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Normal aging is related to a decline in specific cognitive processes, in particular
in executive functions and memory. In recent years a growing number of studies
have focused on changes in brain functional connectivity related to cognitive aging.
A common finding is the decreased connectivity within multiple resting state networks,
including the default mode network (DMN) and the salience network. In this study,
we measured resting state activity using fMRI and explored whether cognitive decline
is related to altered functional connectivity. To this end we used a machine learning
approach to classify young and old participants from functional connectivity data. The
originality of the approach consists in the prediction of the performance and age of
the subjects based on functional connectivity by using a machine learning approach.
Our findings showed that the connectivity profile between specific networks predicts
both the age of the subjects and their cognitive abilities. In particular, we report that
the connectivity profiles between the salience and visual networks, and the salience
and the anterior part of the DMN, were the features that best predicted the age.
Moreover, independently of the age of the subject, connectivity between the salience
network and various specific networks (i.e., visual, frontal) predicted episodic memory
skills either based on a standard assessment or on an autobiographical memory task,
and short-term memory binding. Finally, the connectivity between the salience and the
frontal networks predicted inhibition and updating performance, but this link was no
longer significant after removing the effect of age. Our findings confirm the crucial role of
episodic memory and executive functions in cognitive aging and suggest a pivotal role
of the salience network in neural reorganization in aging.

Keywords: resting state, rs-fMRI, episodic memory, autobiographical memory, executive functions, functional
connectivity, machine learning, aging
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INTRODUCTION

The cognitive and neural changes accompanying healthy aging
are a crucial topic in cognitive neuroscience. The age-related
cognitive decline has emerged as a major societal concern
given the increase in the elderly population. Nevertheless,
not all cognitive domains are equally affected by age, and
not all cognitive processes show age-related decline. There is
compelling evidence that executive functions and memory are
the most severely impaired cognitive domains in this population
(Salthouse et al., 2003).

Executive functions are seen as high-level cognitive processes
responsible for flexible and adaptive behavior (Miyake et al.,
2000). Thus, they play a fundamental role in dealing with
complex situations in everyday life. Moreover, they largely
contribute to the effective functioning of other cognitive
processes, such as memory. Notably, some authors have proposed
that the central deficit responsible for the general cognitive
decline in aging is linked to inefficient executive functioning
(West, 1996; Salthouse et al., 2003). At the neural level, this
decline may be accounted by the functional and structural
reorganization of the frontal lobes with aging (Moscovitch and
Winocur, 1995; Cabeza, 2002; Grady et al., 2005; Fjell and
Walhovd, 2010).

The cognitive domain that has received the greatest attention
in normal aging is memory. Many older adults complain of
increased memory lapses as they age and a major focus of research
has been trying to distinguish memory decline attributable to
normal aging from that related to pathological aging, in particular
in Alzheimer’s disease.

Within the framework of long-term memory, dissociation
between spared semantic memory (i.e., general knowledge about
the world, words and concept) and impaired episodic memory
(i.e., memory for personally experienced events that occurred in
a particular place at a specific time) has been reported in aging.

The episodic memory decline in older adults may result from
a parallel impairment of strategic control processes involved
in encoding and memory retrieval. Accordingly, several studies
using laboratory tests of episodic memory have highlighted a
reduction in the use of effortful encoding strategies, which are
mainly related to prefrontal brain regions (Hara and Naveh-
Benjamin, 2015). In the same line, considerable evidence points
to deficits in effortful retrieval in older adults. In particular several
studies have shown impaired free recall along with normal cued
recall or recognition (Ward and Maylor, 2005).

These findings show that memory decline in cognitive aging is
strongly related to executive functions.

Moreover, a large number of studies have investigated
cognitive aging changes in episodic performance via
autobiographical memory, which is defined as the memory
for personal experiences that underlies the personal identity
and the temporal continuity of an individual (Conway and
Pleydell-Pearce, 2000). A distinction between an episodic and
a semantic component has also been proposed in this domain.
The former refers to memory for personal events situated in a
specific spatiotemporal context, while the latter refers to general
knowledge about one’s own past and about oneself. Again,

dissociation between spared semantic and impaired episodic
autobiographical memory has been documented in the elderly
(Levine et al., 2002; Piolino et al., 2002, 2006; St. Jacques and
Levine, 2007; Martinelli et al., 2013a). The deficit of the episodic
component of autobiographical memory has been linked to
a reduced availability of executive resources (Conway and
Pleydell-Pearce, 2000; Conway, 2005; Piolino et al., 2010; Coste
et al., 2011), and to a reduced recruitment of the underlying
brain structures (Martinelli et al., 2013b).

