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Previous research has shown that trial ordering affects cognitive performance, but
this has not been tested using category-learning tasks that differentiate learning from
reward and punishment. Here, we tested two groups of healthy young adults using a
probabilistic category learning task of reward and punishment in which there are two
types of trials (reward, punishment) and three possible outcomes: (1) positive feedback
for correct responses in reward trials; (2) negative feedback for incorrect responses in
punishment trials; and (3) no feedback for incorrect answers in reward trials and correct
answers in punishment trials. Hence, trials without feedback are ambiguous, and may
represent either successful avoidance of punishment or failure to obtain reward. In
Experiment 1, the first group of subjects received an intermixed task in which reward
and punishment trials were presented in the same block, as a standard baseline task.
In Experiment 2, a second group completed the separated task, in which reward and
punishment trials were presented in separate blocks. Additionally, in order to understand
the mechanisms underlying performance in the experimental conditions, we fit individual
data using a Q-learning model. Results from Experiment 1 show that subjects who
completed the intermixed task paradoxically valued the no-feedback outcome as
a reinforcer when it occurred on reinforcement-based trials, and as a punisher
when it occurred on punishment-based trials. This is supported by patterns of empirical
responding, where subjects showed more win-stay behavior following an explicit reward
than following an omission of punishment, and more lose-shift behavior following an
explicit punisher than following an omission of reward. In Experiment 2, results showed
similar performance whether subjects received reward-based or punishment-based
trials first. However, when the Q-learning model was applied to these data, there were
differences between subjects in the reward-first and punishment-first conditions on the
relative weighting of neutral feedback. Specifically, early training on reward-based trials
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led to omission of reward being treated as similar to punishment, but prior training on
punishment-based trials led to omission of reward being treated more neutrally. This
suggests that early training on one type of trials, specifically reward-based trials, can
create a bias in how neutral feedback is processed, relative to those receiving early
punishment-based training or training that mixes positive and negative outcomes.

Keywords: category learning, reward, punishment, Q-learning computational model, intermixed trials

Introduction

Prior research has shown that different rearrangement of
task trials affects learning. For example, acquisition of fear
conditioning in humans depends on the ordering of presentation
of fear (CS+) and safety (CS−) trials (Esteves et al., 1994;
Ohman and Soares, 1998; Katkin et al., 2001; Morris et al.,
2001; Wiens et al., 2003). In a study by Wiens et al.
(Wiens et al., 2003), one group of subjects received CS+
and CS− trials in a random order (differential group) and
another group received CS+ and CS− trials in a non-
random restricted manner. It was found that skin conductance
response to CS+ and CS− was not significantly different in
the random condition, but skin conductance responses to CS+
was significantly larger than that to CS− in the restricted
condition. Similarly, although the forward and backward
blocking paradigms have the same trials, albeit arranged
differently, research has shown that the backward blocking effect
is weaker than the forward blocking effect (Chapman, 1991;
Lovibond et al., 2003). Other studies show that trial order
also affect motor learning by observation (Brown et al., 2010).
Using a concurrent discrimination task, we have previously
found that training subjects to discriminate among a series of
pairs of stimuli simultaneously (concurrent condition) takes
more trials than learning to discriminate among each pair
individually (shaping condition; Shohamy et al., 2006). In short, a
number of studies suggest that trial order might impact cognitive
performance.

However, the mechanisms underlying these effects remain
a matter of debate. Chapman (1991) argues that associative
learning models (e.g., Rescorla-Wagner’s 1972 model; Rescorla
and Wagner, 1972) and statistical models (e.g., multiple linear
regression) cannot account for trial order effects.

Computational models of decision-making are increasingly
being used to interpret behavioral results and help understand
underlying information-processing mechanisms that could
produce individual patterns of behavior (Frank et al., 2007;
Dickerson et al., 2011). One class of models, reinforcement
learning (RL) models, assumes that trial-and-error learning
results in the learner coming to choose actions that are expected
to maximize reward and/or minimize punishment. Prediction
error (PE), the difference between expected and experienced
outcomes, is used to update the learner’s expectations and
guide action selection. PE is positive when there is unexpected
reward (or an expected punisher fails to occur) and negative
when there is unexpected punishment (or an expected reward
fails to occur). Learning can be affected by a number of
free parameters in RL models, such as LR+, the learning rate

when PE > 0, LR−, the learning rate when PE < 0, and
β, an explore/exploit parameter which governs the tendency
to repeat previously-successful responses or explore new ones.
For each individual subject, values of the free parameters
that led the model to display behavior that best mimicked
that individual’s observed behavior are identified; differences
in the obtained parameters suggest mechanisms underlying
different performance as a result of task condition. Previous
research has used similar computational models to fit model
parameter values for each subject to genetic (Frank et al.,
2007), brain imaging (O’Doherty et al., 2003; Dickerson et al.,
2011) and patient data (Moustafa et al., 2008; Myers et al.,
2013).

In this study, we test the effect of trial ordering on a
probabilistic categorization task that involves both reward
and punishment-based category learning (Bódi et al., 2009).
This task has the feature that reward-based trials, which
can result in either reward or no feedback outcomes, are
intermixed with punishment-based trials, which can result in
either punishment or no feedback outcomes; thus, the no-
feedback outcome is ambiguous as it can signal either missed
reward (similar to a punishment) or missed punishment (similar
to a reward). Prior studies with this task have documented
differential learning from reward and punishment in patient
populations including medicated and unmedicated patients
with Parkinson’s disease (Bódi et al., 2009), major depressive
disorder (Herzallah et al., 2013), schizophrenia (Somlai et al.,
2011), and symptoms of post-traumatic stress disorder (Myers
et al., 2013), as well as individual differences in learning as
a function of genetic haplotypes (Kéri et al., 2008) and of
personality traits such as novelty seeking (Bódi et al., 2009)
and behavioral inhibition (Sheynin et al., 2013). However, the
effects of trial order on this task have not heretofore been
considered.

