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Recent evidence suggests that parallel synapses from the same axonal branch onto

the same dendritic branch have almost identical strength. It has been proposed that

this alignment is only possible through learning rules that integrate activity over long time

spans. However, learning mechanisms such as spike-timing-dependent plasticity (STDP)

are commonly assumed to be temporally local. Here, we propose that the combination of

temporally local STDP and a multiplicative synaptic normalization mechanism is sufficient

to explain the alignment of parallel synapses. To address this issue, we introduce

three increasingly complex models: First, we model the idealized interaction of STDP

and synaptic normalization in a single neuron as a simple stochastic process and

derive analytically that the alignment effect can be described by a so-called Kesten

process. From this we can derive that synaptic efficacy alignment requires potentiation-

dominated learning regimes. We verify these conditions in a single-neuron model

with independent spiking activities but more realistic synapses. As expected, we only

observe synaptic efficacy alignment for long-term potentiation-biased STDP. Finally, we

explore how well the findings transfer to recurrent neural networks where the learning

mechanisms interact with the correlated activity of the network. We find that due to

the self-reinforcing correlations in recurrent circuits under STDP, alignment occurs for

both long-term potentiation- and depression-biased STDP, because the learning will

be potentiation dominated in both cases due to the potentiating events induced by

correlated activity. This is in line with recent results demonstrating a dominance of

potentiation over depression during waking and normalization during sleep. This leads

us to predict that individual spine pairs will be more similar after sleep compared to after

sleep deprivation. In conclusion, we show that synaptic normalization in conjunction with

coordinated potentiation—in this case, from STDP in the presence of correlated pre- and

post-synaptic activity—naturally leads to an alignment of parallel synapses.

Keywords: SORN, STDP, synaptic normalization, synaptic scaling, homeostasis, self-organization, Kesten

process, plasticity
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INTRODUCTION

Recent experimental evidence demonstrates that synapses from
the same axonal branch to the same dendritic branch (hereafter
called parallel synapses) have approximately equal strengths
(Sorra and Harris, 1993; Bartol et al., 2015, and also Koester
and Johnston, 2005; Kasthuri et al., 2015 for studies that did not
investigate single branches). This alignment was demonstrated
both in electrophysiological experiments studying synaptic
efficacies in pyramidal neurons and interneurons in slices of
rat LII/III somatosensory cortex (Koester and Johnston, 2005)
and in EM studies on spine sizes in rat hippocampal pyramidal
neurons (Bartol et al., 2015).

To explain the alignment of synaptic efficacies, Bartol et al.
(2015) propose that a slow time-averaging effect is responsible
for this phenomenon. Specifically, the correlation of pre- and
post-synaptic firing is proposed to be independently averaged at
each individual spine over long time spans by phosphorylating
the calcium/calmodulin-dependent protein kinase II (CaMKII)
in each spine. However, synaptic plasticity mechanisms like
spike-timing-dependent plasticity (STDP) are generally thought
to be temporally local (Feldman, 2012). For example, Bi and
Poo (1998) induced strong changes of up to 100% within
1min of paired 60 Hz stimulation in their seminal study
on STDP.

Simultaneously, computational studies have suggested that
the self-organizational interaction of additive Hebbian learning
and multiplicative synaptic normalization can reproduce the
experimentally observed synapse-size-fluctuations and their
overall heavy-tailed distribution (Zheng et al., 2013). Synaptic
normalization in this context refers to the homeostatic
mechanism by which all synaptic weights are scaled by the
same factor in order to balance the potentiation or depression
of single weights. Experimental evidence for this can be found
in the literature on “synaptic scaling” in hippocampus and
neocortex (Turrigiano et al., 1998; Keck et al., 2013). Importantly,
the experimental evidence suggests that this mechanism is
multiplicative (Turrigiano, 2008; Keck et al., 2013), i.e., all spines
grow or shrink by the same factor. While the studies around
multiplicative synaptic scaling typically focus on changes on
long timescales, there is also evidence for fast normalization.
For example, Bourne and Harris (2011) demonstrated in EM
studies in the rat hippocampus that the summed synaptic area
per µm of dendrite before and after long-term potentiation
protocols is roughly identical, but the area per synapse increases
while the number of synapses per µm of dendrite decreases.
The interaction of homeostatic mechanisms like synaptic
normalization with STDP is thought to be essential for healthy
circuit dynamics (Abbott and Nelson, 2000): STDP on its own
tends to produce self-reinforcing potentiation since a stronger
connection will make the presynaptic neuron more likely to
activate the postsynaptic one. Synaptic normalization is thought
to counterbalance this issue by holding the total incoming
efficacy constant and only redistributing synaptic efficacies along
the dendrite. We propose that a similar interaction of additive
STDP with multiplicative synaptic normalization is responsible
for the alignment of parallel synapses.

The underlying intuition behind this idea is as follows: When
two neurons spike in short succession, the parallel synapses
between them will experience the same time difference between
the pre-synaptic and post-synaptic spike and therefore undergo
a similar STDP-induced change, except for release failures or less
prominent sources of variability. If the change is potentiating, the
following multiplicative normalization will, in order to get the
total synaptic weight back to its baseline, shrink both synapses
yielding a smaller absolute difference compared to before the
potentiating event. If, however, the change is negative, the
normalization will enlarge both synapses and thereby increase the
absolute difference. Therefore, we hypothesize that if potentiating
events are stronger or more frequent than depressing events, this
could explain the alignment observed experimentally.

We validate this intuition by first deriving a stochastic model
(Model 1) for the interaction of learning and normalization.
This model predicts that synaptic efficacy alignment requires
a bias toward potentiation over depression during learning.
This prediction is then confirmed in a simulation of a single
post-synaptic neuron (Model 2) and the recurrent neural
network model (Model 3) that already captures the synapse-size-
fluctuations.