Functional magnetic imaging (fMRI) has been widely used in
order to link age-related cognitive decline with patterns of altered
brain function. A consistent finding in the fMRI literature is that
healthy old adults present higher brain activation in a wide range
of cognitive tasks (Cabeza, 2002). On the other hand some studies
have highlighted a reduced brain activity in cognitive aging
(Damoiseaux et al., 2008). More recently, an increasing number
of investigations have focused on the study of the relationship
between cognitive functions and functional connectivity mainly
derived from resting state fMRI (rs-fMRI). rs-fMRI is the study
of the interregional correlation of spontaneous fluctuation in
brain activity while subjects are not engaged in any specific
cognitive task. It represents a promising candidate for studying
the complex neural organization underlying cognition and
its modification due to different conditions (normal aging,
psychiatric and neurodegenerative disorders) without task-
specific confounds.

The use of rs-fMRI to study functional connectivity has
allowed the identification of a set of networks named resting state
networks (RSNs). These networks are commonly identified across
young healthy subjects (Damoiseaux et al., 2006) and have shown
high reproducibility (Guo et al., 2012).

The most widely studied RSN is the default mode network
(DMN), composed of regions that are deactivated during
the performance of goal-directed tasks and that show high
levels of activity at rest. Buckner et al. (2008) defined the
core regions associated with the brain’s default network: the
ventral/dorsal medial prefrontal cortex (PFC), the posterior
cingulate and retrosplenial cortex, the inferior parietal lobule and
the hippocampal formation (including the entorhinal cortex and
parahippocampal cortex).

Beside the DMN, other networks of intrinsic brain
connectivity have been described in healthy populations. These
findings indicate that the human brain has a network-based
organization even at rest. In recent years, a consistent number
of investigations have focused on the salience network (Menon,
2015; Metzler-Baddeley et al., 2016). The salience network is
an intrinsically connected large-scale network anchored in the
anterior insula and the dorsal anterior cingulate cortex. With
the anterior insula as its dynamic hub, the salience network
contributes to a variety of complex brain functions through the
integration of sensory, emotional and cognitive information
(Menon, 2015).

Recently, a direct link between inter-individual variability in
functional connectivity measured at rest in specific networks
and cognitive functions has been documented. For example,
Cole et al. (2012) reported that the global connectivity of the
lateral prefrontal cortex (LPFC) predicted individual differences
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in fluid intelligence. A correlation between the strength of the
connectivity between the two major nodes of the DMN, the
ventral medial prefrontal cortex (vMPFC) and the posterior
cingulate cortex (PCC), and working memory abilities (Hampson
et al., 2006), or episodic memory performances (Tambini et al.,
2010) has been reported.

This approach has proved fruitful in describing the neural
reorganization in aging. Several studies have reported reduced
connectivity between the two major nodes of the DMN, the
vMPFC and the PCC (Andrews-Hanna et al., 2007; Damoiseaux
et al., 2008; Balsters et al., 2013; Mevel et al., 2013). Other
networks with reduced connectivity are the fronto-parietal
attentional (Andrews-Hanna et al., 2007; Balsters et al., 2013;
Vergun et al., 2013), the sensorimotor (Meier et al., 2012) and
the salience networks (Meier et al., 2012; Onoda et al., 2012).
In particular, the connectivity profile in the salience network
has been shown to be the best feature to classify young and old
participants using a machine learning approach (Meier et al.,
2012), and that internetwork connectivity between the salience
and the visual and the auditory networks is reduced in aging
(Onoda et al., 2012).

Moreover, a direct link between reduced network connectivity
and impaired cognitive functions has been reported in aging.
In particular, decreased connectivity between the anterior and
the posterior node of the DMN correlated with a composite
measure of memory (Andrews-Hanna et al., 2007). Concerning
autobiographical memory, a correlation has been reported
between the strength of connectivity between the posterior node
of the DMN and middle temporal structures, comprising the
hippocampus, and an episodic autobiographical fluency, and
between semantic autobiographical fluency and the connectivity
between the anterior node of the DMN and the ventral anterior
cingulate cortex (Mevel et al., 2013). Additionally, reduced
connectivity within the DMN and the salience network has been
related to a decline in executive functions in aging (Damoiseaux
et al., 2008; Onoda et al., 2012). Taken together, these findings
highlight the pertinence of using rs-fMRI to explain the complex
neuronal reorganization linked to the cognitive decline observed
in aging (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008;
Onoda et al., 2012; Sala-Llonch et al., 2015).

The principal aim of this study was to further characterize the
brain functional reorganization related to cognitive aging in order
to shed light on the network reorganization related to cognitive
decline in older adults, in particular linked to episodic memory
and executive functions.

