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The ability of plant viruses to propagate their genomes in host cells depends on many
host factors. In the absence of an agrochemical that specifically targets plant viral
infection cycles, one of the most effective methods for controlling viral diseases in plants
is taking advantage of the host plant’s resistance machinery. Recessive resistance is
conferred by a recessive gene mutation that encodes a host factor critical for viral
infection. It is a branch of the resistance machinery and, as an inherited characteristic,
is very durable. Moreover, recessive resistance may be acquired by a deficiency in
a negative regulator of plant defense responses, possibly due to the autoactivation
of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and
their isoforms are the most widely exploited recessive resistance genes in several
crop species, and they are effective against a subset of viral species. However, the
establishment of efficient, recessive resistance-type antiviral control strategies against
a wider range of plant viral diseases requires genetic resources other than eIF4Es.
In this review, we focus on recent advances related to antiviral recessive resistance
genes evaluated in model plants and several crop species. We also address the roles of
next-generation sequencing and genome editing technologies in improving plant genetic
resources for recessive resistance-based antiviral breeding in various crop species.

Keywords: plant virus disease control, host resistance, recessive resistance, translation initiation factors, genetic
resources, antiviral breeding

INTRODUCTION

Plant viruses are obligate parasitic microbes that can be characterized by their distinct life cycles
depending on host plant machinery. Their genomes are the simplest among plant-associated
microbes: a single, or multiple, DNA or RNA molecule(s) encoding several proteins, some of which
encapsidate the DNA or RNA to form viral particles. Plant viruses do not deploy specific structures
to enter into plant cells and, in general, passively enter through wounds or are transmitted by other
organisms including insects, mites, and fungi. Frequent mutations due to error-prone genome
replications enable viruses to circumvent plant defense systems and cause severe crop production
losses (Kobayashi et al., 2014). Thus far, agrochemicals that directly target viral life cycles have not
been developed, and, consequently, it remains difficult to control plant viral diseases. Furthermore,
due to worldwide climate change and international trade, there is an increasing risk of plant virus
outbreaks.
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Great efforts have been made to control plant viral diseases to
enhance crop production (Nicaise, 2014; Tsuda and Sano, 2014).
Measures used to control these diseases can be categorized into
those that depend on plant defense machinery and those that
do not. Resistant cultivars, whose traits have been introduced
by crossing, are commonly used as crop species to control
plant viruses. Plant host resistance is achieved in two ways: one
method involves dominant Resistance (R) genes and the other
depends on recessive alleles of genes that are critical for plant
viral infection. Most of the dominant R genes encode proteins
with nucleotide-binding sites and leucine-rich repeats (NB-LRR),
and other proteins from the same family confer resistance to
bacterial and fungal pathogens (Moffett, 2009; Padmanabhan
and Dinesh-Kumar, 2014). In addition, several genes that are
distinct from the conventional NB-LRR–type R genes have
been described (Chisholm et al., 2000; Ishibashi et al., 2007;
Yamaji et al., 2012). The second mechanism of plant resistance
to viruses, referred to as recessive resistance, is also widely
exploited in many crops (Truniger and Aranda, 2009; Wang and
Krishnaswamy, 2012). In fact, about half of the alleles responsible
for virus-resistance in crops are recessive (Kang et al., 2005).
Recessive resistance traits can be introduced into crop species
by crossing, or random mutagenesis and selection (Piron et al.,
2010). Recessive resistance breeding has the practical advantages
of not requiring the introduction of transgenes and not being
restricted by the selection of naturally occurring traits only.
However, most of the recessive resistance genes isolated to date
are eukaryotic translation initiation factors (eIF) 4E and eIF4G,
and their isoforms (hereafter eIF4Es).

Mutations in eIF4Es confer loss-of-susceptibility to
potyviruses and several other viruses. To enable recessive
resistance-based crop breeding against a wide range of plant
viruses, it is important to improve the genetic resources available
for recessive resistance other than eIF4Es. In the absent of
naturally occurring recessive resistant cultivars, and if eIF4Es-
mediated resistance is not effective in a plant–virus interaction,
a mutation in a potential recessive resistance gene can be
introduced. This review focuses on our current understanding of
the genetic resources for recessive resistance, and how to enhance
them using technologies such as next-generation sequencing
(NGS) and genome editing for recessive resistance-based
antiviral breeding in various crop species.

eIF4Es-MEDIATED RECESSIVE
RESISTANCE

Recessive resistance is based on the molecular interactions
between viruses and host plants. Plant viruses propagate their
genomes in plant cells by hijacking large numbers of host
cell proteins, and then spread to adjacent healthy cells and
tissues (Hyodo and Okuno, 2014; Wang, 2015). Mutations in
the plant genes encoding factors necessary for viral infection
can interfere with viral propagation in plants. Another possible
mechanism of recessive resistance against plant viruses is based
on the autoactivation of plant defense responses when there is a
deficiency in a negative regulator of defense signaling (Truniger

and Aranda, 2009). However, no experimental evidence has been
obtained to directly support the latter hypothesis in naturally
occurring cultivars (Orjuela et al., 2013).

