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Motivation: Expression Quantitative Trait Locus (eQTL) mapping tackles the problem of

identifying variation in DNA sequence that have an effect on the transcriptional regulatory

network. Major computational efforts are aimed at characterizing the joint effects of

several eQTLs acting in concert to govern the expression of the same genes. Yet,

progress toward a comprehensive prediction of such joint effects is limited. For example,

existing eQTL methods commonly discover interacting loci affecting the expression

levels of a module of co-regulated genes. Such “modularization” approaches, however,

are focused on epistatic relations and thus have limited utility for the case of additive

(non-epistatic) effects.

Results: Here we present POEM (Pairwise effect On Expression Modules), a

methodology for identifying pairwise eQTL effects on gene modules. POEM is specifically

designed to achieve high performance in the case of additive joint effects. We applied

POEM to transcription profiles measured in bone marrow-derived dendritic cells across

a population of genotyped mice. Our study reveals widespread additive, trans-acting

pairwise effects on gene modules, characterizes their organizational principles, and

highlights high-order interconnections between modules within the immune signaling

network. These analyses elucidate the central role of additive pairwise effect in regulatory

circuits, and provide computational tools for future investigations into the interplay

between eQTLs.

Availability: The software described in this article is available at csgi.tau.ac.il/POEM/.

Keywords: eQTL, gene modules, pairwise effects, additive effects, immune signaling network

INTRODUCTION

The transcriptional regulatory program that controls the expression of a gene may combine the
joint effect of several regulatory mechanisms that act in concert during the cellular response to
internal and external signals. These regulatory programs are apparent across a variety of joint
contributions, from the independent contribution of each of the regulatory mechanisms to a
cooperative contribution of several mechanisms. A regulatory program may include a variety
of mechanisms such as transcription factors, chromatin remodeling complexes, and promoter
regulatory elements.

Natural genetic variations may provide important insights into regulatory programs. In
particular, transcription profiles can be integrated with genotypic data across a population to
identify genomic loci that have an effect on gene expression (Mackay et al., 2009), and hence it
is possible to use these loci as potential regulatory mechanisms. These mechanisms are referred to
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as “expression Quantitative Trait Loci” (eQTLs). Multifactorial
regulatory programs can be then suggested by finding several
eQTLs that are associated with the same gene (e.g., Storey et al.,
2005; Huang et al., 2013). The use of natural perturbations,
unlike experimental construction of combinations of mutant
alleles, is therefore an efficient and non-laborious way to identify
regulatory programs in a systematic manner. In this study we
focus specifically on regulatory programs with two eQTLs and
refer to such programs as “pairwise effects.”

Pairwise effects on gene expression may be classified on the
basis of two main categorizations. One major categorization
reflects the presence or absence of epistasis. In the absence of
epistasis the effect of one eQTL remains the same regardless of the
genotype of the other eQTL; the resulting model is therefore said
to be “additive” or “non-epistatic.” In the presence of epistasis, by
contrast, there is a change in magnitude or direction of one eQTL
that depends on the genotype of the other eQTL. “Epistasis”
therefore refers to a modification of the additive effects of two
loci in a regulatory program (Huang et al., 2013). The other type
of categorization reflects the genomic positions of the pairwise
effect: none of the loci act at the proximity of the affected gene
(termed “trans-acting effects”), or alternatively, at least one of the
loci acts in the proximity of the gene (termed “cis-acting effects”).

Recent eQTL studies systematically analyzed pairwise effects
on gene expression. Existing methods have been applied to each
gene independently (Brem et al., 2005; Evans et al., 2006; Brown
et al., 2014) or on gene groups rather than just a single gene
(referred to as “modularization methods”; Kendziorski et al.,
2006; Lee et al., 2006; Litvin et al., 2009; Zhang et al., 2010;
Kreimer et al., 2012). In particular, current modularization-based
eQTL methods are mainly focused on epistasis, tacitly assuming
that the effect of one locus is dependent on the particular
alleles in the other locus. For example, Kreimer et al. (2012)
searched for allele-specific epistasis and Zhang et al. (2010)
searched for epistasis with weakmarginal effects. They are thus of
limited utility for the case of additive joint effects. While several
approaches do indeed allow identification of additive relations
(Phillips, 2008; Mackay et al., 2009; Huang et al., 2013), these
methods do not exploit the modularization in expression and
therefore lack the power to detect trans-acting loci whose effects
are typically weak. Thus, the existing eQTL methods are limited
in their ability to provide a comprehensive view of trans-acting
and additive pairwise eQTL effects.

In accordance, recent studies have shown that pairwise
effects mostly involve cis-acting rather than trans-acting pairs of
eQTLs. For example, an investigation of blood from 800 human
individuals identified 488 cis-cis- or cis-trans-acting pairwise
effects but only 13 trans-trans-acting effects (Hemani et al.,
2014). Similarly, analysis of lymphoblastoid cell lines from the
TwinsUK cohort yielded 57 pairwise eQTL effects, none of which
was a trans-trans-acting pair (Brown et al., 2014). Many studies
have highlighted the key role of additive pairwise effects (Storey
et al., 2005; Hill et al., 2008; Bloom et al., 2013), but in most
of these reports trans-acting eQTL pairs were not mentioned.
The apparent scarcity of additive trans-acting pairwise effects
on gene expression may be due to their low abundance, or a
non-comprehensive mapping of additive relations, or both.

Here we describe POEM (Pairwise effect On Expression
Modules), a novel methodology that we developed on the basis
of iterative refinements of a residual-based stepwise regression
(RBSR) model. In our scheme, a “poeModule” is a group
of genes (under particular stimulations) that are affected by
the same pair of eQTLs. The aim of POEM is to identify
poeModules together with their underlying pairwise effects. In
particular, it is specifically designed for the case of additive
relations. Our analysis of synthetic data demonstrated the
superiority of POEM over existing eQTL methods. We applied
POEM to a dataset of murine bone-marrow-derived dendritic
cells, and found that additive trans-acting effects are common
(24 poeModules covering 9.8% of the dataset under study),
suggesting that the apparent scarcity of such effects in the
abovementioned publications (e.g., Storey et al., 2005; Brown
et al., 2014; Hemani et al., 2014) is mainly due to their non-
comprehensive mapping. Interestingly, the reconstructed model
is organized in several multi-poeModule structures of pairwise
effects. These multi-poeModule structures offer insights into the
capacity of combinatorial regulation of the inflammatory and
antiviral signaling pathways in dendritic cells. Together, these
results suggest a high prevalence of non-epistatic, trans-acting
pairwise eQTL effects, and provide a general method for future
investigations.