The originality of the study consisted in using a machine-
learning approach to predict age and cognitive performance
from functional connectivity patterns. Gottlieb (2012) recently
proposed that a closer integration of machine learning in
cognitive neuroscience has the potential to answer fundamental
questions about cognitive functions. Such an approach
has already proven its validity in recent investigations of
neuropsychological features in neurology or psychiatry
(Costafreda et al., 2011; Quintana et al., 2012). Developed
from a connectionist approach, this modeling strategy has
several advantages over computationalist methods: it can be
easily applied to multi-modal data analysis, and in addition

it is not constrained by a priori assumptions or abstractions
on the data. The model is built using the input feature vectors
(e.g., multimodal recordings of cognitive tasks) and matching
this vector with expected outputs (e.g., prediction of cognitive
variables). Once the model has been built, it is then confronted
to a new independent test dataset to estimate its validity.

Therefore, we used multivariate statistical techniques to
classify young and old participants using a machine learning
approach (Meier et al., 2012). We hypothesized that aging would
disrupt not only DMN but also the salience network (Onoda et al.,
2012) and that this pattern of modifications at the functional level
would be related to cognitive changes in particular in episodic
memory and executive functions.

MATERIALS AND METHODS

Subjects
Twenty-seven healthy participants, 17 young adults (YA: nine
females, mean age 28.75 ± 4.62) and 10 old adults (OA: four
females, mean age 70 ± 5.01) took part in the study. These
participants represent a subgroup of an fMRI activation study
whose data have already been published elsewhere (Martinelli
et al., 2013b). All participants gave their informed written consent
and the study was approved by the local ethics committee of
Sainte Anne Hospital (CPP Ile de France 3 n◦2687). All subjects
were right-handed (according to the Edinburgh Handedness
Inventory; Oldfield, 1971), and native French speakers. Medical,
demographic, and psychometric data were obtained prior to the
scanning session. All participants were unmedicated, living at
home and rigorously screened for uncontrolled hypertension
and cerebrovascular risk factors. Exclusion criteria included
presence of a history of alcohol or substance abuse, head trauma,
major disease affecting brain function, neuropsychiatric disorders
(tested with the Mini-International Neuropsychiatric Interview,
Sheehan et al., 1998), depression [tested with the Geriatric
Depression Scale, Yesavage et al., 1983, cut-off score > 10;
YA: 2.65 ± 2.67; OA: 3.4 ± 2.91; student t-test: t(25) = 0.68,
p = 0.5], abnormal general cognitive functioning as assessed by
the Mattis scale (Mattis, 1976, cut-off score < 136; young adults:
142.50 ± 1.26 and old adults: 139.90 ± 3.04). The two groups
were matched according to their verbal abilities and crystallized
intelligence as assessed by the Mill Hill test [Deltour, 1993;
percentile score for YA: 54.38 ± 26.83 and OA: 53.83 ± 30.82,
student t-test: t(25)= 0.04, p= 0.97].

Procedure
The whole experimental session comprised three phases (pre-
scanning, scanning, post-scanning).

During the first phase (pre-scanning interview), participants
were tested for exclusion and inclusion criteria, they underwent
a medical examination, neuropsychological assessment and
completed the Taste and Interest Questionnaire (TIQ) that was
employed to create personal cues used for the autobiographical
memory tasks during the scanning and post-scanning sessions.
During the scanning session, participants were first trained
in the autobiographical task outside the scanner, and then a
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high-resolution 3D structural image was acquired as well as a
resting state functional session. Subsequently they participated
in an activation protocol during which they performed the
autobiographical task from personal cues (other than those
used for training). After the fMRI protocol, during the post-
scanning session (debriefing) subjects were asked to re-evoke
their autobiographical memories from the same cues seen under
the scan. Here we will mainly focus on the measures of
neuropsychological assessment and autobiographical memories
at debriefing and the rs-fMRI (for details on the activation
protocol results see Martinelli et al., 2013c).

Behavioral Measures
Autobiographical Memory
In the pre-scanning interview, exclusion and inclusion criteria
were verified by means of a clinical assessment and psychometric
tests, and then neuropsychological tests and the TIQ were
submitted to subjects. The aim of the TIQ was mainly to collect
information so as to create personalized specific event cues for
each participant. Twenty-four activities or interests for episodic
autobiographical memory (EAM) were selected from the TIQ
(for a complete description of personal cue elaboration see
Martinelli et al., 2013b; Sperduti et al., 2013).

The participants were first invited to take part in a training
session before the fMRI scanning. Participants received detailed
explanations on the nature of the task and participated in a brief
simulation of the experiment on a laptop. For the two EAM
tasks (mental retrieval under the scanner and aloud retrieval at
debriefing) we gave the following explanations:

- EAM was defined as a memory of a single event that occurred
at a specific time and place, of short duration, lasting less
than 24 h. Participants were instructed to mentally relive
personal episodes prompted by cues and to try to retrieve
spatiotemporal, affective and perceptual details (such as time,
location, perceptions, feelings, scenery, and people present
in the scene) (e.g., “a unique memory linked to a trip to
New York”).