Please note that given that the alignment we investigate here
was reported for both synaptic efficacies (Koester and Johnston,
2005) and spine sizes (Bartol et al., 2015), and given the additional
extensive evidence that synaptic efficacies and spine sizes are
strongly correlated (Pierce and Lewin, 1994; Schikorski and
Stevens, 1997; Murthy et al., 2001), we will assume throughout
the paper that the spine size can be taken as a proxy for its efficacy.

RESULTS

Model 1: The Interaction of Learning and
Normalization is Captured by a Kesten
Process
The stochastic model considers a single neuron receiving
multiple excitatory synaptic inputs from other neurons. Each
pre-synaptic neuron can make several contacts onto the target
neuron. We denote the efficacy of the j-th synaptic input from

source neuron i by X
j
i ∈ IR. We describe the changes of

the synaptic efficacies due to different forms of plasticity as a
stochastic process. Specifically, we assume that the change of the

synaptic efficacy X
j
i during a short time interval can be written as

a sum of two contributions from a process of Hebbian long-term
plasticity and a process of synaptic normalization:

1X
j
i(t) = P

j
i(t)+ S

j
i(t) , (1)

where P
j
i(t) ∈ IR is a random variable describing the change

due to Hebbian long-term plasticity and S
j
i(t) ∈ IR is a random

variable describing the change due to synaptic normalization. For
the former we assume that it is a product of two terms:

P
j
i(t) = Ci(t) F

j
i(t) . (2)
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Here Ci(t) ∈ IR is a random variable describing the potential
change due to correlated activity of the target neuron with

source neuron i. F
j
i(t) is a binary random variable that indicates

if synaptic transmission failed (F
j
i(t) = 0) or if synaptic

transmission was successful (F
j
i(t) = 1). Therefore, a potential

change of the synapse’s efficacy due to correlated pre- and post-
synaptic activity will only be implemented if the synapse actually
transmitted the pre-synaptic spike. If transmission failed there
will be no change in synaptic efficacy due to long-term plasticity.

We assume that the F
j
i are statistically independent. Specifically,

whether the j-th synaptic contact from source neuron i fails to
transmit a spike is independent of whether the k-th synaptic
contact does so. We further assume that synaptic failure is
independent of its efficacy. Later models will also consider
the efficacy-dependent case. The probability distribution of Ci

is assumed to allow for both positive and negative values
corresponding to LTP and LTD, respectively. We further assume
that the potential change Ci can be considered identical for the
different parallel synaptic contacts. This is due to their close
spatial proximity in Bartol et al. (2015) which suggests that
almost identical currents arrive at both spines excluding effects
like the distance-dependent switch from LTP to LTD reported
in Froemke et al. (2005) (see Section Discussion for more details).

For the synaptic normalization we assume:

S
j
i(t) = η(t)X

j
i(t) , (3)

where η(t) ∈ IR is a random variable describing a normalization
factor that is applied to multiplicatively regulate all excitatory
synaptic efficacies of the target neuron. We further assume that
the neuron’s connectivity is in a steady state such that the average
total change of synaptic efficacies due to long-term plasticity is
balanced by the average change due to synaptic normalization:

E





∑

i,j

P
j
i(t)



 = E



−
∑

i,j

S
j
i(t)



 = −E



η(t)
∑

i,j

X
j
i(t)





= −E
[

η(t)T(t)
]

, (4)

where E[.] denotes the expected value and we have introduced

T(t) =
∑

i,j X
j
i(t) as the sum of all excitatory synaptic efficacies at

a particular time. We will consider two normalization schemes to
achieve this balance: global balance and detailed balance. For the
detailed balance, we set

η(t) = −

∑

i,j P
j
i(t)

∑

i,j X
j
i(t)

(5)

to get instant normalization. For further analytical derivations,
however, it is convenient to assume that η(t) is independent of
T(t) such that E[η(t)T(t)] = E[η(t)]E[T(t)] = T E[η(t)], with
T as the average total synaptic efficacy. In this global balance we
find:

E[η(t)] = −
1

T
E





∑

i,j

P
j
i(t)



 . (6)

We will later evaluate both the detailed and global balance
numerically and will find that they lead to similar results for
reasonable failure rates and connection densities.

To investigate the conditions under which synaptic efficacy
alignment occurs, we consider without loss of generality two
contacts from source neuron i, X1

i (t) and X2
i (t). We denote the

difference of their efficacies as D1,2
i (t) = X1

i (t) − X2
i (t). The

change of this difference during a short time interval is given by:

1D1,2
i (t) =1X1

i (t)−1X2
i (t) = P1i (t)+ S1i (t)− P2i (t)− S2i (t)

(7)

= Ci(t)F
1
i (t)− Ci(t)F

2
i (t)+ η(t)

(

X1
i (t)− X2

i (t)
)

(8)

= Ci(t)
(

F1i (t)− F2i (t)
)

+ η(t)D1,2
i (t) . (9)

Thus, D1,2
i (t) obeys the following stochastic dynamics:

D1,2
i (t + 1) =

(

1+ η(t)
)

D1,2
i (t)+ Ci(t)

(

F1i (t)− F2i (t)
)

. (10)

These dynamics are an instance of a so-called Kesten
process (Kesten, 1973) x(t + 1) = a(t)x(t) + b(t) with
a(t) = 1 + η(t) and b(t) = Ci(t)(F

1
i (t) − F2i (t)) if a(t) and b(t)

are independent.
However, it is not clear from the literature on synaptic

normalization if the assumedmultiplicative scaling factor (η(t) in
a(t)) should directly depend on the potentiating and depressing
events (in b(t)), or should “only” match the mean as required in
Equation (4).