MATERIALS AND METHODS

Background and Definitions
A Standard 1-Locus Scan
We consider a previously measured genotyping of n individuals
at m genetic variants, as well as the levels of l traits across
the same individuals. Let Y = [y1y2...yl] be a n × l matrix of
trait measurements, where each column vector yj represents the
measurements of a trait j across all n individuals. In addition,
let G = [g1g2...gm] be a n × m matrix of measured genotypes
where gx is a column vector of genotyping of variant x across
all individuals. For simplicity, we assume a haploid organism
or homozygous recombinant inbred strains; therefore, genotypic
values for the variants are either−1 or 1. To assess the association
between a given trait j and a genetic variant x, we test the
significance of the genetic fixed effect βx under the following
model:

yj = µx + gxβx + e, (1)

where µx is the global mean and e represents a n × 1 vector of
normally distributed error terms. The significance is evaluated
through a standard ANOVA F-test and the resulting P-value
is referred to as an association score. A standard 1-locus scan
calculates the association scores across all genetic variants. Let
A be the output (l × m) association matrix where Ajx is the
association score between trait j and variant x.

The identification of eQTLs is based on the association scores
in A. For example, let vj be the best-scoring locus of trait j where
vj = argmaxx Ajx. In case that Ajvj is statistically significant, we
refer to vj as an eQTL. The set of significant best eQTL-trait pairs,
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referred to as an eQTL map, is denoted V and defined as follows:

V = {
(

j, vj
)

|Ajvj > Tj and vj = argmax
x

Ajx}, (2)

where Tj is a significance cutoff. We note that the POEM
algorithm does not utilize Equation (2) to construct the output
eQTL map. Instead, it utilizes a revised definition of this map, as
formulated in Equation (4) below.

Importantly, it is possible to apply a conditioned 1-locus scan
that depends on a given eQTL map V0 from a previous scan.
Specifically, in this study we focus on a conditioned scan that
utilizes the residuals of the eQTLs in V0 as the dependent
variables, while the calculation of A and V remains unchanged.
Thus, we use the following model:

rj = µx + gxβx + e, (3)

We note that Equation (3) is the same as Equation (1) but using
a n × 1 vector of residual rj instead of the trait measurements yj.

For each trait j, rj is calculated as rj = yj − µ̂v0j
− gv0j

β̂v0j
where v0j

is the eQTL of trait j in map V0 (that is,
(

j, v0j

)

∈ V0 ). If a trait j

is not associated with any eQTL (that is, for each possible variant
x,

(

j, x
)

/∈ V0 ), then we set rj = yj .

A Standard 2-Loci Stepwise Regression
In order to identify pairwise effects, the regression model from
Equation (1) should be extended into amultiple regressionmodel
where the values of a trait are predicted based on the genotyping
of two variants. However, such approach entails multiple testing
of m2 pairs of variants. Stepwise regression is designed to reduce
this complexity by applying two sequential 1-locus scans, with the
first scan identifying the “primary” best variant and the second
scan detecting the “secondary” best variant given the information
about the primary one.

A common stepwise regression approach is the “RBSR,” which
is equivalent to the “Either-significant” strategy proposed by
Evans et al. (2006). For a given trait j RBSR first scans for the best
(primary) eQTL and then rescans for an additional (secondary)
eQTL conditioned on the primary eQTL. Assuming an additive
pairwise effect, the second scan is performed on the residuals
of the phenotypic measurements when the effect of the primary
eQTL is removed.

Formally, a standard RBSR is applied in two steps. Step 1
applies the standard 1-locus scan using the model and definitions
in Equations (1) and (2), respectively. The output of this scan
is a map of primary eQTLs, denoted VP. We further use the
notation AP to denote the output association matrix of this
primary scan. Step 2 applies a conditioned 1-locus scan that
depends on the map of the primary eQTLs (using Equation 3
where V0 = VP); the map of secondary eQTLs, denoted VS, is
then calculated using Equation (2). We use the notation AS to
denote the resulting association matrix of the secondary scan.
Based on this procedure, the pair of eQTLs affecting a given trait

j is
(

vPj , v
S
j

)

where
(

j, vPj

)

∈ VP and
(

j, vSj

)

∈ VS .

We note that the RBSR method is particularly suitable for
the POEM algorithm since it relies on additive pairwise effects.

An alternative partition-based approach, which is tailored for
epistasis, is detailed in Section Synthetic Data Analysis.

Construction of Co-Association Groups
An important subroutine of POEM is revealing groups of traits,
where each group is controlled by a single (representative) eQTL.
The identification of such co-association groups (for simplicity,
referred to as groups), typically relies on the association matrix
from a 1-locus scan across all traits (Lund et al., 2003;
Breitling et al., 2008; Mackay et al., 2009). Here we used
the c++ implementation of InVamod (Gat-Viks et al., 2013),
an agglomerative methodology for the identification of co-
association groups together with their representative eQTLs.
InVamod takes as input a given association matrix A, which was
generated based on either a conditioned or a non-conditioned
1-locus scan. Based on this input, InVamod first compiles each
single trait j as an initial group that is associated with its best-
scoring variant vj. Next, it agglomerates groups by merging pairs
of groups that are associated with nearby variants. After each
merging step, InVamod updates a single representative variant
for each group in such a way that it best reflects the composition
of traits in the newly generated group.

A key step of the InVamod algorithm is the filtration of non-
significant groups based on an association-score cutoff. In this
study, the chosen cutoff corresponds to an association P-value
of 0.01. The output grouping solution c is a set of co-association
groups c = {cv} where each group cv is associated with a single
representative eQTL v. Notably, this allows revising the standard
identification of eQTLs (as in Equation 2) according to the
representative loci, thus increasing the overall robustness of the
learned model. A revised eQTL map Vc, based on a grouping
solution c, is given by the following definition:

Vc = {
(

j, v
)

|j ∈ cv}. (4)

The POEM Algorithm
POEM is a procedure for identifying pairwise effects of two
eQTLs on groups of expression traits. An expression trait is the
transcriptional response of a particular gene under a certain
stimulus across all individuals under study. POEM takes as
input a collection of expression traits across individuals and the
genotyping of the same individuals. The output is a collection
of poeModules, where each poeModule is a group of traits
that are associated with a specific pair of eQTLs. Similarly
to existing eQTL approaches (Kendziorski et al., 2006; Litvin
et al., 2009; Zhang et al., 2010; Kreimer et al., 2012), POEM
leverages the modularity of the system and gains statistical power
by identifying joint effects on the expression of gene groups.
Unlike previous methods, POEM searches for additive rather
than epistatic joint effects.