After the scanning session, in order to score the memories
retrieved in the scanner, participants were asked to recall each
memory again. EAMs were rated for richness and specificity
on standard scales (Levine et al., 2002; Piolino et al., 2009;
Martinelli et al., 2013a). More precisely, the presence of a sense
of remembering with recall of specific spatial and temporal
details, and other contextual and phenomenological details in
each evocation was noted (1 point per type of detail, maximum
4; e.g., “I remembered my visit to the Palace of Tokyo in Paris,
in August 2009, as if I was still there. I was with Chiara in a
room at the exhibition on the first floor in the dark to see the
TV reports and talk with other visitors, it was 6 pm and still very
warm, but it was worth it!, after that we went to the restaurant
of the outdoor museum on the bank of the Seine...”). For each
participant we computed a global ratio of specificity (EAM score)
totaling up the sum of spatiotemporal, other contextual and
phenomenological details divided by the sum depending on the
number of recalls.

Episodic Memory
The Free and Cued Selective Reminding test (FCRT) was used
to assess episodic memory capacities (Grober and Buschke, 1987;
French version Van der Linden et al., 2004).

Different studies have shown the validity of this tool to
discriminate healthy old adults from prodromal Alzheimer’s
disease (AD) patients (Lemos et al., 2015; Papp et al., 2015).

The test begins with a study phase designed to control
attention and cognitive processing to identify memory
impairment that it is not secondary to other cognitive deficits.
During the encoding phase, subjects have to identify words in
response to category cues (fruits, clothing, etc.). In the test phase,
subjects are asked to recall the items they learned (free recall).
The category cues are used to prompt recall of items not retrieved
by free recall to generate a score called cued recall. We calculated
the sum of free and cued recall termed EPI total recall.

Executive Functions
For the assessment of the executive functions, we used the
Trail Making Test (TMT; Reitan, 1958) and verbal fluency
(Cardebat et al., 1990) as a measure of behavioral and cognitive
flexibility respectively. For the TMT we computed the difference
in execution time between part B and part A (TMTB-A score).
Concerning the verbal fluency we added the total number of
words for the lexical (number of words starting with the letter
P) and the semantic (number of words belonging to the semantic
category “animals”) fluency (FLU score).

As a measure of inhibition we used the Victoria STROOP
test (Stroop, 1935). In particular we computed the difference
between the time of denomination of the interference part and
the denomination part (INHIB score). For up-dating (UP-D
score) in working memory we used the running span (Quinette
et al., 2003). For visuo-spatial working memory we used a
battery assessing the visuo-spatial span (VSS score) forward and
backward task (sum of the two spans), and the short-term binding
(STB score) ability using a visuo-spatial binding task (Picard
et al., 2012).

fMRI Data Acquisition
All data were acquired with a 3 T scanner (Discovery MR
750, General Electric Healthcare). The anatomical scan used
an inversion recovery 3-D T1-weighted gradient-echo sequence
of images (TE = 4.3 ms, TR = 11.2 ms, TI = 400 ms,
matrix = 384 × 384, slice thickness = 1.2 mm). Functional
resting state images were acquired using a gradient echo
echoplanar (EPI) sequence (TE = 30 ms, TR = 2000 ms, flip
angle = 90◦, matrix = 64 × 64, slice thickness = 3 mm, 42
contiguous sections). The functional scan lasted 5 min.

fMRI Data Analysis
Extraction of Networks and Regions of Interest
We extracted resting state networks from an independent set of
resting state data available on the 1000 Functional Connectome
Project1. This dataset contains functional scans of 86 subjects
(45 females, age 19–85 years) acquired with a 3T scanner

1http://www.nitrc.org/frs/shownotes.php?release_id=916
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with the following parameters: TR = 2 s, 23 slices, acquisition
type= sequential ascending.

All data were processed using SPM5 software (Statistical
Parametric Mapping 5, Welcome Department of Cognitive
Neurology, UK2). Standard pre-processing procedures were
applied to functional data. EPI volumes were corrected for
slice timing, subject’s rigid motion and spatially smoothed using
an isotropic Gaussian kernel filter of 5 mm full-width half-
maximum.

After preprocessing, resting state networks were extracted
using group spatial independent component analysis (sICA) as
implemented in the Network Detection using ICA (NEDICA)
software (Perlbarg et al., 2008). Networks were first extracted for
each subject in her/his native space. The spatial ICs obtained for
each subject were then normalized in the MNI standard space
and clustered into classes representative of the population. To do
so we used a hierarchical clustering algorithm (Hartigan, 1975).
All normalized spatial maps in each class were then averaged
and thresholded at p < 0.05 using t-test statistics corrected
for multiple comparisons using a false discovery rate (FDR)
approach (Genovese et al., 2002). Threshold maps were visually
inspected to select maps exhibiting a known spatial organization.
These maps are referred to as functional networks (for a similar
procedure, see Malherbe et al., 2014).