Recessive resistance mediated by eIF4Es was first found in
mutants of Arabidopsis thaliana exhibiting loss-of-susceptibility
to tobacco etch virus (TEV; Potyvirus), which is due to deficiency
in the eIFiso4E gene, an isoform of eIF4E (Lellis et al., 2002).
Subsequent studies revealed that eIF4Es-mediated resistance
against potyviruses is found in several resistant crop cultivars
including pepper (Capsicum annuum), lettuce (Lactuca sativa),
and wild tomato (Solanum habrochaites) (Ruffel et al., 2002, 2005;
Nicaise et al., 2003). In addition to potyviruses, eIF4Es-mediated
resistance to other viruses has been observed. These include
cucumber mosaic virus (CMV; Cucumovirus) in Arabidopsis
(Yoshii et al., 2004); two carmoviruses, turnip crinkle virus
(TCV) in Arabidopsis (Yoshii et al., 1998) and melon necrotic
spot virus (MNSV) in melon (Cucumis melo) (Nieto et al.,
2006); two bymoviruses, barley mild mosaic virus (BaMMV)
and barley yellow mosaic virus (BYMV) in barley (Hordeum
vulgare) (Kanyuka et al., 2005; Stein et al., 2005); and rice yellow
mottle virus (RYMV; Sobemovirus) in rice (Oryza sativa) (Albar
et al., 2006) (this information is also summarized in Truniger
and Aranda, 2009 and Sanfaçon, 2015). Unsurprisingly, eIF4Es-
mediated resistance is only effective against viruses that interact
specifically with at least one of the eIF4Es. Remarkably, in
Arabidopsis, selective involvement of eIF4Es is found even in
closely related viruses in the same genera, including Potyvirus
and Polerovirus (Sato et al., 2005; Nicaise et al., 2007; Reinbold
et al., 2013), suggesting that the specific interactions between
these viruses and eIF4Es developed after these species diverged
from one another. Conservation of translation initiation factors
in plants indicates that a wide range of plant viruses may take
advantage of host eIF4Es; however, due to partial functional
redundancy among eIF4E isoforms, deficiency of an individual
in eIF4Es does not always confer resistance to all plant viruses
(Mayberry et al., 2011; Martínez-Silva et al., 2012). Moreover,
because of the essential roles of eIF4Es in plant viability, knockout
mutations of either eIF4E or eIF4G and its corresponding isoform
result in an embryo-lethal phenotype (Nicaise et al., 2007; Patrick
et al., 2014). Because the utility of eIF4Es as recessive resistance
genes is limited, it is important to identify and characterize
additional genetic targets that may mediate recessive resistance
against a wider range of viral species.

POSITIVE REGULATORS OF VIRAL
INFECTION: GENETIC RESOURCES FOR
RECESSIVE RESISTANCE

Over the past few decades, a large number of host factors have
been isolated and functionally characterized to generate a better
understanding of virus life cycles (Nagy and Pogany, 2011; Hyodo
and Okuno, 2014; Wang, 2015). To identify host factors, forward
and reverse genetic approaches using Arabidopsis and other
model plants have been used (Ishikawa et al., 1991; Yoshii et al.,
2009; Castelló et al., 2010). In addition, other host factors have
been identified by screening for interactors with viral proteins
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and components of protein complexes containing viral factors
(Mine et al., 2010; Nishikiori et al., 2011; Xiong and Wang, 2013).
Genome-wide screening using the heterologous yeast system with
brome mosaic virus (BMV; Bromovirus) and also with tomato
bushy stunt virus (TBSV; Tombusvirus), has revealed that viral
infections are affected by more than 100 host genes in each
case; these genes encode a distinct set of host factors for each
of the two viruses (Kushner et al., 2003; Gancarz et al., 2011;
Nagy, 2016). Among the identified host proteins, several give
rise to loss-of-susceptibility phenotypes when the corresponding
genes are mutated. In addition, other host proteins identified
from naturally occurring resistant cultivars are important genetic
resources for recessive resistance. They are discussed separately
in the next section.

With several exceptions (Fujisaki and Ishikawa, 2008; Cheng
et al., 2009; Huh et al., 2013), many of the host factors
characterized so far in plants positively control viral infection;
herein, we refer to them as “positive regulators.” These positive
regulators have been characterized predominantly through
transient knockdown experiments. Knockdown of a gene
encoding a positive regulator of viral infection results in a
decrease of viral accumulation. This phenotype is equivalent to
recessive resistance, and leads us to expect that the corresponding
host factor could be a recessive resistance gene in crop species,
especially if deficiency of the host factor has no adverse
effect on plant growth. However, there could be a qualitative
difference between the transient knockdown of a host factor by
RNA silencing and the null mutation. When a host factor is
indispensable for plant viability or is encoded by functionally
redundant genes, the transient knockdown of the factor and the
null mutation may produce different phenotypes (Wei et al.,
2013; Xiong and Wang, 2013). Alternatively, even if a host
factor plays an essential role in plant viability, a conserved
amino acid substitution could confer viral resistance without
an adverse effect on plant growth (Ouibrahim et al., 2014).
This scenario would suggest that the substituted amino acid is
critical for molecular plant–virus interaction, but not for plant
viability. Further molecular analyses will be necessary to reveal
the availability of positive regulators as recessive resistance genes.