POEM identifies pairwise effects using the RBSR approach
(see above) and further extends RBSR in two ways (Figure 1).
First, we expect that grouping of traits can enhance the
identification of eQTLs. In accordance, POEM constructs the
map of eQTLs on the basis of co-association groups that
were generated by the InVamod algorithm. Secondly, a major
challenge may arise from an erroneous identification of each
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FIGURE 1 | Overview of the POEM algorithm. POEM takes as input a collection of expression traits from a certain population of genotyped individuals. The

procedure is initiated with a non-conditioned scan (top right). The analysis then consists of two iterative stages: learning primary eQTLs after conditioning on the

secondary eQTLs and vice versa (middle). The two steps are repeated k times. POEM relies on grouping of the expression traits based on their co-association to the

primary and secondary eQTLs. Significant overlaps between the resulting primary and secondary groups are referred to as “poeModules” (bottom). Such

poeModules are interpreted as promising pairwise effects that act on the same group of traits.

eQTL in the presence of the confounding effect of another eQTL,
since the pairwise effect may lead to an increased marginal
variance. For example, in the RBSR method, the scan for the
primary eQTLs is conducted without removing the confounding
effect of the secondary eQTLs, and this may blur the primary
signals. Consequently, the scan for the secondary eQTLs may
also be blurred since it relies on the former inaccuracies in the
primary eQTLs. To tackle this challenge, we iterate between
two steps. In stage 1—learning primary eQTLs—POEM applies
a 1-locus scan that is conditioned on the secondary eQTL
map, thereby providing a refined collection of primary eQTLs.
In stage 2—learning secondary eQTLs—POEM applies a 1-
locus scan that is conditioned on the primary eQTL map,
thus providing a refined collection of secondary eQTLs. Both
steps involve grouping of the traits to ensure the robustness
of the learned model. We initiate the process with a standard
1-locus scan and then repeat the iterative process k times.
POEM is implemented in Perl and is publicly available in
csgi.tau.ac.il/POEM/. An outline of the POEM algorithm is in
Supplementary Figure 1.

Stage 1: Learning Primary eQTLs
In this step, the task is to learn the map of primary eQTLs
assuming that themap of secondary eQTLs from stage 2 (denoted
VS
c ) is known. POEM first applies a conditioned 1-locus scan

where V0 = VS
c (using Equation 3). Let AP be the output

association matrix. Next, InVamod is applied on matrix AP

to generate the co-association groups. As detailed above, this
provides (i) a collection of primary groups, denoted cP; and (ii) a
map of primary eQTLs, denoted VP

c (generated based on cP using
Equation 4).

Stage 2: Learning Secondary eQTLs
In this step, the task is to learn the secondary groups and
secondary eQTLs assuming that the map of primary eQTLs
from stage 1 is known. This stage is precisely the procedure
we use in stage 1. The only difference is that the input V0

variable is the map of primary eQTLs. Specifically, we start
with a conditioned 1-locus scan where V0 = VP

c (Equations
2 and 3). Let AS denote the resulting association matrix. We
then run the InVamod algorithm on matrix AS to obtain (i) a
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collection of secondary groups, denoted cS; and (ii) the output
map of secondary eQTLs, calculated using Equation (4) and
denoted VS

c .

Initialization
The initialization stage involves the identification of primary
eQTLs in the absence of prior loci. The procedure starts with
a (non-conditioned) 1-locus scan (Equation 1), whose output
association matrix is then utilized by the InVamod algorithm. As
detailed above, the output of the InVamod algorithm includes the
initial primary groups, denoted cP, and the initial primary eQTL
map (calculated using Equation 4), denoted VP

c .

Construction of poeModules
The final stage of POEM is based on the observation that
large overlaps between the primary and secondary groups are
unlikely to be generated at random. It is therefore possible to
use significant overlaps to infer pairwise effects on groups of
traits. In particular, for each pair of a primary group cv1 ∈ cP

and a secondary group cv2 ∈ cS , POEM calculates the Fisher’s
exact test P-value for the overrepresentation of overlapping
traits uv1v2 = cv1 ∩ cv2 (assuming that the total number of
traits is l). We call these P-values the overlap P-values, and
only overlaps with P-values that are lower than a certain cutoff
are selected. We refer to each significant overlap uv1v2 =

{cv1 ∩ cv2 |cv1 ∈ cP, cv2 ∈ cS} as a poeModule and denote
the entire collection of poeModules as U. Thus, the pair of
eQTLs affecting a given trait j ∈ uv1v2 consists of a primary
eQTL v1 and a secondary eQTL v2 , where v1 and v2 are the
representative eQTLs of groups cv1 ∈ cP and cv2 ∈ cS ,
respectively.

Permutation-based FDR for poeModules were determined by
generating 100 permuted gene expression datasets (by random
reshuffling of strain labels), running POEM on each of them, and
then calculating the ratio between the numbers (or sizes) of the
permuted vs. real poeModule.

Epistatic vs. Additive poeModules
As a final step we aimed to characterize epistatic vs. additive
poeModules. We consider a poeModule uv1v2 = cv1 ∩ cv2 where
cv1 ∈ cP denoted the primary group and cv2 ∈ cS denotes
the secondary group (with the representative eQTLs v1 and v2,
respectively). For each trait j residing in the poeModule we
applied a standard interaction test:

yj = µ + gv1βv1 + gv2βv2 + gv1 × gv2βv1v2 + e. (5)

Here, yj is a n × 1 vector of trait measurements; µ is a global
mean; gv1 and gv2 are n × 1 genotyping vectors of eQTLs v1
and v2 ; e is a n × 1 vector of normally distributed error terms;
and gv1 × gv2 is a n × 1 vector of interaction terms, generated
by multiplication of the genotypes from each individual. βv1

and βv2 are the additive effects of the eQTLs and βv1v2 is the
interaction term. The epistasis score refers to the significance
of the interaction term, calculated by testing the alternative
hypothesis β̂v1v2 6= 0 against the null hypothesis β̂v1v2 = 0 (using
a standard ANOVA F-test). We define an epistatic poeModule
as a poeModule consisting of at least one epistatically-affected

trait (FDR < 0.01). In particular, this was performed by first
calculating an epistasis score for the interaction term of each trait,
and then correcting for multiple testing using the FDR method.
In this study we mainly focus on the non-epistatic poeModules—
which are not annotated as epistatic ones—referred to as the
additive poeModules.