Then, regions of interest were extracted from the functional
networks obtained by selecting the maxima of connectivity peaks
of the group functional networks. All regions of interest were
defined as a sphere of 10 voxels in the Montreal Neurological
Institute space (voxel size: 3.5 mm × 3.5 mm × 3.5 mm).
These regions of interest were then used to extract the time
course of our functional resting state data after applying the same
preprocessing steps described above. The mean time series were
calculated across all voxels within each region of interest in the
MNI space, for each subject. The motion parameters, as well
as signals from white matter and CSF and linear and quadratic
drifts were then used as covariates of no interest in a general
linear model for the mean time courses in each region considered
in the analysis. Regions were then grouped in networks. For
each network, the time course was obtained by meaning all time
courses of implicated regions. Finally, a correlation matrix of the
average time course between each pair of networks was computed
(see Table in Appendix 1). This measure was used in the following
steps of data analysis.

Machine Learning Analyses
In the present study, using a machine learning approach,
we performed two analyses: supervised feature selection, and
supervised regression. All the analyses were performed after
volume correction: all variables were orthogonalized according
to the cortical volume.

Feature selection was performed using the orthogonal forward
regression (OFR) algorithm (Chen et al., 1989), which was used
to select the best network activities to predict either the age of a
subject, or one of the cognitive variables. All the descriptors were
considered as vectors (one fMRI was considered as one vector),

2www.fil.ion.ucl.ac.uk/spm

and we analyzed iteratively the best set of features to model one
expected output at a time. Given the feature vectors f_i,i∈[1..N]
and the output vector �, the OFR feature selection approach
follows three steps:

(I) All descriptors are ranked according to their distance to the
output. The distance is computed as the cosine of the angle
θ between the vector and the output: θ= cos(f_i,�).

(II) The descriptor with the lowest absolute angle (maximum
cosine) is ranked first. All remaining descriptors and
the output are projected into the null-space of the best
descriptor.

(III) The selected descriptor is stored and removed from the set,
and the algorithm iterates on the remaining orthogonalized
features.

In order to control for the relevance of the selected features,
we used a probe variables approach (Stoppiglia et al., 2003).
We inserted in the feature set 100 randomly drawn vectors.
The rank distribution of these probes indicated the risk of a
descriptor containing information that could be explained by
chance. We fixed a threshold of 5% of probes in our investigation,
and selected only descriptors above that threshold. The variables
were analyzed after volumetric correction (the correction was
performed by orthogonalizing all variables to the null-space of
the volumetry measure).

Supervised regression was performed using multilayer
feedforward artificial neural networks. Multilayer perceptrons
are universal approximators: when good care is taken to control
their complexity, they can provide better fitting than classical
polynomial regressions (Haykin, 2009). We used a 2-layer
perceptron, with a non-linear (sigmoid) hidden layer and a
linear output. The network inputs were the two best features
selected using OFR. Regression was performed using a second
order gradient descent approach, with the Levenberg–Marquart
algorithm (Pujol, 2007). Performances were estimated using a
leave-one-out approach:

(I) One sample was taken out of the database.
(II) The network was then trained on the remaining samples,

and afterwards tested on the excluded sample.
(III) The same estimation was performed iteratively for all

samples of the database. The overall classification of the
excluded samples is the leave-one-out error, which is a good
estimate of the generalization error.

We tuned the network complexity by manipulating the
number of hidden units (from 0 to 5), according to the leave-one-
out error (Dreyfus, 2005).

Data analyses were performed using Matlab 2013a
(Mathworks R©).

RESULTS

Behavioral Results
We performed independent sample t-tests on all the measures of
interest. We found significant differences for all measures in favor
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of better performance in young adults than in older adults, except
for FLU [t(25) = 1.71, p = 0.1]: EAM [t(25) = 7.56, p < 0.001],
EPI [t(25) = 3.34, p < 0.01], TMTB-A [t(25) = 4.24, p < 0.001],
INHIB [t(25) = 6.72, p < 0.001], UP-D [t(25) = 2.41, p < 0.05],
VSS [t(25)= 4.57, p < 0.001], and STB [t(25)= 3.07, p < 0.01].

fMRI Results
Clustering
The best silhouette was obtained using six clusters. The within-
cluster mean of distance to centroid was below 0.25 for all clusters
except for cluster 6. Cluster 1 is particularly large and contains
16 networks (Table 1). Using the distance matrices between the
cluster elements, we extracted the cluster hierarchy (Figure 1),
which shows three blocks in these six clusters, composed of
cluster 3, cluster 5, and the remaining clusters.