To test both cases, we simulate a detailed balance condition
where η(t) balances the total potentiation and depression at
each time step (Equation 5), and a global balance condition
where η(t) is drawn independently from a distribution matched
to the experimental distribution of η(t) in the detailed balance
condition (see Figure S1 for the distributions and Methods for
more details). The simulations lead to similar behavior for low
failure rates or many pre-synaptic partners (Figure 1). This is
because for many partners or low failure rates, many individual
events in b(t) accumulate in η(t) and thereby minimize the
dependence of η(t) on individual potentiating or depressing
events.

In summary, the interaction of STDP and synaptic
normalization can be approximated by a Kesten process.
This can now be used to derive conditions for synaptic efficacy
alignment.

Potentiation Must Dominate for the Kesten
Process to Converge
The qualitative behavior of the Kesten process depends on
the distribution of a(t). The Kesten process has a limiting
distribution if and only if E[ln a(t)] < 0 (Sornette and Cont,
1997; Statman et al., 2014). In terms of the Kesten process derived
before, a limiting distribution would entail convergence of the

differenceD1,2
i over time to a fixed distribution, i.e., alignment up

to a certain precision. If, however, there would not be a limiting

distribution, the absolute difference D1,2
i would keep increasing

indefinitely. By applying the condition for a limiting distribution
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FIGURE 1 | Simulation of the Kesten process for the detailed and globally balanced η(t). (A) Weight traces and their absolute difference for two parallel

synapses with a failure rate of 20% for the detailed balance condition where the normalization factor, η(t), is a function of the potentiating and depressing events at t.

The potentiation was twice as strong as the depression term. (B) Weight traces for two parallel synapses for the global balance condition where η(t) is sampled from a

distribution similar to the η(t) produced by the detailed balance in (A) (see Figure S1 for the distributions). The failure rate was set to 80% since for the global

condition, the alignment should be the same for 20 and 80% (see main text) (C,D) Dependence of the variance of the final distribution on the probability of failure for

the detailed (C) and global (D) condition.

to our model, we can see that the condition for the existence of
a stable limiting distribution in our case is E[ln(1 + η(t))] < 0.
Since the absolute value of η(t) can be assumed to be very small
(recall that it is of the order of change in synaptic efficacy over
total synaptic efficacy), we use the first-order Taylor expansion
ln(1+ η(t)) ≈ η(t) to find the condition:

0 > E[η(t)] = −
1

T
E





∑

i,j

P
j
i(t)



 . (11)

Therefore, the behavior depends on the expected total change

in synaptic efficacy due to Hebbian plasticity. If E[
∑

i,j P
j
i(t)] <

0, i.e., synaptic efficacy changes due to Hebbian plasticity
are dominated by depression, then E[η(t)] > 0 and the
strength of the two synapses is not guaranteed to converge
to a limiting distribution. The synapses are not guaranteed

to align their efficacies. If E[
∑

i,j P
j
i(t)] > 0, i.e., synaptic

efficacy changes due to Hebbian plasticity are dominated by
potentiation, then E[η(t)] < 0 and the strength of the two

synapses is guaranteed to converge to a limiting distribution.
The two synapses will align their efficacies. This was validated by
artificially biasing the simulations of the Kesten process toward
“long-term potentiation” (LTP) or “long-term depression” (LTD)
by drawing theCi terms fromdistributions biased toward positive
or negative values (see Figure 2 and Methods for details).

In the case that potentiation dominates, the variance of the
limiting distribution and therefore the precision of synaptic
efficacy alignment will depend on the variance of b(t) =
Ci(t)(F

1
i (t)−F

2
i (t)). The factorCi(t) indicates that the imprecision

of alignment, i.e., the variation from perfect alignment, scales
with the overall amplitude of fluctuations of synaptic efficacies
due to Hebbian plasticity. The second term reflects the role of
synaptic failures. For the sake of simplicity, let us assume that
synaptic failures occur independently with a probability f that is
independent of the synapse’s efficacy. The difference of the Fi then
takes the value 0 with probability f 2+ (1− f )2 and the values±1
with probability f (1 − f ). The variance of F1i (t) − F2i (t) is then
given by 2(f − f 2). Thus, a small synaptic failure rate leads to a
precise alignment of the synapses. The variance is biggest when
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FIGURE 2 | Potentiation must dominate for the Kesten process to converge. The Kesten process was instantiated with a synaptic failure probability of 20% for

each synapse and potentiation twice as strong as depression (A) or half as strong as depression (B). The normalization constant, η(t), was at each step set to the total

potentiation and depression divided by the total spine sizes to get the required steady state (detailed balance condition, see Figure 1). Parallel synapses align for the

LTP-biased condition (A, same data as Figure 1A) and diverge for the LTD-biased condition (B). The final average distances for 100 spine pairs was 0.03 for the

LTP-biased case and 5747 for the LTD-biased simulation. When simulating the process for ten times as many steps, the final average distance becomes around 0.035

for the LTP-biased case and around 1016 for the LTD-biased simulation. Please note the different scales for the two plots: the weights become much larger in the

LTD-biased simulation. Therefore, the comparatively small fluctuations due to synaptic failure that are still visible at the beginning of (B) quickly become invisible with

more simulation steps.

f = 1/2, i.e., when the Fi have their maximum entropy of 1 bit.
In this case their difference also assumes its maximum entropy
of 3/2 bits and synaptic efficacy alignment is expected to be least
precise.

These results are confirmed in a simulation of a corresponding
Kesten process with independent η(t) as described in the
previous section (Figures 1B,D). However, when η(t) depends
on the potentiating and depressing events at t (detailed balance),
the variance increases with failure probability (Figure 1C). In
the case of high failure probabilities, there are only very few
potentiating or depressing events at each time step, which leads
to a high correlation between a(t) and b(t) of the model dynamics
and thereby to a violation of the assumptions of the derivations
in this section. Nevertheless, the key result that parallel synapses
align in potentiation-dominated regimes holds also for the
detailed balance condition at reasonable failure probabilities
(Figure 2).