Synthetic Data Analysis
Generation of Data
A synthetic collection of expression traits consists of l traits
that are associated with two eQTLs, denoted v1 and v2 . The
synthetic expression data were generated bymeans of a two-locus
model using Equation (5). Genotypic values for the variants are
either −1 or 1, as in the case of homozygous mice. We assume
that the additive effect is one-half of the difference in mean trait
level between the two genotypic values (with no departure from
additivity due to dominance effect). We tested two models: first,
an additive model with βv1 = βv2 = γ , βv1v2 = 0 , and
second, an epistasis (co-adaptive) model with βv1 = βv2 = 0 ,
βv1v2 = γ , where γ represents the magnitude of effect, referred
to as the genetic effect size. In the epistasis model, each variant
alone has no significant individual effect, but the joint effect of
the two variants is notable. In addition, each collection includes
l1 traits that are associated with variant v1 using the model y =

µ + gv1βv1 + e ; l2 traits that are associated with v2 using the
model y = µ + gv2βv2 + e ; and l0 traits that are not associated
with any variant, based on the model y = e . A single “synthetic
collection” consisted of l + l1 + l2 + l0 traits and 100 variants,
which included the two eQTL variants v1 and v2 . Each variant
was genotyped by randomly sampling the two alleles with equal
probabilities.

Overall, we generated synthetic datasets of 500 collections,
where each dataset was constructed for a certain (additive or
epistatic) model, a certain number of individuals (50, 100, or
150), and a given genetic effect size γ (ranging from 0.4 to 1.4).
In all cases we used l= l1 = l2 = 10, l0 = 50, and σ 2 = 0.5.

Compared Methods
We compared the following four alternative methods.

1) Residual-based stepwise regression (RBSR). A stepwise
identification of pairwise effects, applied on each trait
independently as proposed by Evans et al. (2006). A detailed
description of the algorithm appears in Section A Standard
2-Loci Stepwise Regression.

2) Partition-based stepwise regression (PBSR). This method
applies a stepwise identification of allele-specific interactions
on each trait independently, as described by Brem et al.
(2005). For each given trait, the procedure first scans for
the best eQTLs (a 1-locus scan that yields the primary
eQTL). Identification of the primary eQTL makes it possible
to partition the samples into two groups based on the
genotyping of the primary eQTL. Next, a separate 1-locus scan
is performed for a secondary eQTL in each of the sample
groups. Each of the two resulting secondary eQTLs is therefore
specific to particular alleles of the primary eQTL.

Frontiers in Genetics | www.frontiersin.org 5 April 2016 | Volume 7 | Article 48

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Botzman et al. POEM: Identifying Joint Additive Effects

3) Partition-based modularization (PBM). A standard partition-
based modularization method is the “module-network”
approach (Segal et al., 2003). However, this approach is not
tailored for eQTL data and does not assess module P-values.
To address this, several advancedmethods extend this method
for the case of individual variation (Lee et al., 2006; Litvin
et al., 2009; Kreimer et al., 2012). Here we applied the most
recent approach (Kreimer et al., 2012), which relies on a
PBSR model, calculates empirical module P-values, and is
specifically tailored for the case of transcriptional regulatory
programs carrying two eQTLs. The method was applied using
the “eSNP_architecture” package implementation (Kreimer
et al., 2012). In all cases we used the optimal setting of
parameters (i.e., the association P-value and module P-value
cutoff parameters, see Kreimer et al., 2012), which maximized
the accuracy scores.

4) Non-iterative POEM. Applying POEM with a single iteration
(k = 1). In this case, the analysis involves two sequential
scans: one that does not depend on any additional locus
(the initialization stage), and one that is conditioned on the
primary loci (POEM’s stage 2). For a single trait, this approach
is equivalent to RBSR; for multiple traits, POEM further
exploits the modularization in the biological system.

5) POEM. The full POEM algorithm using multiple iterations
(k= 6).

By testing the five alternative methods it is possible to assess the
utility of a residual-basedmethods compared to a partition-based
methods (PBMs) (methods #1, #4, #5 vs. #2, #3, respectively);
to evaluate the advantages of grouping over the analysis of each
transcript independently (#4 compared to #1, respectively) and to
explore the contribution of the iterative approach (#4 compared
to #5).

Performance Analysis
For determination of the ability of a method to correctly identify
pairwise effects on each of the synthetic datasets, all traits in a
given dataset are split into two classes: one contains mp traits
associated with both x1 and x2, and the other contains the non-
associated traits. Based on the predictions of the method, we
further split these traits into two additional classes (assuming a
certain ANOVA P-value cutoff): a “positive” class for a transcript
that is predicted to be associated with both x1 and x2, and a
“negative” class for the remaining traits. For each P-value cutoff
the true positive, true negative, false positive and false negative
counts are then calculated. Next, the area under the receiver
operating characteristic (ROC) curve is computed on the basis
of the resulting counts, referred to as the accuracy score. The
accuracy score ranges between 0 for a random solution and 1 for
an optimal solution. Since true positive pairwise effects can rarely
be detected randomly, an accuracy score of 0.5—which consists
of a relatively large amount of true positives—typically reflects a
highly informative, non-random solution.

We note that the accuracy score is obtained by testing a
range of P-value cutoffs, which is the main parameter of interest
and serves as input in all compared methods. In all cases, these
cutoffs refer to the maximum P-value attained by the primary

and secondary eQTLs. In the case of RBSR and PBSR, we used
the association P-values of individual traits. For the case of for
PBM we used its module P-values (see Kreimer et al., 2012, for
details), and for POEM (either using k = 1 or k = 6) we used
the InVamod’s P-value cutoff. To assess the difference in accuracy
between two different methods we compared the corresponding
ROC curves using a paired t-test (comparing specificity for the
same sensitivity levels).

