et al. (57) reported
increased right activity and Bor et al. (58) reported an increase in
left cingulate activity. The anterior cingulate cortex is associated
with performance monitoring and prefrontal task engagement (9).

Insula activation was found in several studies in the review,
where activation was generally found to be more stable for patients
than controls, and even increasing in one study (57). The insula in
schizophrenia has been linked to sensory-affect processing, recog-
nition of self- and externally generated words (68), and possibly
being part of a compensatory response to reduced prefrontal pro-
cessing (9). The small effect of CRT on insular activation may
indicate that affective aspects are not affected to the same extent
as cognitive aspects. It could be that cognitive behavior therapy
(CBT) might reduce insula activation to a greater extent than
CRT (69) because of CBT’s greater focus on emotional processing,
although this has not been explored in current studies.

The differences between higher-level and neuroplasticity-based
approaches to CRT are evident in their methodology as well as
focus in treatment. Examples of this is the greater use of auditory-
focused training [e.g., Ref. (45)] in the reviewed studies using
EEG and MEG, which provide evidence for the effects of such
treatment on early processing. Wykes et al. (10) report of less
generalization of learning after neuroplasticity-based remediation
receives mixed support in some of the reviewed studies, which
report increased cognitive function 6 months after treatment, as
well as improved occupational functioning (66), but not social
functioning (62). However, though an improvement in social func-
tion was not achieved, a differential association between bilateral
middle frontal gyri and occupational functioning, and medial PFC
and social functioning may indicate specific neural substrates for
functioning in different domains of life.

The importance of stimulating early sensory processing has
received some support in current neuroimaging studies, and this
is also supported by some of the reviewed studies. Some have
reported increased occipital activation during task-related and
resting state activity (54, 63), increased activity in Broca’s area (65),
and normalized sensory gating in the superior temporal gyrus
(59, 60), though changes in sensory regions are not reported in
all studies. This may also be influenced by the differing usage of
data-driven or a priori placement of regions of interest, or the
use of whole-brain analysis, which may have led to the sporadic
reports of neural changes in sensory regions. Notably, both studies
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reporting occipital changes utilized a higher-level CRT approach,
which indicates that a change in early sensory processing is not
exclusive to neuroplasticity-based treatment (54, 66).

The neurobiology of cognitive dysfunction in schizophrenia
is complex, and has been associated with aberrant diffusion
and connectivity in the corpus callosum (19–21), dysfunctional
oscillations (70, 71) possibly linked to GABA (γ-aminobutyric
acid), parvalbumin interneurons, NMDA (N-methyl-d-aspartate)
receptors, and cortico-cortical connections (72, 73). These abnor-
mal oscillations are found in many parts of the brain, including
temporal and frontal areas. We propose that CRT may contribute
to normalization of these mechanisms. CRT is associated with nor-
malization of alpha and gamma oscillations, as reported by Popov
et al. (60), as well as increased connectivity through the corpus cal-
losum (63), which may be associated with the cortical activation
found in the studies using fMRI.

The neural mechanisms that CRT acts through is not currently
known, but one possibility is that the practice, guidance, and use of
cognitive strategies protects remaining neurobiological and cogni-
tive resources by strengthening the compensatory structures and
activity reported by Minzenberg et al. (9), while promoting the
growth and strength of new connections through neuroplasticity.
This is supported by a finding of increased brain-derived neu-
rotropic factor (BDNF) after efficacious CRT (74). As neural and
cognitive abnormalities are often present before psychosis, reme-
diation could perhaps be more effective if used at an early or
prodromal stage, perhaps with at-risk children or adolescents.
One study on poor readers aged 8–10 years reported promising
increases in fractional anisotropy (75) after treatment, indicating
the possibility of efficacious CRT even at an early age in healthy
participants.