Model 2: Potentiation-Dominated
Alignment is Verified for Model Synapses
Next, we test this idea, that synapses align in a potentiation-
dominated regime through the interaction with synaptic
normalization, in more realistic models. We first test this
prediction by simulating a single model neuron with 1000
pairs of incoming synapses for a total of 2000 synapses. Each
pair of synapses receives spikes from an independent Poisson
spike source at a rate of 1 Hz. The post-synaptic spike train
is an additional independent Poisson spike source with a rate
of 1 Hz. Each synapse is subject to exponential spike-timing-
dependent plasticity (STDP; Feldman, 2012). This is a process
by which synaptic weights are modified by the pairing of pre-
and post-synaptic spikes according to their relative timing within

two exponential windows, one for depression (the post-before-
pre case) and one for potentiation (the pre-before-post case).
This provides the additive component of the Kesten-equivalent
process.

The totality of synapses are subject to synaptic normalization
(SN; Turrigiano, 2008). Since this is thought to be amultiplicative
process, we implement it by multiplicatively renormalizing all
weights after plasticity events to a constant total incoming
weight (see Sections Introduction and Methods for details). This
provides the multiplicative component of the Kesten-equivalent
process. It should be noted that this is not a “pure” Kesten
process, as the possible values for the synaptic weights are
necessarily truncated below zero to conform with Dale’s law.

Synaptic failure is modeled as random and independent with
a probability of 0.2 (Hardingham and Larkman, 1998). Initial
weights are randomly selected from a uniform distribution
between 0 and 5 mV. The independence of the post-synaptic
spike train (as opposed to simply modeling the post-synaptic
neuron as a leaky integrate-and-fire neuron) eliminates any
correlations between pre- and post-synaptic spike trains, which
tend to bias STDP toward potentiation (see next section). This
then allows us to simply tune the STDP windows to control
potentiation or depression dominance.

Our results clearly demonstrate precise alignment of synaptic
efficacies in the case that the depressing window is given
0.75× the amplitude of the potentiating window in the STDP
(Figure 3). In the case that the depressing window is given
1.25× the amplitude of the potentiating window, failure to
precisely align is demonstrated (the synaptic normalization in
this case, compared to the Kesten process, provides bounds
on the maximum and minimum possible weights, limiting the
degree of divergence). Our simulations use additive STDP, but
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FIGURE 3 | Parallel synapses on a single postsynaptic neuron align with synaptic normalization and LTP-biased STDP. Behavior under LTP-biased STDP

(depression 0.75× as strong as potentiation) and LTD-biased STDP (depression 1.25× as strong as potentiation) is examined. Under the LTP-biased condition, the

mean absolute difference in efficacy between parallel synapses decreases in time before reaching a fixed value (A). Similarly, under these conditions, the mean degree

of alignment measured by the coefficient of variation (CV, σ
µ ) between parallel synapses also decreases in time before reaching a fixed value (B). Conversely, under

LTD-biased STDP, both the mean absolute difference in efficacy and the mean CV between parallel synapses fail to readily converge. Red shading shows the standard

error of the mean over 1000 weight pairs.

qualitatively equivalent results are observed for multiplicative
STDP as well (see Figure S2).

Model 3: Recurent Interactions Can Lead
to Potentiation-Dominated Regimes and
Alignment
In order to transfer these results to recurrent neural circuits,
we decided to model synaptic efficacy alignment in the self-
organizing recurrent neural network model (SORN, Lazar et al.,
2009). This model consists of an excitatory and inhibitory
population of synchronously updated threshold units. They
and their connections are acted upon by four key plasticity
mechanisms: spike-timing-dependent plasticity (STDP, Feldman,
2012) shapes the connections within the excitatory population
and from the inhibitory population to the excitatory population.
New synapses are randomly inserted by structural plasticity.
All recurrent excitatory synapses are balanced by synaptic
normalization (SN, Bourne and Harris, 2011) and the firing
thresholds of each unit are homeostatically regulated by intrinsic
plasticity (IP; Desai et al., 1999). We chose to use this specific
model for a recurrent circuit because it has been shown to nicely
capture fluctuations of individual spine sizes and their overall
log-normal-like distribution (Zheng et al., 2013). The model
was modified to have two parallel synapses between connected
excitatory neurons, a possibility to bias the STDP rule toward
potentiation or depression and independent synaptic failure. All
other mechanisms and parameters were kept identical to Zheng
et al. (2013) (see Section Methods for details). The main results
reported here also hold for weight-dependent synaptic failure
(see Figure S6).

As for Model 2, with independent Poisson spike trains in
the previous section, we observe an alignment of synapses
when STDP is biased toward long-term potentiation (LTP)
(Figures 4A,B). This is due to an average positive weight change
(Figure 4C, green line).

However, contrary to what we found for the independent spike
trains, we observe that even when biasing the STDP rule toward
LTD, the parallel synapses will eventually align (Figures 5A,B).
This is due to plasticity shaping network dynamics: The
dominant depression will almost instantaneously prune most
synapses between neurons that fire in post-before-pre order so
that barely any connections are left that might be subject to
depression (see the quickly decreasing number of depressing
events in Figure 5C). However, those synapses that are aligned
to the sequential firing of two neurons are not affected by this
and will be potentiated, making it even more likely for the
two neurons to fire in succession and therefore to receive more
potentiation (see development toward net positive change (green
line) in Figure 5C). This eventually leads to the emergence of
synfire-like firing patterns (Zheng and Triesch, 2014). This self-
reinforcing correlation of firing then leads to the alignment of the
remaining synapses.