Some of the positive regulators identified so far are common
among distantly related viruses (Nagy et al., 2014). Although
confirmatory molecular studies will be required, deficiency of
these host factors could generate recessive resistance against
a wide range of viruses. For example, HSP90 is required for
viral replication of red clover necrotic mosaic virus (RCNMV;
Dianthovirus) (Mine et al., 2012) and bamboo mosaic virus
(BaMV; Potexvirus) (Huang et al., 2012). Infection by rice
stripe virus (RSV; Tenuivirus) (Jiang et al., 2014), turnip mosaic
virus (TuMV; Potyvirus) (Jungkunz et al., 2011) and RCNMV
(Mine et al., 2012) is not supported efficiently after silencing
of HSP70. eEF1A seems to be commonly involved in viral
replication via interaction with a viral replicase in tobacco mosaic
virus (TMV; Tobamovirus) (Yamaji et al., 2006, 2010), TuMV
(Thivierge et al., 2008), and TBSV (Li et al., 2009) as well as with
viral RNA in turnip yellow mosaic virus (TYMV; Tymovirus)
(Dreher et al., 1999), TMV (Zeenko et al., 2002), and TBSV
(Li et al., 2009). Noted that these host factors are also involved

in plant growth, gene expression, and plant hormone signaling
(Ransom-Hodgkins, 2009; Clément et al., 2011; Jungkunz et al.,
2011; Zhang X.C. et al., 2015). In plants, cytosolic HSP70 and
HSP90 are important for disease resistance against pathogens
other than viruses (Kanzaki et al., 2003; Takahashi et al., 2003).
Therefore, some mutations of these genes not only confer
recessive resistance to a plant virus but may also have unexpected
adverse effects on plants.

PROMISING GENETIC RESOURCES FOR
RECESSIVE RESISTANCE

If a host factor for viral infection can be mutated in one
plant species without any adverse effects on plant growth at
least under controlled greenhouse conditions, one would expect
that this might be possible in other plant species, too, and
that such host factors would be promising genetic targets for
recessive resistance. In this section, we discuss host factors that
have been identified as potential targets for recessive resistance
either from loss-of-susceptibility mutants or from naturally
occurring resistant cultivars (Table 1). It is noteworthy that some
translation factors, including polyA-binding protein (PABP) and
DEAD-box RNA helicase (referred to as DDXs or RHs), are
promising genetic targets for recessive resistance (Dufresne et al.,
2008; Li et al., 2016), but because they have been discussed in
detail elsewhere (Sanfaçon, 2015), they are not covered in this
section.

Tobamovirus multiplication 1 (TOM1) has been identified
using Arabidopsis mutants with loss-of-susceptibility to youcai
mosaic virus [YoMV; Tobamovirus (previously referred to as
TMV-Cg)] (Yamanaka et al., 2000). The tom1-1 mutation
does not completely suppress YoMV accumulation unless the
TOM3 gene is also mutated (Yamanaka et al., 2002). However,
CMV and TCV accumulation are unaffected in the tom1tom3
double mutant (Yamanaka et al., 2002). TOM1 and TOM3
are closely related, seven-pass membrane proteins, and TOM1
interacts with the helicase domain of YoMV replicase (the
current model of tobamovirus replication is well documented in
another review; Ishibashi and Ishikawa, 2016). Although TOM1
and TOM3 homologs are encoded in Nicotiana spp., tomato
(S. lycopersicum), pepper and rice (Kumar et al., 2012), functional
validation of these proteins in tobamovirus accumulation has
only been performed in Nicotiana spp. (Asano et al., 2005; Chen
et al., 2007). Asano et al. (2005) demonstrated that knockdown
of both TOM1 and TOM3 genes in N. tabacum completely
suppresses three distinct tobamoviruses other than YoMV. The
genes identified from the tom2-1 Arabidopsis mutant are TOM2A
and TOM2B (Tsujimoto et al., 2003). TOM2A is a four-pass
membrane protein and TOM2B is a basic protein. Although the
molecular function of TOM2B is unknown, TOM2A is thought to
be involved in tobamovirus accumulation via its interaction with
TOM1 (Tsujimoto et al., 2003; Ishibashi and Ishikawa, 2016).

ARL8, a small GTP-binding ARF-family protein, has been
co-purified with a replicase from tomato mosaic virus (ToMV;
Tobamovirus) (Nishikiori et al., 2011). ARL8, together with
TOM1, is involved in ToMV replication through regulating
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TABLE 1 | The genetic resources for recessive resistance found in loss-of-susceptibility mutants and naturally occurring resistant cultivars.