Mouse Data Analysis
We investigated the genotyped recombinant inbred BXD mouse
strains that were generated by crossing the parental C57BL/6J and
DBA/2J strains (Peirce et al., 2004). Gene expression dataset of
bone marrow-derived dendritic cell across 43 BXD strains was
compiled from a Supplementary Table in a previous publication
(Gat-Viks et al., 2013). RNA levels were measured in 403 genes
at steady state and 6 h after in-vitro stimulation with one of three
pathogenic components: lipopolysaccharide (LPS), polyinosinic
polycytidylic acid (poly I:C), or Pam3CSK4 (PAM) (in all cases,
6- to 8-week-old females were used). A gene’s response to
a given stimulation in a given strain was calculated as the
difference between the log-transformed expression levels at 6 h
after stimulation and at steady state. Overall, the data consisted
of 1209 distinct response traits (403 genes × 3 stimulations),
each of which is measured across the BXD strains and is referred
to as an “expression trait.” Genotyping data of 3796 SNPs was
downloaded from WebQTL (Wang et al., 2003). POEM was
applied with k = 6 iterations and an InVamod association-
score cutoff corresponding to P-value of 0.01. We ran the
analysis using an overlap P < 10−6 for poeModules with two
traits and P < 10−3 for poeModules with three or more traits.
Using these parameters, POEM runs for about 2 min to analyze
the entire mouse dataset, consisting of 1209 traits across 43
strains.

We define a cis-acting eQTL as a locus that is physically located
at the proximity of the target gene (<10 Mbp). A trans-acting
poeModule (cis-acting poeModule) is defined as a poeModule
whose fraction of trans-trans-affected traits is above (below)
0.66. The TLR signaling model for poeModules M14-M18 was
generated by adding all target genes whose promoters were
bound to the transcription factors Nfkb1,2, Irf3,7, or Stat1,2
(1.5 standard deviations or more) in LPS-stimulated dendritic
cells during at least one time point (data from Garber et al.,
2012).

RESULTS

Synthetic Data Analysis
To characterize the ability of POEM to reveal pairwise effects,
we examined synthetic data of both additive and epistatic (co-
adaptive) relations among the underlying eQTLs. In particular,
we used a single synthetic collection comprised of two eQTLs and
80 expression traits, where each of these eQTLs affected 20 traits
(10 of them affected by both eQTLs) and additional 50 traits were
not associated with any of these eQTLs. Overall, a single dataset
consisted of 500 collections with three important parameters: the
joint-effect model of the two eQTLs (either additive or epistatic
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effects); the number of individuals; and the genetic effect size.
These synthetic datasets and performance evaluations based on
an “accuracy score” are described in more detail in the Materials
and Methods Section.

We investigated the performance of POEM compared to
four alternative methods: a RBSR applied to each transcript
independently (the “RBSR” approach; Evans et al., 2006); a
partition-based stepwise regression applied to each transcript
independently (the “PBSR” approach; Brem et al., 2005); a
partition-based modularization approach for a simultaneous
grouping of expression traits and identification of their
underlying pairwise effects (“PBM”; Kreimer et al., 2012); and
POEM without iterations (k = 1, “Non-iterative POEM”; see
Section Materials and Methods). The comparison provided
valuable insights regarding three key components of the POEM
algorithm: (i) the residual-based methodology; (ii) the grouping
of traits; and (iii) the iterative learning approach. For each POEM
component, we first consider the relevant comparison and then
discuss the contribution of the particular component to the
overall performance.

(i) The residual-based approach is supported by the simulated
data. We first focused on individual genes and examined
which stepwise regression method, either a residual-based
(RBSR) or a partition-based (PBSR) approach, performs
better in detecting additive effects. We found that the
residual-based approach performed well in predicting
additive effects (Supplementary Figure 2). These results
were qualitatively similar when we used synthetic datasets
of varying genetic effect sizes and numbers of individuals
(Supplementary Figures 2A,B, P < 0.006, 0.039, respectively;
paired t-test). To confirm the validity of our synthetic
data analysis we tested the performance of these methods
in the case of a dataset with epistatic effects, where the
partition-based approach is expected to perform better since
it is tailored for allele-specific alterations. We found that
in the case of epistasis the PBM indeed outperformed the
residual-based methods (Supplementary Figures 2C,D).
Thus, in searching for additive effects, the RBSR approach
performed better.
We next extended the comparison to modularization
methods (in addition to the single-trait analysis). Specifically,
we investigated the performance of three residual-based
methods, namely “RBSR,” “POEM,” and “Non-iterative
POEM,” compared to the “PBM.” We found that all three
residual-based methods outperformed the partition-based
approach when applied to an additive model (P < 0.0008,
0.0004, 0.0004, respectively; paired t-test; Figures 2A,B), but
not necessarily in the epistasis model (Figures 2C,D), as
expected. Supplementary Figure 3 further indicates that the
residual-based methods attain their best performance in the
case of additive pairwise effects, unlike the PBM. These results
support the use of residual-basedmapping in the additive case.

(ii) The utility of trait grouping is supported by our simulations.
The POEM algorithm divides the traits into groups,
assuming a modular organization of the system. To
investigate the utility of grouping we compared between

two RBSR-based methodolosgies: first, applying RBSR on
each trait independently; and secondly, applying the “non-
iterative POEM,” which relies on trait grouping in conjugation
with an RBSR technique (in the absence of additional iterative
steps). Notably, the performance of the non-iterative POEM
approach was significantly better than that attained by the
RBSR approach [P < 0.0002 (additive model) and P < 0.001
(epistasis model); paired t-test; Figure 2]. For example, using
100 and 150 individuals, the non-iterative POEM achieved
accuracy scores of 0.56 and 0.75, compared to 0.38 and 0.59,
respectively, achieved by RSBR (Figure 2A).

(iii) An iterative refinement of the eQTLs contributes to the
performance of POEM. To evaluate the contribution of
POEM’s iterative approach, we applied POEM using k = 6
iterative steps compared to a single iteration (k = 1). We
found that in the case of additive effects and large effect
sizes, accuracy scores were further increased when the iterative
approach was used (“POEM” vs. “Non-iterative POEM,” P <

0.0032, paired t-test; Figure 2B). The same result was obtained
when using different numbers of iterations.

Collectively, the results demonstrated the advantages of POEM,
particularly in the case of additive effects, and emphasized
the contribution of three key components—grouping, iterative
refinement and residual-based analysis—to the POEM algorithm.