Interestingly, both the LTP-biased simulation and the LTD-
biased simulation display the same three dynamic regimes as in
the original paper (Zheng et al., 2013): After an initial fast decay
of excitatory connections, they slowly increase again until the
pruning by STDP reaches an equilibriumwith the creation of new
synapses by the structural plasticity. Despite the different speeds
of the growth phases in the LTP- and LTD-biased simulations,
they both reach a similar equilibrium point (connection fraction
of about 5% for a failure probability of 0.2) and a similar median
divergence measured by the coefficient of variation (CV, σ

µ
)

between weight pairs (≈ 0.05). So while biased STDP seems
to have an effect for the initially random connectivity matrix,
the bias on the STDP windows does not seem to matter for the
final connectivity statistics due to the recurrent dynamics of the
model.

While the bias barely affects the final result, the probability of
synaptic failure does have an effect. The lower the probability of
failure, the higher the final connection fraction (Figures 4D,5D).
Nevertheless, the coefficient of variation stays below the reported
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FIGURE 4 | Parallel synapses align in recurrent circuits with LTP-biased STDP. The SORN model was simulated with 20% failure probability for each synapse

and potentiation 1.25 times as strong as depression. (A) Parallel synapses align. The pair with the maximal final mean weight (blue and dashed) and a randomly

selected pair (green and dotted) are plotted for the beginning of the simulation. (B) The divergence measured by the coefficient of variation (CV) drops below the

experimentally reported values for different failure probabilities. (C) STDP dynamics at the beginning of the simulation. There are fewer depressing events (red line) than

potentiating events (blue line) and the total weight change due to STDP is positive (green line). (D) The overall fraction of excitatory-to-excitatory connections

converges and follows a qualitatively similarly fast decay and slow increase as reported in the original paper (Zheng et al., 2013) for different failure probabilities.

Shaded areas are standard deviations over five independent simulations.

value (0.083 in Bartol et al., 2015) for the tested probabilities
(0.1− 0.3).

Contrary to the results reported by Bartol et al. (2015), we
find that the final weight and the CV are weakly correlated
(Figure 6): the stronger the weight, the lower the CV to its
partner. This seems to be due to the nature of fluctuations
toward the end of the simulation: All synapses are almost
aligned, but due to the unreliable individual synapses, some
variability remains. Because we assumed here that the probability
of failure is independent of the synaptic size, this standard
deviation between weight pairs (σ ) should not vary with size.
Following this logic, larger weight pairs (with a larger mean
weight µ) should have a lower CV than smaller weight pairs
since the CV is defined as σ

µ
. Please note that while there

is data that release probability is dependent on synaptic size,
this would only make this effect more prominent since the
experimental data usually show that stronger weights have a
lower probability of failure (Koester and Johnston, 2005), making
their standard deviation smaller than the standard deviation
between small synapse pairs (assuming detailed balance, as used
in this model).

DISCUSSION

In conclusion, we find that synaptic normalization in conjunction
with a potentiation-dominated activity regime leads to the
alignment of parallel synapses. The dominance of potentiation
can either be achieved with LTP-biased STDP or the correlation-
induced potentiation dominance in recurrent circuits. This is in
line with recent findings suggesting a dominance of potentiation
over depression during waking and down-normalization during
sleep (Tononi and Cirelli, 2014). However, the separation of
learning and normalization is at odds with the simplified
instantaneous synaptic normalization we used so far. As further
explained below, we also validated our results for synaptic
normalization on slower timescales. This leads us to predict that
individual spine pairs will be more similar after sleep compared
to sleep deprivation.

While some forms of synaptic normalization redistribute
efficacies immediately with LTP or LTD (Bourne and Harris,
2011), others seem to work on a slower timescale (Turrigiano,
2008; Tononi and Cirelli, 2014). This is especially important with
regards to our prediction that the variability is smaller after sleep:
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FIGURE 5 | Parallel synapses align in recurrent circuits with LTD-biased STDP. The SORN model was simulated with 20% failure probability for each synapse

and depression 1.25 times as strong as potentiation. (A) Parallel synapses align. The pair with the maximal final mean weight (blue and dashed) and a randomly

selected pair (green and dotted) are plotted for the beginning of the simulation. (B) The CV drops below the experimentally reported values for different failure

probabilities. (C) STDP dynamics at the beginning of the simulation. After a short initial period, there are fewer depressing events (red line) than potentiating events

(blue line) and the total weight change due to STDP becomes positive positive (green line). (D) The overall fraction of excitatory-to-excitatory connections converges

and follows a qualitatively similarly fast decay and slow increase as reported in the original paper (Zheng et al., 2013) for different failure probabilities. Shaded areas are

standard deviations over five independent simulations.

FIGURE 6 | The coefficient of variation depends on the spine size. (A) CV vs. simulated spine size for the LTP-biased simulation in Figure 4. The red line is a

power-law fit, p gives the significance of the correlation, r the correlation coefficient. (B) CV vs. simulated spine size for the LTD-biased simulation in Figure 5.

If normalization takes place mainly during sleep, our results also
have to hold for normalization on longer timescales. This is true
for both our derivation and the simulations: the derivation of the
Kesten process does not require this assumption for convergence

and we found that normalizing on a slower time scale does not
affect the key findings presented here (Figures S2, S5).