Here, in Experiment 1, we started by considering the
‘‘standard’’ task in which reward-based and punishment-based
trials are intermixed in each training block. Then, we fit
subjects’ behavioral data with a RL model (Watkins and
Dayan, 1992; Sutton and Barto, 1998) to investigate mechanisms
underlying subjects’ performance. Based on prior computational
modeling of this task (Myers et al., 2013), we expected that
subjective valuation of the ambiguous no-feedback outcome
might vary considerably across subjects. In Experiment 2,
we considered a ‘‘separated’’ version of the task, in which
subjects are administered reward-based and punishment-based
trials in different blocks, and the same model was applied to
see how different trial order might affect these mechanisms.
We hypothesized that both learning and valuation of the
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ambiguous no-feedback outcome might differ, depending on
whether reward-based or punishment-based training occurred
first.

Methods

Experiment 1
Participants
Experiments 1 and 2 were run concurrently, with participants
randomly but evenly assigned to one experimental group. For
experiment 1, participants included 36 healthy young adults
(college undergraduates, mean age 20.0 years, SD 1.4; 66.7%
female). For their participation, subjects received research credit
in a psychology class. Procedures conformed to ethical standards
laid down in the Declaration of Helsinki for the protection of
human subjects. All participants signed statements of informed
consent prior to inclusion in the study.

Behavioral Task
The task was as previously described (Bódi et al., 2009;
Myers et al., 2013) and was conducted on a Macintosh
computer, programmed in the SuperCard language (Allegiant
Technologies, San Diego, CA, USA). The participant was
seated in a quiet testing room at a comfortable viewing
distance from the computer. The keyboard was masked except
for two keys, labeled ‘‘A’’ and ‘‘B’’ which the participant
used to enter responses. A running tally at the bottom
of the screen showed the current points accumulated; this
tally was initialized to 500 points at the start of the
experiment.

On each trial, participants viewed one of four images, and
guessed whether it belonged to category A or category B
(Figure 1A). For each participant, the four images were randomly
assigned to be stimuli S1, S2, S3, and S4. On any given trial,
stimuli S1 and S3 belonged to category A with 80% probability
and to category B with 20% probability, while stimuli S2 and
S4 belonged to category B with 80% probability and to category
A with 20% probability. Stimuli S1 and S2 were used in the
reward-learning task. Thus, if the participant correctly guessed
category membership on a trial with either of these stimuli, a
reward of +25 points was received (Figure 1B); if the participant
guessed incorrectly, no feedback appeared (Figure 1C). Stimuli
S3 and S4 were used in the punishment-learning task. Thus,
if the participant guessed incorrectly on a trial with either of
these stimuli, a punishment of –25 was received (Figure 1D);
correct guesses received no feedback. Thus, the no-feedback
outcome, when it arrived, was ambiguous, as it could signal lack
of reward for an incorrect response (if received during a trial
with S1 or S2) or lack of punishment for a correct response
(if received during a trial with S3 or S4). Participants were not
informed which stimuli were to be associated with reward vs.
punishment.

At the start of the experiment, the participant saw the
following instructions: in this experiment, you will be shown
pictures, and you will guess whether those pictures belong to
category ‘‘A’’ or category ‘‘B’’. A picture doesn’t always belong to
the same category each time you see it. If you guess correctly, you

FIGURE 1 | The reward- and punishment-learning task (Bódi et al.,
2009). (A) On each trial, a stimulus appears and the subject guesses whether
this stimulus belongs to category “A” or category “B.” For two stimuli, correct
responses are rewarded (B) but incorrect responses receive no feedback (C);
and for the other two stimuli, incorrect responses are punished (D) but correct
responses receive no feedback. In Experiment 1, reward-based and
punishment-based trials were interleaved, as in the original Bódi et al. (2009)
study; in Experiment 2, reward-based and punishment-based trials were
presented in separate blocks.

may win points. If you guess wrong, you may lose points. You’ll
see a running total of your points as you play. (We’ll start you off
with a few points now.)

The task included a short practice phase, which showed
the participant an example of correct and incorrect responses
to sample punishment-based and reward-based trials. These
practice trials used images other than S1–S4. The practice phase
was followed by 160 training trials, divided into four blocks of
40 trials, with each stimulus appearing 10 times per block. Trials
were separated by a 2 s interval, during which the screen was
blank. At the end of the experiment, if the subjects’ total had
fallen below the starting tally of 500 points, additional trials with
S1 and S2 were added until the tally reached 525 points; these
extra trials were not included in the data analysis.

The probabilistic nature of the task meant that an optimal
response across trials (i.e., ‘‘A’’ for S1 and S3; ‘‘B’’ for S2 and
S4) might not be correct on a particular trial. Therefore, on
each trial, the computer recorded reaction time (in ms) and
whether the participant’s response was optimal, regardless of
actual outcome (points gained or lost). In addition, for each
stimulus, we recorded number of win-stay responses (defined
as trials on which the subject repeated a response that had
received reward or non-punishment on the prior trial with
that stimulus) and number of lose-shift responses (defined as
trials on which the subject did not repeat a response that had
received punishment or non-reward on the prior trial with that
stimulus).

Mixed ANOVA with within-subject factors of block and trial
type (reward vs. punishment) and between-subjects factor of
gender were used to analyze the data; for analyses of reaction
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time, response type (optimal vs. non-optimal response) was also
included as a between-subjects factor. Levene’s test was used
to confirm assumptions of homogeneity of variance. Where
Mauchly’s test indicated violations of assumptions of sphericity,
Greenhouse-Geisser correction was used to adjust degrees of
freedom for computing p-values from F-values. The threshold for
significance was set at α = 0.05 with Bonferroni correction used
to protect significance values under multiple comparisons (e.g.,
post hoc testing).

Computational Model
Here, we modeled the observed behavioral results using a Q-
learning model (Watkins and Dayan, 1992; Sutton and Barto,
1998; Frank et al., 2007) which uses the difference between
expected and experienced outcomes to calculate PE which is
then used to update predictions and guide action selection. The
variant used here is the gain-loss model, which allows separate
learning rates when PE is positive-valued or negative-valued
(Frank et al., 2007).

Specifically, given stimulus s, each possible action r (here,
choice to categorize the stimulus as ‘‘A’’ or ‘‘B’’) has a value
Qr,s(t) at trial t. All Q-values are initialized to 0 at the start of
a simulation run (t = 0). The Q-values are used to determine
the probability of choosing each response via a softmax logistic
function:

Pr(r = "A") =
eQA,s(t)/β

eQA,s(t)/β + eQB,s(t)/β
(1)

Pr(r = "B") = 1− Pr(r = "A") (2)

As described above, β reflects the participant’s tendency to
either exploit (i.e., to choose the category with the currently
highest Q value) or explore (i.e., to randomly choose a category).