Trans-Acting, Additive Pairwise Effects are
Common in Murine Dendritic Cells
We applied POEM to an available dataset of dendritic
cells from 43 recombinant inbred mouse strains across
1209 expression traits (Section Materials and Methods; data
taken from Gat-Viks et al., 2013). Using a single iteration
(k = 1) we identified 109 primary groups, 54 secondary
groups, and 19 poeModules (Supplementary Figure 4A), with
a total of 903, 480, and 89 expression traits, respectively
(Supplementary Figure 4B). We observed an increase in the
numbers of identified groups and of traits within them during
the iterative steps. For example, the number of expression traits
in the poeModules increased from 89 to 135 after five additional
iterations (k = 6; Supplementary Figure 4B, right). Similarly,
whereas 33 poeModules were identified after six iterations,
only 19 (57%) could be identified after the first iteration
(Supplementary Figure 4A, right).

Here we focus on the poeModules that were generated
after six iterative steps (k = 6). To assess the empirical false
discovery rate (FDR) generated by POEM, we repeated the
analysis 100 times with permuted gene-expression data generated
by randomly shuffling the labels of strains (Section Materials and
Methods). Using the permuted data, we found an average of 0.2
poeModules, indicating significant poeModules at FDR < 0.006.
Similar results were obtained when we counted the numbers
of identified traits within the poeModules (FDR < 0.0015;
Figure 3A). This is in contrast to the relatively large number of
primary and secondary groups generated using permuted data
(leading to FDR < 0.28 and 0.26 for primary and secondary
groups, respectively; Figure 3A). These results are in agreement
with our selection of a permissive InVamod cutoff (P < 0.01) for
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FIGURE 2 | Performance analysis of the POEM algorithm using synthetic data. Shown is the accuracy score (y-axis) over synthetic datasets that were

generated using an additive (A,B) or epistasis (co-adaptive; C,D) model with different numbers of individuals (A,C; effect size = 0.6) or different effect sizes (B,D, 50

individuals; x-axis). The plots demonstrate the improved performance of POEM compared to the alternative methods.

the generation of intermediate groups, while using a stringent
overlap cutoff (P < 10−3–10−6) for the generation of the
final poeModules (see Section Materials and Methods). Taken
together, although the intermediate groups may consist of false
discoveries, POEM successfully controls the FDR in its final
poeModules output.

We next used only 28 of the 33 resulting poeModules

(denoted M1-M28) since the remaining modules were nested

within them (Supplementary Tables 1-3). In 25 out of 28

poeModules, at least 66% of the expression traits were affected by

two trans-acting eQTLs (Supplementary Table 1); such modules
are denoted “trans-acting poeModules.” In total, 122 of 133
(91%) of the traits in the poeModules were affected by two
trans-acting eQTLs (Figure 3B). In addition, 27 of the 28
poeModules presented non-epistatic effects: 27 poeModules
did not attain significant interaction terms in any of their
traits, while module M26 showed significant interactions in
four of its traits (FDR < 0.01; Supplementary Tables 1, 2 and
Figure 3B; Section Materials and Methods). Overall, POEM
mainly identified trans-acting, additive poeModules (24 of 28
poeModules; Figure 4), consisting of 118 (9.8%) expression
traits that are affected by a pair of trans-acting eQTLs
carrying a joint additive effect (Supplementary Table 2). These
results demonstrate the high prevalence of non-epistatic trans-
acting pairwise effects and the ability of POEM to reveal
them.

Patterns of Interconnections among
poeModules
We used our findings in mouse dendritic cells to obtain a
global perspective on the organization of poeModules. To
this end we constructed a graph of poeModules (Figure 4),
on which each poeModule is connected to its primary and
secondary eQTLs. Examination of this graph reveals a high-
level organization of poeModules. Each poeModule reflects
a regulatory program with a unique combination of eQTLs,
and some eQTLs are involved in more than one regulatory
program. Specifically, we observe 3 characteristic organizations,
consisting of “singleton” poeModules and two multi-poeModule
structures—the “multifurcating” and “composite” architectures
(Figure 4). In the singleton case (13 poeModules, M1−M13;
Figure 4A) each eQTL relates to only one poeModule. In the
multifurcating structure (Figure 4B), several groups of traits
share the same eQTL and have an additional specific eQTL.
In particular, we find three multifurcating motifs: one such
motif reflects five poeModules (M14-M18) that share the same
secondary eQTL in chr13:94–97 Mbp; another bifurcating motif
reflects two poeModules (M19 and M20) that share a secondary
eQTL in chr5:125–127 Mbp; in the third motif (M21-M24), all
traits are affected by a single primary eQTL (chr9:121–124 Mbp),
and in addition the traits are divided into four more specific
groups in which they have weaker influence from secondary
eQTLs (in chr17:69–73 Mbp, chr2:157–160 Mbp, chr11:79–84
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FIGURE 3 | POEM reveals a widespread trans-acting, non-epistatic pairwise effects in murine dendritic cells. (A) Shown are the number of identified

groups (left) and the number of expression traits within them (right, y-axis) for real (black) and permuted (white) data across different types of groups (x-axis). Based

on the permutation test, POEM yielded an empirical false discovery rate (FDR) < 0.006 for predicted poeModules and FDR < 0.0015 for the number of expression

traits within the predicted poeModule. (B) Shown is the number of identified expression traits within the poeModules (y-axis), which are associated by cis-cis-acting

(left), cis-trans-acting (middle), and trans-trans-acting (right) eQTL pairs. Significant and nonsignificant interaction terms (FDR < 0.01) are marked in black and

white, respectively. *Significant difference

FIGURE 4 | A high-level organization of pairwise additive effects in murine dendritic cells. The graph presents poeModules (squares, middle) connected to

their primary eQTLs (gray circles, top) and secondary eQTLs (white circles, bottom). On this graph we marked the identifier of the poeModules (M1−M28) and the

genomic position peak of each eQTL (see full genomic intervals in Supplementary Table 3). Whereas, most poeModules are trans-acting and additive (standard

squares), several poeModules are either epistatic (gray squares) or cis-acting (bold squares). Notably, whereas some poeModules do not have overlapping primary

and secondary eQTLs (“singletons,” A), others generate two multi-poeModule structures—the multifurcating (B) and composite (C) architectures.