Similar effects of pro-cognitive medication and CRT may indi-
cate common mechanisms of change. Unfortunately, few imag-
ing studies of pharmacologically induced cognitive changes exist.
Importantly, the existing studies share important limitations in the
wide effects of antipsychotics on the brain, which may confound
neural changes relevant to cognition with changing symptoms or
side-effects (76). Relevant findings include reduced default-mode
negative modulation and increased connectivity in the ventral
medial PFC during n-back tasks (77), as well as increased activ-
ity in the sensory and ventrolateral PFC, and decreased activation
in the DLPFC, striatum, and thalamus during visually guided eye
saccades (78). These studies report both neural normalization and
denormalization, which may be influenced by cognitive or motor
side-effects of the treatments, as well as a general effect of antipsy-
chotics on the BOLD response (76). These confounders should be
considered when comparing pharmacological treatment and CRT
for cognitive deficits, though they may both provide evidence for
the role of prefrontal changes in cognitive improvement.

LIMITATIONS OF THE CURRENT STUDIES
Limitations of the present review include the differences in treat-
ment strategy, outcome measures, and experimental tasks, which
complicate the comparison of treatment effects. Overall, this lack
of convention limits the scope of the present article. A major lim-
itation is the number of studies included in the review, reflecting

the early stages of this area of research. There are also several
limitations in the reviewed articles. First, few participants in both
treatment and control groups contribute to an increased risk of
type II errors due to low statistical power. This can explain why
the number of corresponding brain areas is not higher. Second,
the long-term effects of CRT have not been explored in depth. For
example, do the patients need booster sessions in order to main-
tain positive changes in behavior or neural activity? The findings
of Eack et al. (56) showed that results remain even after 2 years
after beginning treatment, though it must be taken into consider-
ation that treatment lasted for as many as 60 sessions, while there
is evidence that as few as 25 sessions (57) can mediate changes
in activity. This supports the fact that CRT may have a sustained
effect on neural functioning but does not serve as conclusive evi-
dence. The reviewed studies, and CRT in general, varies in terms of
treatment length and intensity. Wykes et al. (10) did report treat-
ment length and intensity as significant predictors of outcome,
and differences in these aspects may influence the neurobiology
of CRT and cognitive recovery. As such, the current studies are
not sufficient to answer if booster sessions or longer treatments
are needed for continued neurobiological change. Another dif-
ference between the reviewed studies is the role of the therapist,
which ranges from extended involvement over 40 h (54), to being
purposefully minimalized (66). Though such differences may be
useful in establishing specific or common factors in cognitive
remediation, guidance and motivation from an experienced ther-
apist may be useful in clinical contexts, especially for the many
patients with comorbid disorders and motivational or social diffi-
culties. Apart from this, several of the studies have weaknesses that
need to be addressed. For example, several studies do not describe
the randomization or blinding procedure, and some did only use
single-blinding or quasi random group placement. Differences in
group sizes for active treatment and healthy controls were also per-
vasive, which may influence the comparisons between them. The
concurrent use of typical and atypical antipsychotics may con-
found the relation between CRT and neural changes, especially
considering the mild positive cognitive effects of atypical antipsy-
chotics. However, the similar use of these drugs in all treatment
groups and studies partly controls this confounder.

CONCLUSION
The beneficial effects of CRT for neurocognitive performance are
established,and are often reported as being low or moderate in size.
However, questions of the generalizability and cost–benefit ratio,
to name a few, are still under consideration. The present article
presents evidence of the beneficial neural effects of CRT, which
indicates neuroplasticity through cognitive training. The use of
different neuroimaging methods and treatments, though a con-
cern with regard to direct comparison and replication, indicates
that neural changes are measurable in several neuroimaging meth-
ods, and also provide preliminary evidence for normalization of
early perceptual and executive processing, as well as long-lasting
structural changes. There are several limitations in the current
studies, the most important being that there are very few studies.
Future research should seek to further investigate how and why
CRT works. Potential approaches include using both pro-cognitive
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drugs and CRT (36, 79), or investigate the potentially common
neural mechanisms of CRT, rTMS, transcranial direct current
stimulation, and various pharmaceutical agents (80–83). If future
studies continue to support the evidence toward cognitive and
neurobiological normalization after CRT, such evidence support
the extended use of CRT, as cognitive impairment is one of the
greatest burdens associated with schizophrenia.
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