PE is then computed for that trial based on the subject’s actual
response r∗ and the feedback R(t) that the subject received on that
trial:

PE(t) = R(t)− Qr∗ , s(t) (3)

Here, R(t) is +1 for reward feedback, −1 for punishing
feedback, and R0 for the no-feedback outcome. In the prior
(Myers et al., 2013) paper,R0was a free parameter that could vary
between−1 (similar to punishment) and +1 (similar to reward).

Finally, the Q-value for the selected stimulus-response pair
was updated based on PE:

Qr∗ , s(t + 1) = Qr∗ , s(t)+ a ∗ PE (4)

Here, β is the learning rate, set to LR+ if PE > 0 and to LR−
if PE< 0.

First, we considered the model previously applied to data
from this task in Myers et al. (2013); this model included four
free parameters: LR+, LR−, β , and R0. We also considered
a five-parameter model in which the value of R0 could
be different on reward-based (R0rew) than on punishment-
based (R0pun) trials, allowing for the possibility that subjects

might value the no-feedback outcome differently on these
two types of trial. Theoretically optimal performance would
be obtained if R0rew approached −1 (similar to punishment,
and maximally different from R+) while R0pun approached
+1 (similar to reward, and maximally different from R−).
Simulations (not shown) confirmed that this pattern indeed
obtained when the model was run on hypothetical subject
data in which optimal responses were always, or nearly always,
executed.

Finally, we considered an alternate 4-parameter model in
which R0 was a free parameter by R0rew = −1∗R0pun, i.e., the
value of the no-feedback outcome is equal in magnitude but
opposite in valance for the two trial types.1

For each of the three models under consideration, values of
the free parameters were estimated for each participant, based on
that participant’s trial-by-trial choices and the feedback received.
To do this, we searched through parameter space, allowing LR+,
LR− and β to vary from 0 to 1 in steps of 0.05 and R0 to
vary from −1 to +1 in steps of 0.1, to find the configuration
of parameter values that minimized the negative log likelihood
estimate (negLLE) across n trials:

negLLE = −
∑

t = 1...n.

log Pr(r = r∗) (5)

In plotting results, for clarity of interpretation, this value is
transformed into a probability value, p(choice) = exp(-negLLE/n),
where p(choice) = 0.5 means chance and p(choice) = 1 means
perfect replication of subject data.

To compare the three models, we used the Akaike
Information Criterion (AIC; Akaike, 1974), which compares
goodness-of-fit in terms of minimal negLLE while penalizing
models that have more free parameters: AIC = 2∗negLLE+ 2∗k,
where k is the number of free parameters. We also used the
Bayesian Information Criterion (BIC; Schwartz, 1978) which
additionally considers number of subjects:

BIC = 2 ∗ negLLE+ k ∗ ln(x) (6)

where x is the number of trials. Note that BIC assumes that one
of the models being compared is the correct model, which is
an assumption that is not necessarily provable for this type of
dataset, while AIC only assesses which of the models is most
efficient at describing the data while not necessarily assuming any
are probably correct.

In addition to evaluating the three models described
above, we also considered several additional variants: a three-
parameter model where R0 was held constant at 0 (leaving
LR+, LR−, and β free to vary), a two-parameter model
where LR+ and LR− are constrained to be the same value,
as in a standard Q-learning model (leaving only a single
LR and β free to vary), and models where R0 (singly,
or separately for R0rew and R0pun) were free to vary but
the other parameters were fixed using mean values derived
from the five-parameter value; none of these other variants
performed as well as the four- and five-parameter models, and

1We thank an anonymous reviewer of this article for the suggestion.
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for conciseness results with these variants are not described
further here.

Further, to compare models we used the random effects
Bayesian model selection procedure described in Stephan et al.
(2009) and Penny et al. (2010), which takes into account the
possibility that different models may have generated different
subjects’ data. Based on prior studies, we consider one model the
winning model when protected exceedance probability for that
model is larger than 0.9.

Results

Behavioral Task
Figure 2A shows performance on reward-based and
punishment-based trials, over the four blocks of the experiment.
There was significant learning, indicated by a within-subjects
effect of block (F(2,47,84.12) = 6.22, p = 0.002) with no effect of
trial type or sex and no interactions (all p > 0.200), indicating
that average learning accuracy was similar across reward-based
and punishment-based trials. Figure 2B shows reaction times
(RT) for optimal and non-optimal responses on each trial type,
over the course of the experiment. While all subjects made
at least one optimal response to each trial type in each block,
eight subjects did not make any non-optimal responses to
at least one trial type in at least one block, meaning average
RT could not be computed. Rather than dropping these eight
subjects from analysis, we did separate rmANOVA of RT
on optimal responses (calculated for all 36 subjects) and on
non-optimal responses (for those 28 subjects who made at
least one non-optimal response on each trial type in each
block); Bonferroni correction was used to adjust alpha to
0.025 to protect significance levels under multiple tests. For
optimal responses, there was a significant decrease in RT
over blocks (F(1.75,59.45) = 21.92, p < 0.001) as well as a main
effect of trial type, with RT slower on punishment-based
than reward-based trials (F(1,34) = 26.61, p < 0.001). For

non-optimal responses, the same pattern was observed: a
significant decrease in RT over blocks (F(1.85,48.02) = 34.97,
p < 0.001) and significantly slower responding on punishment-
based than reward-based trials (F(1,26) = 8.48, p = 0.007).
However, the interaction between block and trial type and all
effects and interactions involving gender did not reach corrected
significance.

However, Figure 3A shows that there was considerable
individual variability in performance on reward-based and
punishment-based trials, with many subjects performing
considerably better on one type of trial than another.
Following Sheynin et al. (2013), we considered a ‘‘bias’’
measurement, defined as the difference between a subject’s
performance on reward-based trials and on punishment-
based trials in the final training block; thus, a negative bias
indicates better performance on punishment-based trials, a
positive bias indicates better performance on reward-based
trials, and a bias of 0 indicates equally good performance
on both types of trial. Figure 3B shows that, although
bias was near 0 when averaged across subjects, many
individual subjects showed a bias for either reward- or
punishment-based trials that persisted through block 4 of
the experiment.