A further assumption of the analytical model and subsequent
simulations is that the normalization is acting in a multiplicative
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way: all weights are scaled by a common factor instead of,
for example, adding or subtracting a small common value
from all weights. While the experimental evidence suggests
that synaptic scaling is indeed multiplicative (Turrigiano et al.,
1998; Keck et al., 2013), the studies investigating this only
focused on synaptic scaling at slow timescales on the order
of days. Also, the experimental evidence for multiplicative
scaling usually only focuses on a scaling of the cumulative
distribution of efficacies as opposed to the scaling of individual
efficacies due to experimental challenges. This scaling of the
distribution might also be explained by other processes than
a scaling of each individual efficacy (Statman et al., 2014).
Generally speaking, multiplicative normalization induces less
competition between synaptic weights compared to subtractive
normalization, where weights tend to either be pruned away
or converge to high values (Miller and MacKay, 1994). This
seems to be at odds with the log-normal-like distribution of
synapse strength in neocortex (Buzsáki and Mizuseki, 2014).
Nevertheless, more research is needed to determine whether
synaptic normalization at faster timescales (Bourne and Harris,
2011) is also multiplicative. With regards to our own experiment,
we have run a single neuron simulation using such subtractive
normalization (in which case, it should be noted that the
system can no longer be modeled as a Kesten process), and
noted that alignment is weak or absent in this case (see
Figure S4). This suggests that where synaptic efficacy alignment
is strongly present in the brain, scaling is more likely to be
multiplicative than additive. Along similar lines, we considered
the effects of weight-dependent synaptic failure on the single
neuron model, in which case alignment is present but weakened,
and sensitive to the failure function (see Figure S4), and
in the SORN model (Figure S6) with qualitatively similar
results to weight-independent failure. Please note that this
modification would compromise the independence-assumption
of the Ci term in the Kesten process. Finally, we also
tested multiplicative STDP for the single-neuron model (see
Figure S3), in which case the alignment conditions are roughly
maintained, but the process is again no longer a Kesten
process.

Another assumption of our model is the equivalence of
currents arriving at parallel synapses and thereby the equivalence
of induced plasticity events when both synapses transmit their
signal. This seems to be at odds with studies like Froemke
et al. (2005) that show that the form of plasticity can change
depending on the distance from the soma. To get a better
grasp on this, it is useful to review the literature on synaptic
alignment: Koester and Johnston (2005) first showed with
simultaneous Ca2+ imaging and dual whole-cell recordings that
synaptic efficacy pairs within or between pyramidal neurons
and interneurons in slices of rat LII/III somatosensory cortex
are correlated [see Figure 4c of Koester and Johnston (2005)].
However, the synaptic pairs they report were not on the same pre-
and post-synaptic branch but potentially on different branches.
The different branches and the resulting high distance between
the pairs (up to 300µm) suggests that the pre- and post-synaptic
currents arriving at the synapses differ in amplitude and timing,
which might explain the remaining variability in the data by,

for example, distance-depenent STDP (Froemke et al., 2005). A
complementary electron microscopy (EM) study was recently
performed inmouse somatosensory cortex (Kasthuri et al., 2015).
This study, too, found that synaptic pairs with the same pre-
and postsynaptic neuron are more similar than synapses with
different targets or sources. However, this study also did not
distinguish individual axonal and dendritic segments. This gap
was closed by Bartol et al. (2015), updating an old and less
precise study from the same group (Sorra and Harris, 1993).
In their EM study, the alignment of parallel synapses, i.e.,
synapses from the same axonal branch onto the same dendritic
branch, between rat hippocampal pyramidal neurons was found
to be highly precise. Furthermore, parallel synapses are much
more precisely aligned than synapses from the same axon
onto different dendritic branches, presumably due to different
activation histories. While the distance between them did not
affect the alignment, the distance was in general very small due to
the same-branch constraint (less then 5µm) excluding effects of
distance-dependent differences in STDP (Froemke et al., 2005).
Since we focus on modeling the results of Bartol et al. (2015), it is
reasonable to assume that the plasticity events at parallel synapses
are equivalent if both synapses transmit.

Finally, as mentioned already by Bartol et al. (2015),
there are more possible disturbances to the synaptic efficacy
alignment than just synaptic failure. Here, we only considered
synaptic failure because it seems to be the strongest source of
variability for the alignment process and modeling all sources
of variability would have made the model too complicated.
However, all of the circuit simulations presented here lead to
CVs below the experimentally reported value (Figures 4, 5,
Figure S5). This indicates that additional disturbing processes
could be included while still reaching the reported CV with our
proposed interaction of correlation-based learning with synaptic
normalization.

Interestingly, while we were able to replicate most of the
results on synaptic efficacy alignment, we differ from Bartol et al.
(2015) in that with our mechanisms the CV between weight
pairs shrinks with the mean weight. As explained in the results,
this is not due to our assumption that all weights have similar
failure probabilities. We therefore predict, in addition to the
lower overall variability after sleep, a lower variability for larger
weights. Bartol et al. (2015) might not have found this effect due
to their small sample size.

While we are, to the best of our knowledge, the first to show
that the interaction of STDP and synaptic normalization can
be described by a Kesten process, we are not the first to use
the Kesten process to describe spine size fluctuations: Statman
et al. (2014) used a Kesten process to stochastically describe
spine size fluctuations observed experimentally. Interestingly,
similar spine size fluctuations were also explained by the SORN
model used here that depends on the interaction between
STDP and homeostatic mechanisms to capture the spine size
fluctuations (Zheng et al., 2013). The analytical result presented
here that the interaction of STDP and synaptic normalization can
effectively be described as a Kesten process suggests that (Statman
et al., 2014) and (Zheng et al., 2013) are just two sides of the same
coin.
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Taken together, we were able to show both analytically and in
simulations that the precise synaptic efficacy alignment observed
experimentally could be a direct implication of time-local STDP
with synaptic normalization in recurrent circuits. Despite the
simplicity of the models presented here, we can make the specific
predictions that the alignment precision is correlated to the spine
size and that the alignment should be better after a good night’s
sleep than after a day at the lab.