Prediction of Age
The best two pairs of networks to predict age according to
the OFR algorithm were sal-vis and sal-dmfr, corresponding
to clusters 2 and 6. These two clusters belong to the same
block on the dendrogram. A Pearson correlation R2 of 0.61
was obtained (p = 2.07∗10−5) using these two variables. The
best neural network architecture selected had four hidden units.
A leave-one-out mean-squared error of 0.06 was achieved for
the age prediction, corresponding to a generalization error
of 6.69 ± 5.3 years (the prediction error reached 9.10−7 on
the training set) (Figure 2). Given the pivotal role of the
salience network in predicting age and cognitive variables, we
conducted post hoc analyses on the within network connectivity.
Interestingly, we found that the connectivity between the
cingulate gyrus and insula (which are the main hubs of the
salience network) was reduced in the group of old adults
(t = −2.52, p < 0.05). Moreover the connectivity between these

FIGURE 1 | Dendrogram of the clusters, computed from their cosine
distance matrices.

two brain regions showed a negative correlation with age in the
old adults (R=−0.7, p < 0.05), but not in the young adults group
(R = −0.03, p = 0.9). Nevertheless, when accounting for within
network connectivity, we were still able to significantly predict the
age from the between network connectivity between the sal-dmnf
and the sal-vis (R= 0.368, p= 4.06 E-03).

Prediction of Cognitive Variables
Seven cognitive variables were successfully predicted from rs-
fMRI pairs of networks (see Table 2): EPI total, STB, EAM, FLU,
TMT B-A, and VSS Scores. The best prediction was obtained with
EPI total, which had the highest linear correlation p-values and
a very low leave-one-out generalization error (6%). Moreover,
three of these variables were regressed efficiently using a neural
network, with a satisfactory leave-one-out error (below 15%).

TABLE 1 | Clusters of pairs of networks (cosine distance measure), ordered according to their homogeneity and dimension.

clusters 1 2 3 4 5 6

homogeneity 0.18 0.18 0.18 0.20 0.21 0.35

networks Lvattfr-dmfr Mot-sal Mot-dmps Dmfr-dmps Lvattfr-lvattps Mot-dmfr

Lvattfr-dmps Mot-lvattfr Mot-vis Dmfr-dmtemp Lvattfr-rvattfr Mot-dmtemp

Lvattfr-dmtemp Mot-lvattps Dmfr-vis Dmps-dmtemp Lvattfr-rvattps Mot-front

Lvattfr-front Mot-rvattfr Dmps-vis Dmps-front Lvattps-rvattfr Sal-lvattfr

Lvattps-dmfr Mot-rvattps Dmtemp-vis Dmtemp-front Rvattfr-rvattps Sal-lvattps

Lvattps-dmps Sal-vis Front-vis Dmfr-front Sal-rvattfr

Lvattps-dmtemp Lvattfr-vis Sal-rvattps

Lvattps-front Lvattps-rvattps Sal-dmfr

Rvattfr-dmfr Lvattps-vis Sal-dmps

Rvattfr-dmps Rvattfr-vis Sal-dmtemp

Rvattfr-dmtemp Sal-front

Rvattfr-front

Rvattps-dmfr

Rvattps-dmps

Rvattps-dmtemp

Rvattps-front

Lvattfr, left ventral attentional frontal; Lvattps, left ventral attentional posterior; Rvattfr, right ventral attentional frontal; Rvattps, right ventral attentional posterior; dmfr,
default mode frontal; dmps, default mode posterior; dmtemps, default mode temporal; front, frontal; Mot, motor; Sal, salience; vis, visual.
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FIGURE 2 | Prediction of the age of the subjects from their rs-fMRI inter network activity. (A) Linear regression, each circle represents a subject, the colored
plane represents the linear regression. (B) Non-linear regression based on the multilayer perceptron, on the variables after volume correction, on the leave-one-out
validation set. Each dot represents a subject; the dashed line represents the optimum.

TABLE 2 | Cognitive variables prediction from fMRI pairs of networks.