Mbp, and chr19:23–26 Mbp). Finally, the composite structure of
poeModules M25-M28 (Figure 4C) reflects the possibility that
both the primary and the secondary eQTLs may participate in
one or a few additional regulatory programs.

Next, we demonstrate the multifurcating structure of
poeModules M14−M18 (Figure 4B), which relate to five
distinct primary eQTLs and share the same secondary eQTL
in chr13:94–97 Mbp (Supplementary Table 4). The structure
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FIGURE 5 | An integrated model of the TLR signaling pathway modulated by the multifurcating motif of poeModules M14-M18. Shown is the TLR/RLR

signaling pathways in response to the poly I:C, PAM and LPS pathogenic-like ligands. Transcriptional regulation is shown as dashed lines. Each associated trait in

poeModules M14-M18 is accompanied with the gene name, the relevant stimulus (*poly IC; †PAM), and a rectangle that is color coded with its primary (left) and

secondary (right) underlying eQTLs. The plot suggests the existence of a single general (secondary) eQTL that acts pleiotropically on the TLR signaling network while

cooperating with several specific (primary) eQTLs to control the expression of particular genes within this network.

consists of 53 traits that are significantly enriched with Toll-
like receptor (TLR) signaling genes (P < 0.08, Fisher’s exact
test). To build a regulatory model of this network, we focused
on the particular anti-viral and inflammatory TLR signaling
pathways that are triggered by the pathogenic stimulations in
our dataset: poly I:C, PAM, and LPS (Figure 5). We included
all downstream genes that are directly bound by the key
transcription factors in this network (see Section Materials

and Methods; Supplementary Table 5). We further annotated
each trait (from poeModules M14-M18) in this network with
its primary and secondary eQTLs and with its corresponding
stimulus. We find that the same signaling pathway is enriched
with M14-M18 genes (31 out of 53 genes, P < 3 × 10−6, Fisher’s
exact test). Interestingly, whereas a pleiotropic secondary eQTL
has an effect on all 31 genes, a variety of primary effects are
more specific to particular subsets of genes. For example, three
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components of the NFκB complex, which plays a key role in TLR
signaling, have the same secondary eQTL with distinct primary
eQTLs (Nfκbiz and Rel in M14; Nfκb1 in M15). This observation
highlights the central role of combinatorial regulation in
molecular processes, and emphasizes the importance of pairwise
additive effects for interrogating regulatory circuits.

Effect of the Grouping Approach on
Performance
In an effort to identify co-regulated modules, most
modularization methods are focused on co-expression of
traits, tacitly assuming that the shared regulatory mechanisms
underlie similar expression patterns [e.g., “module networks”
(Segal et al., 2003) and MERLIN (Roy et al., 2013)]. For instance,
the PCluster algorithm (Friedman, 2003) is a probabilistic
agglomerative clustering approach that was used within the
“module networks” algorithm. In fact, when performing the
optimization solely based on the expression pattern, many
of the resulting groups cannot be associated with any of the
available genetic variants. Due to this limitation, co-expression
cannot be practically used to reveal co-association. To address
this problem, a variety of association-based grouping methods
have been proposed (e.g., InVamod and NICE; Gat-Viks et al.,
2013; Joo et al., 2014). In the association-based grouping
techniques, the optimization is performed in a supervised-like
manner in order to detect the particular clusters that share the
same associated variant. For instance, the InVamod (Gat-Viks
et al., 2013) methodology—used in the POEM algorithm—
applies a method closely related to an agglomerative clustering,
but estimates the coherence of clusters based on association
scores rather than measuring dissimilarity between expression
profiles.

Here we asked whether the co-association-based grouping
played a key role in identifying the poeModules. To this end
we compared the co-association-based InVamod algorithm to
the co-expression-based PCluster algorithm. When applied to
the dataset of dendritic cells, InVamod created 109 groups.
PCluster was then applied using this number of groups as input.
In most cases, using InVaMod increased the coherence of the
association signal within the groups. For example, the results
in Supplementary Figure 5 show that the best (most-significant)
median association P-values of InVamodwere better (lower) than
those of the PCluster algorithm, with smaller standard deviation
(P < 2.5 × 10−9, < 3 × 10−26, respectively; t-test). InVamod
produced best (most significant) median association P-values
that are lower than 0.01 in 109 (100%) of the groups, compared to
only 76 (70%) of the PCluster groups. The improved predictions
of InVamod are in agreement with the absence of genotyping data
as prior to the PCluster algorithm. Thus, substitution of InVamod
with a co-expression-based grouping method such as PCluster
resulted in reduced performance.

DISCUSSION

Pairwise eQTL effects provide a model for deciphering regulatory
programs that act on gene expression. In this study we presented

POEM, a novel algorithm for the characterization of gene
modules that are affected additively by pairs of eQTLs. POEM
relies on trait grouping based on eQTLs inferred by the RBSR
method, and further refines the primary and secondary eQTLs
in an iterative manner. The poeModules are manifested as
significant overlaps between the primary and secondary groups.
Whereas, existing eQTL methods centered on joint epistatic
effects (e.g., Zhang et al., 2010; Kreimer et al., 2012) or on
single traits in the absence of modularization (Brem et al.,
2005; Evans et al., 2006; Brown et al., 2014), our approach was
designed for additive effects and leverages the modularity of
the system to gain statistical power. Reassuringly, our results in
synthetic data demonstrate that POEM significantly outperforms
the compared eQTL methods (Figure 2). As expected, POEM
achieves high performance in the case of additive pairwise effects
with lower performance in the case of epistatic effects (Figure 2
and Supplementary Figure 3).

We attribute the success of POEM to four additional factors.
First, the refinement of the solution obtained by a classical
(residuals-based) stepwise regression approach through a series
of iterative refinement steps (real data: Supplementary Figure 4;
synthetic data: “POEM” vs. “Non-iterative POEM,” Figure 2).
Second, similarly to previous approaches (Kendziorski et al.,
2006; Lee et al., 2006; Litvin et al., 2009; Zhang et al., 2010;
Kreimer et al., 2012), the statistical robustness achieved by
grouping expression traits allowed us to detect pairwise effects
that are difficult to identify using a single-trait analysis (“RBSR”
vs. “Non-iterative POEM”; Figure 2). Third, in an effort to
identify co-regulated modules, most module-identification
methods are focused on co-expression of genes, tacitly assuming
that the shared regulatory mechanisms underlie similar
expression patterns (e.g., Friedman, 2003; Segal et al., 2003). Our
analysis suggests that co-association (rather than co-expression)
information is particularly suitable for studying groups of traits
sharing the same eQTL effect (Supplementary Figure 5).