Finally, we examined win-stay and lose-shift behavior. It
would be expected that subjects would generally show win-stay
after an explicit reward, and generally show lose-shift after an
explicit punishment (although, due to the probabilistic nature
of the task, not every punishment should trigger abandonment
of a response rule). If the no-feedback outcome were treated as
similar to a punisher on reward-based trials, then it should also
trigger lose-shift; conversely, if the no-feedback outcome were
treated as similar to a reward on punishment-based trials, then
there it should also trigger win-stay. However, Figure 4 shows
that, on average, subjects exhibited more win-stay responses on
reward-based than punishment-based trials, and more lose-shift
responses on punishment-based than reward-based trials. Mixed

FIGURE 2 | Performance on the task in Experiment 1. (A) Subjects
performed equally well on reward-based and punishment-based trials,
assessed as percent optimal responding. (B) Mean reaction time (RT) in

milliseconds decreased across training blocks, and was slower on
punishment-based than reward-based trials. RT did not differ on trials where
subjects gave the optimal (correct) vs. non-optimal (incorrect) response.
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FIGURE 3 | (A) Individual subjects showed considerable individual variation in
reward-based and punishment-based learning, plotted here in terms of percent
optimal responding on each trial type. (B) Near the end of the experiment (block
4), individual subjects showed a “bias” (difference between performance on

reward-based vs. punishment-based trials) that varied from strongly negative
(better performance on punishment-based trials) to strongly positive (better
performance on reward-based trials). Each bar represents an individual subject,
ordered along the x-axis by bias.

FIGURE 4 | Win-stay occurs when subjects make a response to a
stimulus and receive reward (or non-punishment) and then repeat the
same response on the next trial with that stimulus. Subjects exhibited
more win-stay responses following an explicit reward (R+) than following a
non-punishment (R0pun). Lose-shift occurs when subjects make a response
to a stimulus and receive punishment (or non-reward) and then make a
different response on the next trial with that stimulus. Subjects exhibited more
lose-shift responses following an explicit punishment (R−) than following a
non-reward (R0rew).

ANOVA confirmed these impressions: there was a main effect of
response, with subjects producing more win-stay than lose-shift
responses overall (F(1,34) = 43.93, p < 0.001), as well as a
main effect of trial type (F(1,34) = 18.73, p < 0.001), and an
interaction (F(1,34) = 101.96, p < 0.001). Post hoc pairwise t-
tests to examine the interaction, with alpha adjusted to 0.025,
revealed significantly more win-stay behavior on reward-based
than-punishment-based trials (t(35) = 8.22, p < 0.001) but
significantly more lose-shift behavior on punishment-based than
reward-based trials (t(35) = 7.60, p < 0.001). The omnibus

ANOVA also revealed a main effect of sex, with males
generally exhibiting more win-stay and lose-shift behaviors
than females (F(1,34) = 4.83, p = 0.035), and a three-way
interaction between response type, trial type, and gender
(F(1,34) = 5.36, p = 0.027); however, none of the specific
comparisons in the interaction reached significance on post hoc
testing.

Computational Model
Prior work with this task in a different population (veterans
with and without severe PTSD symptoms) led us to note
that an important source of individual differences might be
variability in how people assigned reinforcement value to the
ambiguous no-feedback outcome (Myers et al., 2013). The
individual differences observed in this experiment, together
with the finding that win-stay occurred significantly more
often following a reward than a no-punishment outcome,
while lose-shift occurred significantly more often following a
punishment than a no-reward outcome, led us to consider
whether individual differences in valuation of the ambiguous
outcome might similarly underlie the behavior observed in the
current study.

Following the earlier Myers et al. (2013) paper, we
considered an RL model with four free parameters, the
learning rates LR+ and LR−, the ‘‘temperature’’ parameter
β , and the reinforcement value of the no-feedback outcome
R0. We also considered a more elaborate five-parameter
model, where the no-feedback outcome could be valued
differently when it occurred on a reward-learning trial (R0rew,
signaling failure to obtain reward) and when it occurred
on a punishment-learning trial (R0pun, signaling successful
avoidance of punishment). We also considered a second

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 July 2015 | Volume 9 | Article 153

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Moustafa et al. Intermixed vs. separated category-learning

four-parameter model where R0rew was free to vary while R0pun
was set at−1∗R0rew.

All models generated unique combinations of best-fit
parameters for every subject with the exception of the five-
parameter model, which generated multiple sets of best-
fit parameters. In each of these cases, there were unique
best-fit values for all estimated parameters except R0rew;
however, for two subjects, the five-parameter model produced
equally low negLLE for any value of R0rew >= 0 (given
best-fit values for the remaining parameters), and for one
subject, the model produced equally low negLLE for any
value of R0rew <= 0 (given best-fit values for the remaining
parameters). For subsequent analyses, the neutral value of
R0rew = 0 was assigned as the best-fit parameter for these three
subjects.

Figure 5 shows that the models were similar in their ability to
reproduce the data, both in terms of negLLE (Figure 5A) and also
in terms of AIC and BIC (Figure 5B).

Figure 6A shows mean estimated parameter values for
the three models; although R0rew and R0pun are plotted
separately, note that R0rew = R0pun for the R0 model, while
R0rew = −1∗R0pun for the R0inv model. While all models
had similar estimated mean values for LR+ (rmANOVA,
F(1.52,53.21) = 1.21, p = 0.297) and LR− (F(1.34,46.86) = 3.22,
p = 0.068), there were differences on estimated values of β
(F(1.22,42.66) = 6.88, p = 0.008), which was significantly larger
in the R0 model than in the five-parameter (t(35) = 2.48,
p = 0.018) or R0inv models (t(35) = 2.86, p = 0.007), which
did not differ (t(35) = 1.47, p = 0.151). Finally, the largest
differences between models were observed in estimated values
of R0rew and R0pun. Specifically, as shown in Figure 6A,
the five-parameter model produced a mean value of R0rew
that was greater than 0, and a mean value of R0pun that
was less than 0. This pattern was echoed in the R0inv model
but not in the R0 model, where both R0rew and R0pun were
constrained to be equal, resulting in a weakly positive value
for both. rmANOVA confirmed that estimated values of R0rew

did not differ across the three models (F(1.48,51.00) = 1.56,
p = 0.217) but values of R0pun did (F(1.62,56.57) = 16.25,
p < 0.001). Specifically, the value of R0pun in the R0
model was significantly greater than in the five-parameter
or R0inv models (all t > 4.5, all p < 0.001), but the
value in the latter two models did not differ (t(35) = 1.65,
p = 0.108).