Variable Networks Clusters Significance Corrected significance Learning error

EPI total Sal-front 6, 2 R2 0.59 R2 0.46 0.06

Mot-lvattps p = 3.1∗10-5 p = 7.9∗10-4

STB Sal-dmps 6, 2 R2 0.31 R2 0.44 0.14

Rvattps-vis p = 1.3∗10-2 p = 1.2∗10-3

EAM Sal-dmtemp 6, 2 R2 0.60 R2 0.30 0.14

Sal-vis p = 2.4∗10-5 p = 0.015

FLU Rvattfr-dmfr 1, 5 R2 0.44 R2 0.35 0.21

Lvattps-Rvattfr p = 1.3∗10-3 p = 6.6∗10-3

TMT B-A Lvattps-Rvattfr 5, 6 R2 0.49 R2 0.38 0.21

Sal-rvattps p = 4.4∗10-4 p = 3.9∗10-3

VSS Lvattps-Rvattfr 5, 6 R2 0.38 R2 0.33 0.29

Sal-rvattps p = 4.3∗10-3 p = 9.9∗10-3

INHIB Sal-front 6 R2 0.56 R2 0.22 0.11

p = 8.9∗10-5 p = 0.053

UP-D Sal-dmtmp 6 R2 0.34 R2 0.16 0.19

Sal-rvattps p = 8.3∗10-3 p = 0.14

The network column indicates the two best pairs of networks selected using OFR algorithm. The cluster column indicates the corresponding clusters. The significance
column indicates Pearson correlation results using the selected networks. Corrected significance is the result of Pearson correlation analysis after correction by the age
variable. Learning error is the leave-one-out generalization error on the normalized output. Grey color indicated satisfactory leave-one-out error (below 15%). EPI total,
total score episodic memory; STB, short term binding; EAM, episodic autobiographical memory; FLU, verbal fluency; TMTB-A, difference of time execution between the
part B and the part A; VSS, visuo-spatial span; INHIB, difference between the time of denomination of the interference part and the denomination part; UP-D, updating in
working memory.
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FIGURE 3 | Prediction of EPI total (verbal episodic memory) of the subjects from their rs-fMRI inter network activity. (A) Linear regression on the
corrected variables (correction by volume and age). Each circle represents a subject, the colored plane represents the linear regression. (B) Non-linear regression
based on the multilayer perceptron, on the variables after volume and age correction, on the leave-one-out validation set. Each dot represents a subject; the dashed
line represents the optimum (obtained with a linear perceptron without hidden units).

These three variables (EPI total, STB, EAM) were predicted from
the same clusters (clusters 6 and 2), which are the same as
the age predicting clusters. The four remaining variables had
poorer leave-one-out errors (above 20%). Three variables (FLU,
TMT B-A, VSS) had cluster 5 in common. Within those three,
the last two variables (TMT B-A, and VSS) shared the exact
same networks (belonging to cluster 5 and cluster 6). Two other
variables showed the same network (cluster 6), but did not show
significant correlations after age correction (p > 0.05): INHIB
score, UP-D score (Table 2; Figure 3).

Furthermore by combining the measures of distances and
the variable predictions, it was possible to draw a general graph
of the relationships between the cognitive activation clusters

and the predicted variables independently of age (Figure 4).
On that graph, we can identify three functional blocks (clusters
2 + 6; clusters 6 + 5, clusters 5 + 1). One can see the central
importance of cluster 6, which is involved in all but one variable
prediction (verbal fluency FLU) and was identified as a general
cluster of cognitive decline: this cluster also predicts age, and
in addition most cognitive variables when excluding age effects.
The functional block of verbal fluency FLU is the only one that
is not related to cluster 6. Cluster number 4 was not associated
directly to any of the investigated variables (but as it is close to
clusters 2 and 6, it could nevertheless be used as a replacement
cluster for the prediction of the variables Age, EPI total, STB,
and EAM).
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FIGURE 4 | Cognitive network of clusters. The distances between each
cluster represents the dendrogram distance already illustrated in Figure 1.
Each ellipse indicates groups of variables successfully predicted by pairs of
the same activation networks. EPI total, total score verbal episodic memory;
STB, short term binding; EAM, episodic autobiographical memory; FLU,
verbal fluency; TMTB-A, difference of time execution between the part B and
the part A; VSS, visuo-spatial span.

DISCUSSION

In this work, we showed that the connectivity profile between
specific RSN networks predicts both the age of the subjects and
their cognitive abilities. The originality of the study consisted
in using a machine-learning approach to predict age and
cognitive performance from the functional connectivity patterns
characterized in the brain. In particular we reported that the
connectivity between the salience and visual networks, and
the salience and the anterior part of the DMN, were the
best features in predicting the age of the subjects. Moreover,
connectivity between the salience and different specific networks
predicted the episodic performance (Sal-front), the short-term
binding (Sal-dmps) and the episodic autobiographical score
(Sal-dmtemp, Sal-vis), independently of the age of the subject.
Finally, the connectivity between the salience and the frontal
networks predicted inhibition and updating performance, but
this correlation was no longer significant after removing the effect
of age.

Our findings suggest a pivotal role of the salience network in
the neural reorganization in aging. The connectivity profile of
this network was not only the best feature to predict age, but
was also involved in the prediction of several cognitive functions,
such as verbal episodic memory, short-term binding and episodic
autobiographical memory. Nevertheless, these scores were also
predicted independently of the age of the subject, thus the
variability in the strength of connectivity between these networks
seems more linked to the variability in cognitive functions per
se than to the effect of aging. On the contrary, the prediction
of inhibitory and updating performances dropped when age was
taken into account, suggesting that the connectivity profile of the
network predicting inhibition and updating in working memory
is particularly sensitive to the effect of aging. These findings
are in line with studies that have related cognitive deficits in