Finally, the genetic landscape of the murine transcriptome
itself appears to be well suited to the identification of additive
trans-acting pairwise effects. Unlike previous studies that have
mainly identified cis-acting or epistatic pairwise effects (Litvin
et al., 2009; Zhang et al., 2010; Kreimer et al., 2012; Brown et al.,
2014; Hemani et al., 2014), POEM reveals high prevalence of gene
modules that are affected by trans-acting, non-epistatic pairwise
effects (24 poeModules; Figures 3, 4; Supplementary Table 1). In
view of these characteristics, we believe that POEM is a valuable
technique for the mapping of joint additive effects, and may
be used to complement existing techniques for the mapping of
epistatic effects.

We found that interconnections among pairwise additive
effects are common (Figure 4). In particular, the wiring
of connections among poeModules uncovers a high-level
organization of multifurcating and composite structures. For
example, within the multifurcating structure of poeModules
M14−M18, which we further characterized (Figure 5), we found
two types of eQTLs acting in concert on the TLR signaling
network: a general eQTL (chr13:94–97 Mbp) controls the
network pleiotropically, whereas other eQTLs are more specific
to particular sets of genes within the network. The poeModules
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and their high-level organization provide a new regulatory model
for anti-viral and inflammatory responses in immune cells.
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Supplementary Figure 1 | Outline of the POEM algorithm.

Supplementary Figure 2 | Comparative performance analysis using

synthetic datasets. Shown are the accuracy scores (y-axis) over synthetic

datasets with different genetic effect sizes (a,c; 50 individuals) or different numbers

of individuals (b,d; effect size = 0.6; x-axis). Results are shown over synthetic

datasets that were generated using additive pairwise effects (a,b) and epistatic

relations (c,d). Plots depict two alternative stepwise regression

approaches—residuals-based regression (black; as in Evans et al., 2006) and

partition-based stepwise regression (gray; as in Brem et al., 2005)—indicating that

the residuals-based approach has an advantage in the case of additive pairwise

effects.

Supplementary Figure 3 | Performance evaluation. Shown is the accuracy

score (y-axis) of the POEM (top left), PBM (top right), RBSR (bottom left) and

non-iterative POEM (bottom right) methods over synthetic datasets with different

numbers of individuals (x-axis), which were generated assuming an additive (red)

or epistasis (green) model (effect size = 0.6). The three residual-based approaches

(POEM, non-iterative POEM and RBSR) have an advantage in the presence of

additive effects, whereas the accuracy of the partition-based method (PBM) is

better in the case of epistasis.

Supplementary Figure 4 | Primary groups, secondary groups and

poeModules in murine dendritic cells. (a) Numbers of identified primary

groups (left) secondary groups (middle) and poeModules (right, y-axis) for real

(black) and permuted (blue) data, across varying numbers of POEM iterations

(x-axis). (b) Total numbers of traits included in the identified primary groups (left),

secondary groups (middle) and poeModules (right, y-axis) for real (black) and

permuted (blue) data, across varying numbers of POEM iterations (x-axis). Plots

indicate that the numbers of primary and secondary groups and the numbers of

traits within them are substantially higher in real data than in permuted data.

Supplementary Figure 5 | Comparison of grouping algorithms. Distributions

of median (left) and standard deviation (right) of association P-values across the

traits within each group. The groups were generated using the

co-association-based InVamod algorithm (black; Gat-Viks et al., 2013) and

co-expression-based PCluster algorithm (white; Friedman, 2003). The plots

indicate that traits in the InVamod-derived co-association groups have better

coherence than traits in the PCluster-derived groups.

Supplementary Table 1 | The identified poeModules in the murine

dendritic cells dataset. Shown are poeModule identifiers (column 1) and types

(column 2), their primary and secondary group identifiers (columns 3 and 4), the

numbers of expression traits (column 5), and detailed lists of these traits (a gene

symbol and a stimulus; column 6). Column 7 records the overlap P-value of each

poeModule, and column 8 indicates the global pattern of relationships among the

poeModules as detailed in Figure 4. Column 9 indicates the number of traits that

are affected by cis-cis or cis-trans eQTL (left) as well as epistatic effects (right) as

detailed in columns 5, 7, and 8 of Supplementary Table 2.

Supplementary Table 2 | Expression traits in poeModules identified in

murine dendritic cells. Shown are expression traits (column 1, a gene symbol;

column 2, a stimulus), the poeModule in which they reside (column 3; see column

1 in Supplementary Table 1), their primary cis- or trans-acting eQTLs (columns 4

and 5, respectively) and their secondary cis- or trans-acting eQTLs (columns 6 and

7, respectively; group identifiers are as in column 2 of Supplementary Table 3).

Column 8 records the P-values of the interaction components between the

primary and secondary eQTLs. ∗Interaction significance with FDR <0.01.

Supplementary Table 3 | Primary and secondary groups and their eQTLs in

the dataset of murine dendritic cells. Shown are the group types (primary or

secondary group, column 1) and their identifiers and numbers of traits (columns 2

and 3). For each group, the table presents the details of its eQTL: the

chromosome (column 4) and its genomic interval (columns 5). Shown are only

those groups whose eQTLs are part of at least one poeModule, as detailed in

Supplementary Table 1.

Supplementary Table 4 | Association scores in poeModules M14-M18.

Shown is the poeModule (column 1), a trait within this poeModule (column 2-gene

name; column 3-stimulation) and the association scores (−log P-value) between

this trait and the primary (column 4) and secondary (column 5) eQTLs of its

poeModule.

Supplementary Table 5 | The multifurcating pattern of poeModules

M14-M18. Shown are five poeModules that are part of the same multifurcating

pattern (column 1, see Figure 4b) together with their primary and secondary

group identifiers and eQTLs (column 2; see Supplementary Table 3). For each

poeModule, the table records the total number of expression traits (column 3) and

the TLR-related traits (columns 4,5), including the names of the TLR signaling

genes (column 4), the TLR transcriptional target genes (column 5, based on

Garber et al., 2012) and the relevant stimulations for each trait: ∗Poly IC; †PAM.
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