Based on these analyses of mean scores, the R0inv model was
a closer approximation to the five-parameter model than the R0
model. However, Figure 6B shows that there was considerable
individual variability in values of R0rew and R0pun in the five-
parameter model, such that mean values may not adequately
capture the qualitative patterns in the data. Specifically, while
the R0 model constrained subjects to have equal values for
R0rew and R0pun, and the R0inv model constrained them to
be opposite in valence, Figure 6B shows that neither constraint
adequately described the values generated by the five-parameter
model. Rather, while a majority of subjects had estimated values
of R0rew > 0 and R0pun < 0 (as also indicated in Figure 6A),
some individual subjects assigned the same valence to these
parameters while others did not. Interestingly, for no subject was
the theoretically optimal pattern (R0rew < 0 and R0pun > 0)
observed. There were also differences in the relative magnitude
of R0rew and R0pun. Figure 6C shows R0 bias, defined as
the difference between estimated values of R0rew and R0pun,
for individual subjects. While only 2 of 36 subjects (5.6%)
had R0 bias < −0.5, 22 of 36 subjects (61.1%) had R0 bias
> = +0.5.

In addition to conducting simulations over all 160 training
trials, we also conducted separate simulations to determine
best-fit parameters over the first two blocks (first 80 trials)
and over the last two blocks (last 80 trials). As shown in
Figure 7A, model fit was better (lower negLLE, reflected in
higher p(choice)) when the model was fit to blocks 3 and
4; this is unsurprising since subjects should have developed
more consistent response rules later in training. As shown
in Figure 7B, the value of estimated parameters R0rew and

FIGURE 5 | Model comparisons based on (A) p(choice) which is
derived from negLLE (0.5 indicating chance and 1.0 indicating
perfect fit), and (B) AIC and BIC, for the three models: the
five-parameter model with where both R0rew and R0pun were

free parameters (“R0rew, R0pun”), a simpler four-parameter
model (“R0”) with a single free parameter for R0 (where
R0rew = R0pun), and a four-parameter model (“R0inv”) where
R0rew = −1∗R0pun.
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FIGURE 6 | (A) Mean estimated parameter values for the three models,
including the five-parameter model (R0rew, R0pun), the R0 model
(where R0rew = R0pun) and the R0inv model (where R0rew =
−R0pun). (B) Individual subjects had considerable variability in best-fit
values of R0rew and R0pun, and no subjects were best-fit by a

combination including the “optimal” pattern of both R0rew < 0 (similar
to punishment) and R0pun > 0 (similar to reward). (C) R0 bias for
individual subjects, defined as the difference in best-fit value of R0rew
and R0pun; bars represent individual subjects arbitrarily ordered by
increasing values of R0 bias.

R0pun show the same qualitative pattern of R0rew > 0 and
R0pun < 0 in the early blocks of training, and also in the later
blocks of training, as when the model is applied to all 160
trials.

Importantly, random effects Bayesian model selection
comparing the five-parameter model with the two four-
parameter models indicated strong evidence in favor of the
five-parameter model, with posterior probability for this model
calculated as r = 0.63, compared with r = 0.11, −0.26 for each of
the smaller models. Further, we compared protected exceedance
probabilities among the three models as well as among each two
models separately. We found that comparing all three models at
once yields exceedance probabilities of 0.9998, 0.0001 and 00001
for five-parameter model, standard four-parameter-model, and
four-parameter-model in which R0 was a free parameter by
R0rew =−1∗R0pun, respectively.

Experiment 2

Experiment 1 was examined here as a standard baseline task
for reward and punishment learning, as used in prior studies
(Bódi et al., 2009; Kéri et al., 2010; Myers et al., 2013; Sheynin
et al., 2013). Because reward-based and punishment-based trials

were intermixed in Experiment 1, the no-feedback outcome
was ambiguous. The central finding of the modeling was
that—contrary to what might be defined as ‘‘optimal’’ behavior,
subjects tended to value the ambiguous feedback as positive
(similar to reward) on reward-based trials, and as negative
(similar to punishment) on punishment-based trials.

In Experiment 2, we use a separated task design in which
reward and punishment trials are conducted separately, in
different training blocks. The no-feedback outcome is arguably
unambiguous here, since in a block of reward-based trials
it always signals missed reward (similar to a punishment)
while in a block of punishment-based trials it always signals
missed punishment (similar to reward). We here predicted that
estimated values of R0 might differ accordingly both early in
training, while subjects were experiencing only a single trial type,
as well as later in training, as a function of early learning.

Participants
Participants were drawn from the same population as
Experiment 1 and included 36 healthy young adults (college
undergraduates, mean age 19.6 years, SD 1.6; 63.9% female).
As in Experiment 1, participants received research credit in a
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FIGURE 7 | Parameter estimates in Experiment 1 for Blocks 1 and
2 (first 80 trials) and Blocks 3 and 4 (last 80 trials). (A) Model fit,
plotted as p(choice) is better in last 80 trials compared to first 80 trials,
reflecting greater consistency in subject responding as training

progressed. (B) The value of estimated parameters R0rew and R0pun,
showing mean values of R0rew > 0 and R0pun < 0, whether assessed
over the first 80 trials (Blocks 1–2), last 80 trials (Blocks 3–4), or entire
experiment (all 160 trials).

psychology class. Procedures conformed to ethical standards laid
down in the Declaration of Helsinki for the protection of human
subjects. All participants signed statements of informed consent
prior to inclusion in the study.

Behavioral Task
The task was the same as in Experiment 1 except that subjects
were randomly assigned to either a Reward-First (n = 17) or
Punish-First (n = 19) condition. For those in the Reward-
First condition, all 40 reward-based trials (stimuli S1 and S2)
appeared in blocks 1 and 2 while all 40 punishment-based
trials (stimuli S3 and S4) appeared in blocks 3 and 4. For the
Punish-First condition this order was reversed. Thus, the no-
feedback outcome was no longer ambiguous, as it consistently
signaled lack of reward during the reward-learning blocks and
consistently signaled lack of punishment during the punishment-
learning trials. Subjects were not informed that trials were
blocked by type, nor were subjects explicitly signaled of the shift
between blocks 2 and 3.