METHODS

Kesten Process Simulation
For the Kesten process simulation, we iterate through different
instantiations of the process in the following way: First, the
synaptic pairs X1(0) and X2(0) are independently initialized for
N = 100 pre-synaptic neurons in the interval [0, 1]. Next, we
update Xj at each time step t the following way:

• A correlation term C(t) is drawn at each step uniformly in the
interval [−0.005,+0.005] for each pre-synaptic neuron. We
then multiply all positive entries of C(t) with a LTP bias.
• The failure variables F1(t) and F2(t) are drawn randomly for

each synapse according to their failure probability
• P1(t) and P2(t) are computed as Pj(t) = C(t)× Fj(t)
• For the detailed balance condition, η(t) is then set to

−

∑N
i=0 P

1
i (t)+P

2
i (t)

∑N
i=0 X

1
i (t)+X

2
i (t)

. For the global balance condition, η(t) is

drawn from the experimentally determined detailed balance
distribution for a LTP bias of 2 and failure probability of 20%:
η(t) ∼ normal(µ = −0.002, σ = 0.001)
• Finally, we set Xj(t + 1) = Xj(t) + 1Xj(t) with 1Xj(t) =

Pj(t)+ η(t)Xj(t)

The simulation code is available as an ipython notebook on
github.com/chrhartm/SORN.

Single-Neuron Model
Each synapse in our model is endowed with exponential spike-
timing-dependent plasticity (STDP) (Bi and Poo, 1998; Feldman,
2012). This defines the weight change to a synapse caused by a
pair of pre- and post-synaptic spikes as follows:

1wj =

Nm
∑

m=1

Nn
∑

n=1

W
(

tn − tmj

)

(12)

W(x) =

{

A+ exp (−x/τ+), x > 0

A− exp (x/τ−), x < 0
(13)

Here,W defines the weight change window, j indexes the synapse,
and m and n index pre- and post-synaptic spikes respectively
(and their corresponding Ns are the total number of spikes in
an arbitrary period sufficiently long for the window given by
W to have decayed to near zero). A+ and A− are the maximal
amplitudes of the weight changes, and τ+ and τ− are the time
constants of the decay windows. Values are set to approximate
experimental data; in particular, round numbers were chosen that

roughly approximate data in Bi and Poo (1998), with τ+ = τ− =

20 ms, A+ = 0.001, and A− = [0.00075, 0.00125], depending
on our chosen balance condition. We use the “nearest neighbor”
convention in order to efficiently implement this online, in which
only the closest pairs of pre- and post-synaptic spikes are taken.

Additionally, synapses are endowed with stochastic failure,
in which a pre-synaptic spike has no effect on the synapse.
The failure rate is set to 0.2, in accordance with measurements
from rodent cortical cells at body temperature (Hardingham and
Larkman, 1998).

We desired a synaptic normalization model that would be
simple to implement and could provide a variable timesecale. To
this end, we perform the normalization operation as follows:

wj← wj

(

1+ ηSN

(

Wtotal
∑N

k wk

− 1

))

(14)

Here,wj is the weight for an incoming synapse to the test neuron,
wk are the weights of all the individual synapses, Wtotal is the
target total input for the neuron, and ηSN is a rate variable which
determines the timescale of the normalization.Wtotal is calculated
before the simulation run as Wtotal = [synapses per set (2)] ×
[numer of sets (1000)] × [maximum initial weight (5 mV)] ×
[0.5] = 5V. To simplify the model, we use instantaneous
normalization, i.e., ηSN = 1.0. Testing has shown that this does
not have a qualitative effect on the end result of the simulation
(see Figure S3).

The simulation is implemented in the BRIAN simulator
(Goodman and Brette, 2008). Simulation timestep is 0.1ms, while
data is sampled at intervals of 10ms. The corresponding code is
available on http://fias.uni-frankfurt.de/~miner/.

SORN Model
The recurrent network model is based on the self-organizing
recurrent neural networkmodel (SORN, Lazar et al., 2009; Zheng
et al., 2013). For this study, we keep all parameters identical
to a recent study on explaining weight fluctuations and log-
normal weight distributions observed experimentally (Zheng
et al., 2013). The model is modified to include parallel synapses,
biased STDP and synaptic failure as follows. The corresponding
code is available on github.com/chrhartm/SORN.

With the paired synapses, the state update equations take the
following form:

x(t + 1) = 2(WEE
1 (t)x(t)+WEE

2 (t)x(t)−WEI(t)y(t)

−TE(t)+ ξE(t)) (15)

y(t + 1) = 2(WIEx(t + 1)− TI + ξ I(t)) (16)

where x is the vector of excitatory activations for NE = 200
neurons and y the inhibitory activations for NI = 0.2 × NE =

40 neurons. TE(t) and TI are their respective thresholds. They
are initialized uniformly in the interval [0, 1] for the excitatory
thresholds and [0, 0.5] for the inhibitory ones. ξ stands for
Gaussian noise with µ = 0 and σ 2 = 0.05. The Heaviside
step function 2(·) enforces a binary representation at each step
by setting xi = 1 if the argument is greater than zero. WEI(t)
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is the connectivity matrix from the inhibitory to the excitatory
units with an initial connection fraction of pEE = 0.2. The
connections from the excitatory to the inhibitory neurons, WIE,
are densely populated. WEE

1 and WEE
2 stand for the parallel

excitatory connectivity matrices. Initially these are set to have the
same connections pairs but different individual strength in the
interval (0, 1) with a connection probability of pEE = 0.1.

The STDP rule acts on both WEE
1 and WEE

2 independently.
The positive and negative parts are scaled according to β to
make the potentiation part β times as strong as the depression
(

δpot
δdep
=

ηSTDP∗β
1
2

ηSTDP∗β
− 1
2
= β

)

:

1WEE(t+1) = ηSTDP(β
1
2 x(t+1)x(t)T−β−

1
2 x(t)x(t+1)T) (17)

At each step, the excitatory recurrent connections are scaled by
synaptic normalization (withm ∈ {1, 2}):

WEE
m,ij←WEE

m,ij






1+ ηsn







1
∑

k

WEE
1,ik
+
∑

k

WEE
2,ik






− 1






(18)

Here, ηsn is usually set to 1 unless stated otherwise, i.e., synaptic
normalization acts instantaneously. Please note that since both
matrices are scaled by their combined total weight, the total
maximal activation is still 1, as in the original model. The
other connection matrices are initially also scaled to a maximal
activation of 1.