Gene Plant species encoding homologs Cause of resistance Affected
virus1

Non-
affected
virus1

Reference

TOM1;
TOM3

Nicotiana spp.
Solanum lycopersicum
Capsicum annuum
Oryza sativa

Loss-of-susceptibility by ethyl
methanesulfonate (EMS) mutagenesis

YoMV
ToMV
TMV
TMGMV
PMMoV

CMV
TCV
TYMV

Ishikawa et al., 1991
Ishikawa et al., 1993
Yamanaka et al., 2000
Yamanaka et al., 2002
Kumar et al., 2012

TOM2A;
TOM2B

Arabidopsis thaliana Loss-of-susceptibility by fast neutron
mutagenesis

YoMV
ToMV

CMV
TCV
TYMV

Ohshima et al., 1998
Tsujimoto et al., 2003

ARL8 Arabidopsis thaliana
Nicotiana tabacum

Loss-of-susceptibility by simultaneous null
mutation of ARL8a and ARL8b by T-DNA
insertions

ToMV
YoMV

CMV Nishikiori et al., 2011

RIM1 Oryza sativa
Arabidopsis thaliana

Loss-of-susceptibility by Tos17-based
insertional mutagenesis

RDV RTYV
RSV

Yoshii et al., 2009

DBP1 Arabidopsis thaliana
Nicotiana tabacum
Zea mays
Oryza sativa
Mesembryanthemum crystallinum

Loss-of-susceptibility in a T-DNA mutant TuMV
PPV

CMV Carrasco et al., 2005
Castelló et al., 2010

cPGK Nicotiana spp.
Solanum lycopersicum
Solanum tuberosum
Populus trichocarpa
Sorghum bicolor
Oryza sativa
Triticum aestivum
Zea mays

Natural resistance gene, rwm1, found in
Arabidopsis Cvi-0 ecotype

WMV
PPV
BaMV

PVX
CMV

Lin et al., 2007
Ouibrahim et al., 2014
Poque et al., 2015

EXA1 Arabidopsis thaliana
Oryza sativa
Solanum lycopersicum

Loss-of-susceptibility by EMS mutagenesis PlAMV
PVX
AltMV

CMV
TCV
YoMV

Hashimoto et al., 2016

PVIP1;
PVIP2

Arabidopsis thaliana
Pisum sativum
Nicotiana benthamiana

Loss-of-susceptibility in a knockdown
mutant of each PVIP

TuMV − Dunoyer et al., 2004

PDLP1;
PDLP2;
PDLP3

Arabidopsis thaliana Loss-of-susceptibility by triple mutation of
PDLP1, PDLP2 and PDLP3 by T-DNA
insertions

GFPV
CaMV

ORMV Amari et al., 2010

PCaP1 Arabidopsis thaliana Loss-of-susceptibility in a T-DNA mutant TuMV ORMV Vijayapalani et al., 2012

SYTA Arabidopsis thaliana Loss-of-susceptibility in a T-DNA mutant CaLCuV
TVCV
TuMV

CaMV Lewis and Lazarowitz, 2010
Uchiyama et al., 2014

Sec24a Arabidopsis thaliana Loss-of-susceptibility in an EMS-induced
mutant

TuMV − Jiang et al., 2015

RHD3 Arabidopsis thaliana Loss-of-susceptibility in a T-DNA mutant TSWV − Feng et al., 2016

PDIL5-1 All plant species Natural resistance gene, rym11, found in
barley

BaYMV
BaMMV

− Yang et al., 2014

IRE1 All plant species Loss-of-susceptibility by double mutation of
IRE1a and IRE1b by T-DNA insertions

TuMV − Zhang L. et al., 2015

bZIP60 All plant species Loss-of-susceptibility in a T-DNA mutant TuMV
PVX

− Ye et al., 2011
Zhang L. et al., 2015

HAT1;
HAT2;
HAT3

Arabidopsis thaliana Loss-of-susceptibility by triple mutation of
HAT genes by T-DNA insertions

CMV − Zou et al., 2016

CPR5 Oryza glaberrima
Arabidopsis thaliana

Natural resistance gene, rymv2, found in
African rice

RYMV − Orjuela et al., 2013

1Virus abbreviations not provided in the text: TMGMV (tobacco mild green mosaic virus; Tobamovirus), PMMoV (pepper mottle mosaic virus, Tobamovirus), AltMV
(alternanthera mosaic virus; Potexvirus).
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the enzymatic activity of a ToMV replicase in RNA synthesis
and capping (Nishikiori et al., 2011). While a deletion in any
one of three ARL8 genes does not alter ToMV accumulation
in Arabidopsis, mutation of both the ARL8a and ARL8b
genes completely suppressed viral accumulation without any
adverse effect on plant growth (Nishikiori et al., 2011). ARL8
demonstrates that host factor genes and their functionally
redundant homologs may be good targets for joint mutations
that together produce recessive resistance. Alternatively, as
demonstrated by the eIF4Es (Sato et al., 2005; Nicaise et al.,
2007; Reinbold et al., 2013), when a distinct protein among a
functionally related group has established a specific interaction
with a virus, the corresponding gene alone could be targeted for
mutation to generate recessive resistance.