Computational Model
The same five-parameter model described in Experiment 1
above was applied to the data from this experiment. In addition
to calculating best-fit parameters based on the data from the
complete set of 160 trials, we also applied the models to just the
first 80 trials (blocks 1 and 2) and just the last 80 trials (blocks 3
and 4), when subjects were learning either the reward-based or
punishment-based task.

Results

Behavioral Task
Figure 8A shows performance across all four blocks, for subjects
assigned to the Reward-first and Punish-first conditions. Mixed
ANOVA confirmed no significant change in performance across

the four blocks (F(2.22,75.42) = 0.70, p = 0.553), no effect
of condition (F(1,34) = 0.31, p = 0.579) and no interaction
(F(2.22,75.42) = 1.55, p = 0.208). Figure 8B shows individual
subject performance on the reward-based and punishment-
based trials, and again shows considerable individual variation
on performance to the two trial types for subjects in either
experimental condition.

Figures 8C,D show mean RT for subjects in each condition.
Again, not all subjects made all response types on every block;
for example, four subjects (two in each condition) made no
non-optimal responses in block 4. Thus, as in Experiment 1,
separate mixed ANOVAs of RT were conducted on optimal and
non-optimal responses, with alpha adjusted to 0.025 to protect
significance. For optimal responses, there was a significant effect
of block (F(2.09,69.09) = 25.85, p< 0.001) but no effect of condition
(F(1,33) = 0.02, p = 0.904) and no interaction (F(2.09,69.09) = 2.29,
p = 0.107). For non-optimal responses, the pattern was similar:
a within-subjects effect of block (F(1.37,38.35) = 20.29, p < 0.001)
but no effect of condition (F(1,28) = 0.14, p = 0.714) and no
interaction (F(1.37,38.35) = 0.23, p = 0.708). Specifically, for both
optimal and non-optimal responses, RT decreased from block
1 to block 2 (all t > 5, all p < 0.001) and from block 3 to
block 4 (all t > 4, all p < 0.001) but did not change when
the trial types were shifted from block 2 to 3 (all t < 1.5, all
p> 0.100).

Finally, we again examined win-stay and lose-shift
behavior. As suggested by Figure 9, there was no main
effect of condition (F(1,34) = 0.04, p = 0.842); however,
subjects exhibited more win-stay than lose-shift behavior
(F(1,34) = 27.69, p < 0.001). There was also an interaction
between trial type and experimental condition (F(1,34) = 9.41,
p = 0.004); however, no post hoc comparisons to explore
this interaction survived corrected significance. Thus,
the pattern seen in Experiment 1 (Figure 4), where
there was more win-stay behavior on reward-based than
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FIGURE 8 | (A) Performance across the four blocks, for subjects in the
Reward-First and Punish-First conditions of Experiment 2. (B) Individual subject
data, plotted as percent optimal responding on reward-based and

punishment-based trials. (C,D) Mean reaction time (RT) in ms for subjects in the
Reward-First (C) and Punish-First (D) conditions, shown separately for trials
where the optimal and non-optimal response was given.

punishment-based trials, and more lose-shift behavior
on punishment-based than reward-based trials, was not
observed here.

Computational Model
Given that the analyses in Experiment 1 identified the five-
parameter model as providing lowest negLLE, with comparable
AIC or BIC to simpler models, we applied the same five-
parameter model here to data from the two experimental
conditions. Again, we ran simulations both to fit data from all
160 trials, as well as running additional simulations based on
data from just the first 80 or last 80 trials, while subjects were
experiencing only a single trial type. Results from both sets of
simulations are reported here.

Across just the first 80 trials (blocks 1 and 2), the model
fit data from the Reward-First and Punish-First conditions
equally well (t(34) = 0.03, p = 0.977); similarly, across all 160
trials there was no difference in negLLE between the two

conditions (t(34) < 0.01, p > 0.99). Figure 10 shows these data,
rescaled as p(choice) which is normalized for number of trials
and so can be compared across calculations based on 80 vs.
160 trials.

At the end of the first 80 trials (blocks 1 and 2), there
were no differences in the value of LR+, LR−, or β between
Reward-First and Punish-First conditions (Figure 11A; t-tests,
all t < 1.5, all p > 0.100). Because subjects in each condition
had only experienced one type of trial, those in the Reward-
First condition had an estimated value for R0rew but not
R0pun (which they had never experienced), while those in
the Punish-First condition had an estimated value for R0pun
but not R0rew. As might be expected, for the former group,
R0rew < 0 (one-sample t(16) = 3.29, p = 0.005), indicating the
no-feedback outcome was valued as similar to a punishment
(missed reward); however, for the latter group, R0pun was
not significantly different from 0 (one-sample t(18) = 1.82,
p = 0.086).
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FIGURE 9 | Win-stay and lose-shift behavior for subjects in the
(A) Reward-First and (B) Punish-First conditions. In both conditions, there
was more win-stay than lose-shift behavior for both reward and punishment

trials, but (unlike Experiment 1) there was no difference in win-stay behavior to
explicit reward vs. non-punishment, or in lose-stay behavior to explicit
punishment vs. non-reward.

FIGURE 10 | Ability of model to reproduce the data, plotted here as
p(choice) derived from negLLE, was similar for Reward-First and
Punish-First conditions, whether assessed over just the first 80 trials
(blocks 1 and 2), just the last 80 trials (blocks 3 and 4), or over all 160
trials.

For subjects in the Punish-First condition, there was a
strong correlation between the value of R0pun over the first
80 trials and performance over those same trials (r = 0.603,
p = 0.006), indicating that those subjects who assigned
R0pun a more positive value performed better at avoiding
the actual punisher in preference to the no-feedback outcome
(Figure 11C). However, for subjects in the Reward-First
condition, the correlation between R0rew and performance
was not significant (r = −0.337, p = 0.185); as shown in
Figure 11B, many subjects who valued R0rew close to −1
nevertheless performed near chance on the reward-learning
trials.