To model synaptic failure, each excitatory-excitatory synapse
is set to fail with the probability pfail at each time step. This is
included in both the update rules and the STDP rules by ignoring
STDP events for the synapses that failed to contribute to the
updated activity.

The three remaining plasticity mechanisms are left
unchanged:

The inhibitory spike-timing-dependent plasticity (iSTDP)
acting on the connections from the inhibitory to the excitatory
connections in the following way:

1WEI
ij (t) = −ηinhibyi(t − 1)(1− xi(t)(1+ 1/µIP)) (19)

This rule aims to balance the excitatory and inhibitory drive
to excitatory neurons by reducing the connection from an
inhibitory to an excitatory neuron by ηinhib whenever a spike in
the inhibitory neuron isn’t followed by an excitatory spike and
increasing the connection by ηinhib/µIP when an inhibitory spike
is followed by an excitatory spike.

The structural plasticity acts on both excitatory recurrent
matrices independently by randomly adding a connection with
a probability of pstruct = 0.1 and an initial weight of wsp = 0.001
at every time step.

The intrinsic plasticity adapts the excitatory thresholds the
following way:

TE(t + 1) = TE(t)+ ηIP(x(t)−HIP) (20)

This ensures that the excitatory units x fire with a mean rate of
HIP = 0.1 spikes per second. ηIP is set to 0.01 as in the original
paper.
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Figure S1 | Distributions of η(t) for the detailed balance and global balance

simulation. (A) Experimentally measured distribution of η(t) for the detailed

balance simulation. η(t) was computed at each step as −

∑N
i=0

P1
i
(t)+P2

i
(t)

∑N
i=0

X1
i
(t)+X2

i
(t)
. (B) For

the global balance simulation, η(t) is drawn from a similar normal distribution:

η(t) ∼ normal(µ = −0.002, σ = 0.001).

Figure S2 | Single neuron simulation with reduced synaptic normalization

timescale. Behavior is demonstrated for reduced normalization timescales in the

case of ηSN = 0.1 and ηSN = 0.001, in terms of mean alignment (A) and mean CV

(B) between parallel synapses. Shading shows the standard error of the mean

over 1000 weight pairs.

Figure S3 | Single neuron simulation with multiplicative STDP. Multiplicative

STDP with soft bounds is implemented by multiplying the weight change by a

factor of (1−w/wmax ). Behavior is demonstrated in terms of mean alignment (A)

and mean CV (B) between parallel synapses. Shading shows the standard error of

the mean over 1000 weight pairs.

Figure S4 | Single neuron simulation with alternate plasticity mechanisms

(weight-dependent synaptic failure and subtractive normalization).

Behavior is shown under LTP-biased STDP (depression 0.75× as strong as

potentiation). For weight-dependent failure, failure rate is calculated as

p(w) = 1− eλ(w+w0). We try two different parameter sets. For weight dependent

failure a, λ = (log(0.2)− log(0.8))/(2.5 mV) and

w0 = 2.5 log(0.8) mV/(log(0.2)− log(0.8)) (calculated to yield a median release

rate of 0.8 and a minimum release rate of 0.2 for the initial weight distribution, and

leading to a mean release rate of 0.68 with a variance of 0.07 on the final weight

distribution), and for weight dependent failure b, λ = (log(0.1)− log(0.5))/(2.5 mV)

and w0 = 2.5 log(0.5) mV/(log(0.1)− log(0.5)) (calculated to yield a median

release rate of 0.9 and a minimum release rate of 0.5 for the initial weight

distribution, and leading to a mean release rate of 0.83 with a variance of 0.02 on

the final weight distribution). Subtractive normalization is implemented by, at each

execution of the process, subtracting from each weight the difference in the target

normalization value and the sum of the weights divided by the number of

synapses, clipping at zero if necessary. Alignment is demonstrated to be present

but weakened for weight-dependent failure and sensitive to the failure function,

and minimal for subtractive normalization. Alignment is shown in terms of mean

alignment (A) and mean CV (B) between parallel synapses. Shading shows the

standard error of the mean over 1000 weight pairs.

Figure S5 | Key effects in network model hold for slow synaptic

normalization. We simulated the SORN model with the normalization rate set to

0.1 instead of 1, no LTP bias, and 20% failure rate. (A) Parallel synapses align. The

pair with the maximal final mean weight (blue and dashed) and a randomly

selected pair (green and dotted) are plotted for the beginning of the simulation. (B)

The CV drops below the experimentally reported values for different failure

probabilities. (C) STDP dynamics at the beginning of the simulation. The total

weight change (green) is biased toward LTP. (D) Mean synapse size and their CV

are significantly correlated. Shaded areas are standard deviations over five

independent simulations.
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Figure S6 | Key effects in network model hold for weight-dependent

synaptic failure. We simulated the SORN model with weight-dependent synaptic

failure p(fail|w) = e−6∗(w+0.1). The parameters of the exponential were set to

achieve both an average failure probability similar to the ones tested so far in order

to allow comparison and a high dynamic range. (A) The final weights after

simulating the SORN without biased LTP (blue dots) can be fitted by a log-normal

distribution (green line). The exponential weight-dependent failure probability (red

line and axis) looks sigmoidal due to the log-scale on the x-axis. (B) The average

failure probability changes over time in line with the connection fraction: a smaller

connection fraction implies less but stronger weights and thereby a lower average

failure probability. The final probability of failure is around 0.3 in line with our

previous simulations. (C) The development of the coefficient of variation is similar

to the simulations with weight-independent synaptic failure. (D) The qualitative

development of the connection fraction is similar to the simulations with

weight-independent synaptic failure. The final connection fraction is lower. Shaded

areas are standard deviations over five independent simulations.
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