the elderly to a reduction in inhibitory control (Hasher et al.,
1999). The central role of the salience network reported here
is coherent with recent findings showing that the connectivity
profile of this network was one of the best predictors of age (Meier
et al., 2012), and that the connectivity between the salience and
the visual networks and the salience and the temporal networks
was correlated with age (Onoda et al., 2012). In accordance
with the latter study we showed that one of the best features
predicting age was the connectivity between the salience and
the visual network. On the contrary, while Onoda et al. (2012)
did not report robust alteration of the default mode with age,
we found that another feature involved in age prediction was
the connectivity between the salience and the anterior portion
of the default mode. The salience network, composed of the
anterior cingulate cortex (ACC) and the insula, is thought to
code behaviorally relevant information (Seeley et al., 2007).
One recent proposal is that this network, in particular the
insular cortex, may promote the dynamic switch between other
large scale networks (e.g., the default mode and the central
executive network) in order to ensure adaptive behavior via
flexible cognitive control mechanisms (Sridharan et al., 2008;
Menon and Uddin, 2010). Recent studies have reported an altered
salience network in normal aging. In particular He et al. (2014)
showed that functional and structural impairment of the salience
network may occur early in normal aging and that functional
disconnection between this network and the central executive
network and the DMN may also be associated with normal aging
and Alzheimer’s disease.

Moreover, the connectivity between the salience network
and specific networks predicted different cognitive functions.
In particular, the connectivity with the frontal networks
predicted episodic memory performance. This finding is in
line with the role of the frontal cortex in both encoding
and retrieval of episodic memory (e.g., Spaniol et al., 2009).
Concerning episodic autobiographical memory, we reported that
performance was predicted by the connectivity between the
salience network and the temporal component of the DMN,
comprising the hippocampus. The role of the hippocampus in
episodic autobiographical memory is well established (see for
example two meta-analyses: Svoboda et al., 2006; Martinelli et al.,
2013c). A recent investigation by Grady et al. (2015) pointed out
that the salience network is also engaged during recall failures.
In particular these findings suggest that the dedifferentiation
of functional connectivity within the salience network across
memory conditions and the reduction in functional coupling
between it and the PFC may indicate weak inter-network
communication either while retrieval is attempted or when
monitoring takes place after retrieval has failed.

In addition, supplementary results showed that the
connectivity between crucial hubs of the salience network,
such as cingulate gyrus and insula, was reduced in elderly
subjects and that the connectivity between these two regions
showed a negative correlation with age only in the old adults
group. These findings highlight the involvement of the principal
hubs of the Salience Network in neurocognitive aging.

Moreover, this reduction of connectivity correlated with age
only in the elderly group. Nevertheless, we were still able
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to predict the age of the subjects from between networks
connectivity when within network connectivity was taken into
account. These findings suggest that while age is accompanied
by an alteration of the intrinsic dynamic of the salience network;
inter networks connectivity seems to represent more robust
predictors of age.

Finally, the connectivity between the posterior portion of the
DMN, comprising the temporo-parietal junction (TPJ) and the
precuneus/posterior cingulate cortex, and the salience network
predicted short-term binding in working memory. The temporo-
parietal junction, beyond attentional and social functions
(Scholz et al., 2009), has been linked to working memory
processes (Anticevic et al., 2010). Moreover, interestingly, a
recent study reported a direct involvement of the TPJ in
visual feature binding (Pollmann et al., 2014). Thus, the role
of this structure seems coherent with the cognitive demands
of our short-term binding task. Taken together these findings
suggest that the salience network allocates the necessary cortical
resources to other networks that are specialized in the task
at hand. Moreover, the link between the connectivity of these
networks and the corresponding cognitive functions does not
seem to be particularly sensitive to aging, since correlations
remain significant even after the effect of age is taken into
account.

On the contrary, the correlation between the connectivity of
the salience and the frontal network and inhibition performance
was affected by age. The link between both the ACC, one of
the nodes of the salience network, and the PFC and inhibition,
especially during the Stroop task, is well documented (Laird
et al., 2005; Nee et al., 2007). Moreover, a recent study showed
that performance on the Stroop task was associated with the
integrity of fiber tracts connecting these structures in aging, even
when controlling for general processing speed (Wolf et al., 2014).
Interestingly another recent study has shown that the role of
the salience network changes over the life span, which may have
implications for the early detection of pathophysiology in elderly
populations (Archer et al., 2016).

CONCLUSION

The present study highlights the crucial role of the salience
network in cognitive aging related to specific cognitive decline

in particular in episodic memory and executive functions. This
network is situated at the interface of the cognitive, motivational
and affective system of the human brain. It plays a crucial
role in identifying the most biologically and cognitively relevant
endogenous and external stimuli in order to adaptively guide
behavior (Menon, 2015). Indeed it can be considered as a key
brain system for integrating cognition, action and feelings.

Further research on normal aging and pathological
populations is needed to better characterize the role of disrupted
connectivity in the preclinical phase of neurodegenerative
disease. Within this context the early detection of functional
connectivity abnormalities may be helpful for early diagnosis
of the diseases with the aim of characterizing a pathological
signature of the reorganization of brain networks in pathological
aging.
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