Rice dwarf virus multiplication 1 (rim1) mutant is produced
by a retrotransposon Tos17 insertion in an NAC-domain
transcription factor and shows loss-of-susceptibility to rice dwarf
virus (RDV; Phytoreovirus) (Yoshii et al., 2009). However, rim1
mutants are susceptible to two other rice viruses, rice transitory
yellowing virus (RTYV; Rhabdovirus) and RSV (Yoshii et al.,
2009). The RIM1 protein is closely related to an Arabidopsis
NAC domain protein, ANAC028. Yoshii et al. (2009) also
demonstrated that the rim1 mutation has a small negative effect
on the survival of green rice leafhopper (Nephotettix cincticeps),
an insect vector of RDV. This may be related to observations of
jasmonic acid (JA)-induced phenotypes in some rim1 mutants
(Yoshii et al., 2010). Although the molecular function of RIM1
in RDV infection is unclear, the protein could be critical for
RDV infection without being a general defense repressor if RIM1-
mediated resistance is specific for RDV (Yoshii et al., 2009).

Knockout mutation in DNA-binding protein phosphatase 1
(DBP1) gene does not influence plant growth in Arabidopsis, but
does result in resistance to two potyviruses, TuMV and plum
pox virus (PPV) (Castelló et al., 2010). The domain structure of
DBP1 suggests that it functions in signal transduction as well
as in transcriptional regulation (Carrasco et al., 2006). DBP1-
related genes are present in dicotyledons and monocotyledons,
including N. tabacum, maize (Zea mays), and rice (Carrasco et al.,
2005). As DBP1 forms a stabilizing interaction with eIFiso4E,
the loss of susceptibility of dbp1 mutants may be related to the
low-level accumulation of eIFiso4E (Castelló et al., 2010). DBP1
also interacts with 14-3-3 family protein GRF6, regulating its
phosphorylation status, and the grf6 mutant is resistant to PPV
(Carrasco et al., 2006, 2014). The DBP1 interaction with GRF6
may regulate the phosphorylation status of eIFiso4E, thereby
altering its cap-binding activity (Khan and Goss, 2004). Further
studies are needed to confirm the mechanism of DBP1-mediated
resistance.

A recessive allele conferring resistance to watermelon mosaic
virus (WMV; Potyvirus) has been identified in the Arabidopsis
ecotype Cvi-0 and designated resistance to watermelon mosaic
virus 1 (rwm1) (Ouibrahim et al., 2014). Map-based cloning
identified an amino acid substitution in a nuclear-encoded
chloroplast phosphoglycerate kinase, cPGK2 (Ouibrahim
et al., 2014). cPGK2 gene homologs are found in dicotyledons
and monocotyledons including: Nicotiana spp., tomato,
potato (S. tuberosum), poplar (Populus trichocarpa), sorghum

(Sorghum bicolor), rice, wheat (Triticum aestivum), and maize.
Downregulation of cPGK genes in N. benthamiana compromises
WMV (Ouibrahim et al., 2014) and PPV accumulation
(Poque et al., 2015). Remarkably, cPGK is associated with the
3′-untranslated region of BaMV genomic RNA and is required
for the efficient accumulation of BaMV in N. benthamiana (Lin
et al., 2007). Recently, Cheng et al. (2013) demonstrated that
cPGK recruits BaMV genomic RNA to chloroplasts to support
BaMV replication in N. benthamiana. Consistent with this,
some potyviruses are thought to replicate their genomic RNA
in chloroplasts (Wei et al., 2013). Further studies are needed to
reveal the role of cPGK in potyvirus and potexvirus infection.

More recently, Hashimoto et al. (2016) demonstrated that
deficiencies in essential for potexvirus accumulation 1 (EXA1)
gene were present in a loss-of-susceptibility Arabidopsis mutant
that did not support plantago asiatica mosaic virus (PlAMV;
Potexvirus) accumulation. EXA1 is an unannotated gene in
plants, but contains a putative eIF4E-binding motif and a
GYF domain, which binds to proline-rich peptides (Kofler and
Freund, 2006). Based on sequence comparisons with other related
genes, EXA1 homologs are encoded in rice and tomato and are
structurally related to human GIGYF2 protein (Hashimoto et al.,
2016). T-DNA insertion of EXA1 gene, forming exa1-1 mutant,
does not affect accumulation of CMV, TCV, or YoMV, but does
suppress the accumulation of two distinct potexviruses other
than PlAMV (Hashimoto et al., 2016). Because human GIGYF2
regulates mRNA translation (Morita et al., 2012), it is conceivable
that EXA1 might also regulate the translation of a viral protein
during early infection. Further studies are needed to reveal the
role of EXA1 in virus infection and whether EXA1-mediated
resistance is effective in other plant species and against viruses
other than potexviruses.