When applying the model to data from all 160 trials, during
which all subjects had experienced the same number of both
trial types, there were no differences in the value of any

estimated parameter between Reward-First and Punish-First
conditions (Figure 12A; t-tests, all t < 1.5, all p > 0.100).
Here, neither R0rew nor R0pun differed significantly from
0 in either condition (all p > 0.200). Figure 12B shows
that the separated task design did qualitatively shift R0 bias:
whereas in Experiment 1, only 2 of 36 subjects (5.6%) had
R0 bias < −0.5 (Figure 6C), here 8 of 17 subjects (47.1%)
in the Reward First condition and 5 of 19 subjects (26.3%)
in the Punish First condition had R0 bias <= −0.5. The
distribution did not differ across Reward-First and Punish-
First conditions (Yates-corrected chi-square test, χ2 = 0.90,
p = 0.344).

Finally, it can be argued that the first 80 and last 80
trials represent two separate tasks, and so rather than fitting
the model to all 160 trials, it is reasonable to fit it once
to the first 80 trials and again to the last 80 trials. When
the model was fit to just the last two blocks (last 80 trials),
there were no differences between conditions on any estimated
parameter (Figure 13; all p > 0.05), and neither the estimated
value of R0rew in the Punish-First group (who was now
experiencing reward-based trials) nor the estimated value of
R0pun in the Reward-First group (who was now experiencing
punishment-based trials) differed significantly from 0 (all
p> 0.05).

Thus, comparing the first task (Figure 11A) to the last task
(Figure 13) learned, there were effects of task order. Specifically,
the estimated value of R0rew was greater when reward trials
occurred after punishment trials (i.e., in the Punish-First group)
than when they were trained without prior experience (i.e.,
in the Reward-First group; Figure 13; t-test, p = 0.011). Such
differences were not evident in estimated values of R0pun—i.e.,
values were similar whether or not punishment training occurred
in naïve subjects, or in subjects who had already experienced
reward-based training (t-test, p = 0.411). No other parameters
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FIGURE 11 | The five-parameter model applied to data from the
first two blocks of Experiment 2. (A) Applied to the first 80 trials,
during which subjects only experienced one trial type, there were no
differences between conditions in mean estimated value of LR+, LR−, or
β; however, R0rew < 0 (similar to a punisher) for subjects in the
Reward-First condition, while R0pun > 0 (similar to a reward) for subjects

in the Punish-First condition. (B) Looking at individual data, for subjects
in the Reward-First condition, who only experienced reward-based trials
over the first 80 trials, there was no significant correlation between
estimated values of R0rew and performance; (C) but for subjects in the
Punish-First condition, higher (more positive) values of R0pun were
associated with better performance.

changed significantly within or across conditions from the first
two blocks to the last two blocks (all p > 0.08). Thus, training
order had a significant effect on R0rew but not R0pun or any
other parameter.

Discussion

In the current study, we found the following. First, when
we applied Q-learning model to the ‘‘standard’’ (intermixed)
version of the task in Experiment 1, we found that the
five-parameter model weighted the no-feedback outcome
differently when it appeared on reward-based trials (R0rew,
the alternative to explicit reward) than when it appeared
on punishment-based trials (R0pun, the alternative to explicit
punishment). Contrary to what one might think (and, in
fact, contrary to what would be ‘‘optimal’’), subjects tended
to value R0rew > 0 and R0pun < 0. That is, the no-
feedback outcome on a reward trial was valued similar to a
small reward, while the no-feedback outcome on a punish
trial was valued similar to a small punishment. This pattern
was similar whether the model was applied to data from
all 160 trials or separately to the first 80 trials (blocks 1

and 2) and the second 80 trials (blocks 3 and 4). This
suggests that, rather than treating the no-feedback outcome as
a contrast to explicit reward, subjects instead tended to value
it based on trial type: positively on trials where reward was
available, and negatively on trials where punishment might
occur.

Second, when we looked at individual subject data from
Experiment 1, there was no correlation between estimated values
of R0rew and R0pun; that is, while the group valued these
inversely on average, individual subjects did not. One implication
of this is that, although we explored several simpler RL models,
these generally did not adequately capture the qualitative range
of solutions found to describe individual subjects. We also found
that individual subjects tended to have R0 bias > 0, indicating
a greater absolute value of R0rew than R0pun. This would
potentially produce somewhat better learning on punish than
reward trials in the intermixed group, since a strong positive
value of R0rew means that the actual reward might only be
viewed as marginally more reinforcing than the no-feedback
outcome. Such a trend is visible in Figure 1A, although it
was not significant here. Prior work with this task, however,
has often shown slightly better learning on punishment trials
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FIGURE 12 | (A) When the model was applied to all 16 trials, there were no
differences in mean estimated parameter values between conditions, and
neither R0rew nor R0pun differed significantly from 0 in either condition. (B) R0

bias, defined as difference in estimated value between R0rew and R0pun, for
both Reward-First and Punish-First groups (Note there are two more subjects in
the Punish-First than the Reward-First condition).

FIGURE 13 | The value of estimated parameters R0rew and R0pun for
subjects in Reward-First and Punishment-First conditions when the
model was applied separately to the first 80 and last 80 trials
(i.e., comparing first task learned vs. second task learned).

than reward trials in control groups given intermixed training
(e.g., Somlai et al., 2011; Myers et al., 2013; Sheynin et al.,
2013), although like in the current study this difference does not
always reach significance. Such a bias to learn from punishment
more readily than from reward is of course consistent with
loss aversion theory (Kahneman and Tversky, 2000), which
essentially states that losses are psychologically more powerful
than gains. We also found that males show more win-stay
and lose-shift behaviors than females in this task. The win-stay
behavior in our data is similar to other findings from rat studies,
although the lose-shift data are different (van den Bos et al.,
2012).

The curious finding that subjects in Experiment 1 valued
R0rew similar to a reward and R0pun similar to a punishment
warrants further investigation. As a first step, in Experiment
2, we examined subject behavior when reward-based trials
were trained first vs. when punishment-based trials were

trained first. Visual comparison of learning curves from
Experiment 1 (Figure 2A) and Experiment 2 (Figure 8A)
shows somewhat better learning in the latter, as might be
expected given that the separated conditions of Experiment 2
involve reduced working memory load (only two trial types
trained at any given time) and reduced ambiguity of the no-
feedback outcome (only one meaning within any given block
of trials). However, we found no significant difference on
behavioral performance (in terms of percent optimal responding
or reaction time) whether the reward-based or punishment-
based trials were trained first. This contrasts observations in
other tasks showing an effect of trial ordering on behavior
(Esteves et al., 1994; Ohman and Soares, 1998; Katkin et al.,
2001; Morris et al., 2001; Lovibond et al., 2003; Wiens et al.,
2003).