Functional studies on the host factors that play a critical role
in viral transport to healthy plant cells have shed light on several
potential recessive resistance genes conferring resistance to plant
viruses. Once the viral genomes are replicated in the initially
infected cells, the viruses must transport their genomes through
plasmodesmata (PD), which are plant-specific intercellular
nanopores that connect neighboring cells. To transport infectious
entities to PD, viral movement proteins (MPs) recruit host factors
and host machineries, such as cellular trafficking pathways.
Viruses that are able to reach the phloem by continuous
transport to neighboring cells systemically spread through the
sieve tube, depending on host factors. Potyvirus VPg-interacting
protein from pea (PVIPp) was isolated through yeast two-
hybrid screening of a cDNA library from pea (Pisum sativum).
PVIPp interacts with VPg protein of pea seed-borne mosaic virus
(PSbMV; Potyvirus) (Dunoyer et al., 2004). In Arabidopsis, PVIP1
and PVIP2 are closely related homologs, and their knockdown
in plants confers loss-of-susceptibility to TuMV (Dunoyer et al.,
2004). A TuMV mutant with a point mutation in VPg that affects
the interactions with PVIP1 compromises cell-to-cell transport
(Dunoyer et al., 2004). Since PVIP1 and PVIP2 interact with VPg
proteins of other potyviruses, PVIPs-mediated resistance may
also be effective against other potyviruses. Arabidopsis PCaP1
and COPII coatomer Sec24a interact with P3N-PIPO and 6K2
of TuMV, respectively (Vijayapalani et al., 2012; Jiang et al.,

Frontiers in Microbiology | www.frontiersin.org 5 October 2016 | Volume 7 | Article 1695

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01695 October 24, 2016 Time: 11:37 # 6

Hashimoto et al. Genetic Resources for Recessive Resistance

2015). Both host factors are involved in distinct steps in TuMV
cell-to-cell transport. A mutation in PCaP1 or Sec24a gene in
Arabidopsis impairs TuMV infection (Vijayapalani et al., 2012;
Jiang et al., 2015). Knockout of root hair defective 3 (RHD3),
whose gene product is involved in the formation of the tubular
ER network structure, significantly inhibits the systemic infection
of tomato spotted wilt virus (TSWV; Tospovirus) (Feng et al.,
2016). PD-located protein 1 (PDLP1) was originally identified as
a cell wall-associated membrane protein in Arabidopsis and was
isolated from a highly purified cell wall fraction (Bayer et al., 2006;
Thomas et al., 2008). A PDLP1, PDLP2 and PDLP3 triple mutant
inhibits systemic infection of grapevine fanleaf virus (GFLV;
Nepovirus) and cauliflower mosaic virus (CaMV; Caulimovirus)
but not oilseed rape mosaic virus (ORMV; Tobamovirus) (Amari
et al., 2010). Although GFLV and CaMV are distantly related
viruses, MPs of both viruses form a specific structure, called a
tubule used in cell-to-cell transport. These results imply that the
loss-of-susceptibility of pdlp1/2/3 triple mutant is also applicable
to other viruses that employ the tubule-based transport strategy.
Arabidopsis synaptotagmin (SYTA), a plant homolog of calcium
sensors widely studied in animals, has been shown to interact
with MP of cabbage leaf curl virus (CaLCuV; Begomovirus)
(Lewis and Lazarowitz, 2010). Remarkably, a syta mutant
significantly inhibits systemic infection of a diverse spectrum
of plant viruses, including CaLCuV, turnip vein clearing virus
(TVCV; Tobamovirus) and TuMV, but not of CaMV (Lewis and
Lazarowitz, 2010; Uchiyama et al., 2014), suggesting that SYTA
and the involved cellular machinery are promising candidates for
recessive resistance against a wide range of viruses. In spite of
the above-mentioned results, no study has reported a naturally
occurring recessive resistant cultivar that targets viral transport.
Thus, the targeting of viral transport for recessive resistance may
well be technically challenging.

The unfolded protein response (UPR) is a highly conserved
cellular machinery that allows both animals and plants to cope
with an overload of unfolded proteins in the endoplasmic
reticulum (ER) (Howell, 2013). Recently, several studies have
suggested the relevance of the UPR in plant–virus interactions
(Ye et al., 2011; Yang et al., 2014; Zhang L. et al., 2015; Arias
Gaguancela et al., 2016). In barley, the recessive resistance genes
rym4/rym5, which are alleles of eIF4E, have been overcome
by resistance-breaking isolates of BaMMV and BaYMV (Hariri
et al., 2003; Kühne et al., 2003), whereas rym11 resistance
cultivars are highly durable against both virus isolates. Positional
cloning has revealed that a mutation in protein disulfide isomerase
like 5-1 (PDIL5-1) is responsible for the recessive resistance
gene rym11 (Yang et al., 2014). The natural variation among
HvPDIL5-1 genes suggests that most of the rym11 cultivars
collected from eastern Asia are the result of frequent interactions
with highly divergent forms of BaMMV and BaYMV (Yang
et al., 2014). PDIL5-1 is a conserved protein in plants and
animals, which functions as an endoplasmic reticulum-localized
chaperone in the UPR (Howell, 2013). Arabidopsis bzip60-2
mutant and ire1a/ire1b double mutant, which are mutants of
other UPR components, show loss-of-susceptibility to TuMV
(Zhang L. et al., 2015). Silencing of bZIP60 gene significantly
suppresses the accumulation of potato virus X (PVX; Potexvirus)

in N. benthamiana (Ye et al., 2011). Although the mechanism
of the resistance mediated by the UPR components remains
unclear, the striking conservation of UPR components and the
consistency of their roles in viral infection imply that they are
promising genetic targets for recessive resistance to a wide range
of viruses.