There was, however, an effect on win-stay and lose-shift
behavior. Specifically, as shown by Figure 9, there was no
main effect of whether reward-based or punishment-based trials
were trained first, but post hoc tests found no significant
difference in win-stay responding on reward trials (where
subjects obtained explicit reward) vs. non-punishment trials
(where subjects received R0rew), and no significant difference
in lose-shift responding on punishment trials (where subjects
obtained explicit punishment) vs. non-reward trials (where
subjects received R0pun). This suggests that subjects were
treating R0rew similar to punishment (missed reward) and
R0pun similar to reward (missed punishment), in contrast to the
results from Experiment 1.

This pattern was echoed when the Q-learning model was
applied to data from the first 80 blocks of Experiment 2, when
subjects were experiencing either reward-based or punishment-
based trials. Specifically, and as might be expected, subjects in the
Reward-First condition had estimated values of R0rew below 0,
indicating that the no-feedback outcome was treated similar to a
punishment (missed opportunity for reward). In the Punish-First
condition, estimated values of R0pun were numerically, but not
significantly, greater than 0.
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It might have been expected that ‘‘switching’’ tasks in the
second half of Experiment 2 might result in the Punish-
First group (who was now experiencing only reward-based
trials) might similarly develop a positively-valued R0rew,
while the Reward-First group (who was now experiencing
only punishment-based trials) might develop a positively-
valued R0pun. But this was not the case. Specifically, the
estimated value of R0rew was greater (closer to 0) when
reward-based trials occurred after punishment-based trials (as
in the Punish-First group) than when they occurred in a
naïve subject (as in the Reward-First group). This suggests
that non-reward is valued more negatively in subjects who
have only ever experienced reward, compared to subjects who
have previously experienced explicit punishment. By contrast,
prior exposure to explicit reward did not affect valuation
of non-punishment. Thus, training order had a significant
effect on R0rew, but not R0pun or any other estimated
parameter.

Finally, when the Q-learning model was applied to
data from all 160 trials in Experiment 2, there were no
differences in values of estimated parameters for subjects
from the Reward-First or Punish-First conditions, and
in neither case did estimated values of R0rew or R0pun
differ significantly from 0. Again, the chief contrast with
Experiment 1, where trial types were intermixed, appears to be
in valuation of R0rew, which was strongly positive following
intermixed training, but more neutrally-valued after separated
training.

The negatively-valued estimates of R0 in the Reward-
First condition are potentially interesting because they are
reminiscent of those observed by Myers et al. (2013) in
a prior study of veterans with symptoms of post-traumatic
stress disorder (PTSD), a disorder that includes pathological
avoidance among its defining symptoms. In that earlier
study, in which all subjects received intermixed reward and
punishment trials, control subjects (with few or no PTSD
symptoms) had estimated values of R0 near +0.5, slightly
larger than those obtained in the intermixed group of
the current study. By contrast, subjects with severe PTSD
symptoms had significantly lower (but still positive) values
of R0, and those with severe PTSD symptoms who were
not receiving psychoactive medication for their symptoms
had estimated values of R0 near 0, similar to that observed
in the Reward-First condition of Experiment 2 here. In
the current study, we did not assess PTSD symptoms, so
we cannot definitively rule out the possibility that PTSD
symptoms contributed to the current pattern of results;
however, it seems unlikely that severe PTSD would occur
at high rates in the college population from which our
sample was drawn, nor that such cases if they existed would
have been disproportionately assigned to the Reward-First
condition.

An alternate hypothesis is that prior training on reward-
based trials only created a bias to view neutral outcomes
as negatively-valenced, although this bias could be partly
remediated by later exposure to punishment-based trials.
As current therapy for PTSD often focuses on providing

positive and/or neutral feedback, it may be possible that
alternate approaches, which explicitly contrast neutral and
negative feedback, might be more successful in helping these
individuals to reframe their interpretation of neutral outcomes.
However, future work should confirm or disconfirm these
speculations.

Another relevant prior study has suggested that subjects’
RT depend on the rate of experienced reward, possibly
reflecting tonic levels of dopamine (Guitart-Masip et al.,
2015). This study differed from ours in many ways: specifically,
it was an oddball detection task, with subjects required to
respond quickly in order to obtain monetary rewards; by
comparison, our task involved a forced-choice categorization
with no explicit instruction for subjects to respond quickly.
Nevertheless, it might have been expected that the RT
results from Guitart-Masip et al. (2015) might generalize to
a probabilistic categorization task such as the current paradigm.
In our Experiment 2, (most) subjects got frequent reward
during the reward-based trial blocks, and got no reward (or
at best lack-of-punishment) during the punishment-based
trial blocks, so arguably relative rate of reward changed across
the course of the experiment. However, our RT analysis
did not find significant effects of condition on RT nor any
block-condition interactions. One possible explanation for
this discrepancy is simply that our small sample size was
underpowered to examine RT data. A second explanation
might be that subjects in the current study viewed the no-
feedback outcome as reinforcing, which meant that (for
most subjects) relative rates of reward were similar across
reward and punishment blocks, particularly since performance
levels were approximately equal (Figures 2A, 8A). However,
this explanation is not supported by the computational
modeling, which suggested that, although the no-feedback
outcome was positively-valued during punishment-based
trials in the Punish-First condition, it was not positively-
valued during punishment-based trials in the Reward-First
condition. Future studies could be designed to further
elucidate this issue, by explicitly varying the rate of reward
in this task, perhaps especially following overtraining and
the achievement of steady-state response behavior (Niv et al.,
2007).

In summary, our study shows that probabilistic category
learning is impacted by ordering of trials, and specifically
by whether reward-based and punishment-based trials
occur first or are intermixed. Our computational modeling
suggests that these differences are reflected in the relative
weighting of neutral feedback, and further suggests that
early training on one type of trials, specifically reward-based
trials, can create a difference in how neutral feedback is
processed, relative to those receiving only punishment
trials or intermixed reward-based and punishment-based
trials. This may create conditions that facilitate subsequent
learning of avoidance responses, when punishment-based
learning is introduced, which in turn may suggest a way
in which early experiences could confer later vulnerability
to facilitated avoidance, which is a feature of anxiety
disorders.
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