Several lines of evidence suggest that a mutation in a
gene encoding a component of plant defense responses could
confer resistance to viruses. Arabidopsis ssi2 mutant, which
accumulates high levels of plant defense hormone salicylic acid
(SA), confers resistance to CMV (Sekine et al., 2004). Based on
the experimental evidences, Sekine et al. (2004) demonstrated
that the resistance to CMV in ssi2 mutant is unrelated to SA
production and the dwarf phenotype. Some Arabidopsis mutants
related to the defense hormone ethylene, such as acs6 mutant,
also shows resistance to YoMV (Chen et al., 2013). Although the
loss-of-susceptibility of the mutants related to defense responses
may be due to elevated antiviral defense signaling(s), mutants
such as ssi2 mutant frequently show an abnormal growth
phenotype (Sekine et al., 2004). Remarkably, a triple mutant of
homeodomain-leucine zipper protein 1 (HAT1) and its related
genes HAT2 and HAT3 confers loss-of-susceptibility to CMV
without any growth defect despite the high level of SA and JA
accumulation (Zou et al., 2016). However, as discussed earlier,
if a deficiency in a specific defense signaling molecule confers
recessive resistance to a plant virus, there could be unexpected
adverse effects on the plants because of the complex nature of the
plant defense signaling network (Mine et al., 2014). The RYMV2
gene, identified using the resistant Tog7291 accession of African
rice (O. glaberrima), encodes a recessive resistance gene that
is responsible for durable resistance to rice yellow mottle virus
(RYMV; Sobemovirus). The rymv2 mutant is deficient in a rice
homolog of the Arabidopsis CPR5 gene (Orjuela et al., 2013),
which has a repressive role in plant defense responses (Yoshida
et al., 2002). Alleles of the rymv2 mutant have also been found
in seven additional African rice accessions that were resistant to
RYMV (Orjuela et al., 2013). Due to the role of Arabidopsis CPR5
in defense responses, the activation of defense responses by rymv2
alleles presumably contributes to RYMV resistance.

STRATEGIES FOR IMPROVING THE
GENETIC RESOURCES FOR RECESSIVE
RESISTANCE

Despite their importance, few host factors have successfully
been identified by forward genetic screening or as naturally
occurring recessive resistant alleles (Table 1). In part, this
is because genetic screening and traditional gene mapping
approaches are labor intensive and costly; it is also difficult
to identify particular types of gene (for example, those that
are functionally redundant or those that are essential for plant
viability) using a genetic approach. Moreover, even after genes
of interest have been identified, there may be substantial delays
before these can be used to generate recessive resistance in
crop species. Establishing resistant cultivars targeting a specific
gene using random mutagenesis and screening, and introducing
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traits through crossing, are both technically challenging and
time-consuming procedures. However, the emergence of NGS,
genome editing, and other technologies have provided new
opportunities for improving and utilizing genetic resources for
recessive resistance breeding.

As discussed above, loss-of-susceptibility to viral infection
produced by random mutagenesis is genetically equivalent
to recessive resistance found in natural variants. Performing
random mutagenesis in crops and model plants circumvents
the limitations imposed by relying on genetic variation found
only in naturally occurring cultivars. In addition, the recessive
resistance discussed earlier including that mediated by eIF4Es, is
effective in several plant species. Therefore, random mutagenesis
and selection for loss-of-susceptibility mutants in model plants,
including Arabidopsis, is still an attractive option for improving
genetic resources to apply recessive resistance in crops. Model
plants facilitate the isolation of loss-of-susceptibility mutants
and the subsequent identification of corresponding genes due
to the availability of whole-genome sequence information and
their characteristically simple genetics (Yamanaka et al., 2000;
Yoshii et al., 2009). By contrast, random mutagenesis performed
in polyploid plants (e.g., wheat and soybean) presents difficulties
that include obtaining mutants with discernible phenotypes,
often due to functional complementation by redundant genes.
However, to ultimately apply mutant screening in Arabidopsis
to recessive virus resistance-based crop breeding, it is important
to select a virus species that can infect Arabidopsis, and comes
from the same viral genus as the target virus (Ishikawa et al.,
1991; Fujisaki et al., 2004; Yamaji et al., 2012). Additionally, to
reliably and rapidly detect viral infection, the introduction of
green fluorescent protein into an infectious viral clone is desirable
(Baulcombe et al., 1995; Minato et al., 2014). The rationale for
this is based on the expectation that viruses from the same genus
have similar life cycles. In fact, it is known that some host factors,
including eIF4Es, play a similar role in infection by different
viruses from the same genus (Asano et al., 2005; Ouibrahim et al.,
2014; Yang et al., 2014; Poque et al., 2015; Hashimoto et al., 2016).
However, there are many exceptions that challenge this rationale
(for example, see the section on eIF4Es-MEDIATED RECESSIVE
RESISTANCE). Thus, validation of the results obtained from
Arabidopsis mutant screening in other host–virus interactions is
essential.

Next-generation sequencing technologies have made it easy
for many plant scientists to access whole-genome plant
sequencing (Morrell et al., 2012). Simultaneously, genomics-
based crop breeding using NGS technologies is expected
to overcome the challenge of feeding an increasing world
population. As suggested by Varshney et al. (2014), NGS
technologies, which have rarely been applied to antiviral breeding
using natural variants (Zuriaga et al., 2013; Mariette et al., 2016),
would be quite useful for identifying loci in naturally resistant
variants and also for breeding to introduce resistant loci into
specific cultivars. Several studies have identified loci of interest
from Arabidopsis mutants using whole-genome sequencing of
pooled mutant F2 populations (Schneeberger et al., 2009; Austin
et al., 2011; Uchida et al., 2011). The EXA1 gene was identified
successfully from a loss-of-susceptibility mutant by combining

conventional map-based cloning and whole-genome sequencing
of mutant plants (Hashimoto et al., 2016). Methods based on a
similar concept have also been established in rice (Abe et al., 2012;
Takagi et al., 2013). These studies suggest that a resistance locus
could be identified rapidly from a loss-of-susceptibility mutant
based on whole-genome sequencing in Arabidopsis and rice.

Genome editing based on sequence-specific nucleases such
as zinc-finger nucleases (ZFNs), transcription activator-like
effectors (TALENs), and CRISPR-associated protein 9 (Cas9)
in clustered, regularly interspaced, short palindromic repeat
(CRISPR)/Cas systems has recently been developed to enable
targeted mutagenesis and gene insertion in eukaryotic genomes
(Gaj et al., 2013). The applications of these genome editing
technologies in plants are well summarized elsewhere (Araki
and Ishii, 2015; Luo et al., 2016; Ma et al., 2016). Importantly,
genome editing technologies have been employed not only in
model plants but also in several crop species, and they are now
being applied even more widely. One of the outstanding points
of genome editing in terms of its application to crop breeding is
that the original transgenes for genome editing can be removed
via segregation after editing. Recently, the CRISPR/Cas9 system
was used to establish eIFiso4E-deficient Arabidopsis mutants that
were free from transgenes and exhibited recessive resistance to
TuMV (Pyott et al., 2016). More importantly, the CRISPR/Cas9
system was also applied to cucumber (Cucumis sativus) to
disrupt the eIF4E gene, and the non-transgenic, eIF4E-deficient
plant lines were resistant to the cucumber vein yellowing virus
(CVYV; Ipomovirus) and two potyviruses (Chandrasekaran et al.,
2016). Even in polyploid soybean, duplicated genes have been
mutagenized using ZFNs (Curtin et al., 2011). In allohexaploid
wheat, simultaneous mutation of three MILDEW RESISTANCE
LOCUS genes by TALENs resulted in resistance to a powdery
mildew fungal pathogen (Wang et al., 2014). Editing of multiple
genes using the CRISPR-Cas9 system is applicable to Arabidopsis
and rice (Ma et al., 2015). These studies suggest that genetic
targets for recessive resistance may be mutagenized in various
crop species (including polyploid crops) using genome editing
technologies. Previously, the only methods for introducing a
recessive resistant locus from a natural variant into a specific
cultivar were crossing and random mutagenesis. Because targeted
mutagenesis by genome editing involves a small deletion or
insertion in a specific genomic site through non-homologous
end-joining (NHEJ), genome editing technologies are compatible
with developing and applying genetic resources for recessive
resistance in crop species.

CONCLUSION AND FUTURE
PERSPECTIVES

In this article, we focused on emphasizing the importance of
recessive resistance in future anti-viral breeding. Significant
fundamental research efforts have been invested in identifying
host factors involved in plant virus infection. The corresponding
genes are potential targets for recessive resistance, in addition to
the eIF4Es. The application of this information to crop research
should result in the development of new recessive resistance
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traits. However, to avoid the unforeseeable effects of mutations
and to expand the possible application range of each host factor,
further studies are essential and should focus on the molecular
function of each factor in viral infection and also in that of the
relevant viruses. In addition, it is necessary to identify plants that
are susceptible to the viruses through each particular host factor.
Currently, extensive characterization studies have been limited
to only a few plant virus species, and so it is critical to expand
this research to include other viruses with agricultural impact
(Rybicki, 2015). Genome editing technologies are promising
methods for introducing recessive resistance into various crop
species. Moreover, some genome-edited crops have already been
made available without restriction by the US Department of
Agriculture, one of the agencies responsible for the regulation
of genetically modified organisms (GMOs) in the USA (Waltz,
2016a,b). However, it remains unclear whether resources created
by genome editing are subject to regulations associated with
GMOs in other countries (Hartung and Schiemann, 2014; Araki
and Ishii, 2015). Based on the possible regulatory guidelines
that take into account mutation patterns and modification

mechanisms, as suggested by Araki and Ishii (2015), mutation
mechanisms capable of producing recessive resistance should
be prioritized into categories that may be most easily accepted.
Further research to support and enhance the safety of genome
editing technologies for recessive resistance-based crop breeding
is extremely important.
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