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There is a growing demand for genome-scale metabolic reconstructions for plants, fueled

by the need to understand the metabolic basis of crop yield and by progress in genome

and transcriptome sequencing. Methods are also required to enable the interpretation

of plant transcriptome data to study how cellular metabolic activity varies under different

growth conditions or even within different organs, tissues, and developmental stages.

Such methods depend extensively on the accuracy with which genes have been

mapped to the biochemical reactions in the plant metabolic pathways. Errors in these

mappings lead to metabolic reconstructions with an inflated number of reactions and

possible generation of unreliable metabolic phenotype predictions. Here we introduce a

new evidence-based genome-scale metabolic reconstruction of maize, with significant

improvements in the quality of the gene-reaction associations included within our model.

We also present a new approach for applying our model to predict active metabolic

genes based on transcriptome data. This method includes a minimal set of reactions

associated with low expression genes to enable activity of a maximum number of

reactions associated with high expression genes. We apply this method to construct an

organ-specific model for the maize leaf, and tissue specific models for maize embryo and

endosperm cells. We validate our models using fluxomics data for the endosperm and

embryo, demonstrating an improved capacity of our models to fit the available fluxomics

data. All models are publicly available via the DOE Systems Biology Knowledgebase and

PlantSEED, and our new method is generally applicable for analysis transcript profiles

from any plant, paving the way for further in silico studies with a wide variety of plant

genomes.

Keywords: systems biology, plant metabolism, transcriptomics, metabolic networks, flux balance analysis, Zea

mays

Introduction

The ability of a plant to grow and survive is linked to its metabolic network (Stitt et al., 2010),
which indicates that a capacity to predict and understand plantmetabolismwill improve our under-
standing of plant response to changing environments and genetic perturbations (Mo et al., 2009;
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Chang et al., 2011; Saha et al., 2011). Furthermore, the yield
of a wide range of plant products is crucial to human society,
particularly when inputs such as water are limited (Skirycz and
Inze, 2010). Many classical biochemical and genetic experiments
involve the elucidation of biological functions for individual gene
products. However, many external and internal perturbations
lead to systemic responses, and a systems-level understanding
of plant metabolism is required to fully explain these system
responses.

To build this systems-level understanding, several genome-
scale metabolic reconstructions have recently been published
for plant species (Poolman et al., 2009; de Oliveira Dal’molin
et al., 2010a,b; Saha et al., 2011; Poolman et al., 2013). Each
reconstruction consists of all reactions known to be catalyzed
by one or more of the gene products in the plant genome. The
methods employed to study these metabolic models, such as
flux balance analysis (FBA), consider all reactions in the model
when attempting to predict a biological phenotype, such as plant
growth. Metabolic reconstructions are built from many data
sources, notably public databases and individual publications.
Reconstructions are validated by comparing the activity of well-
characterized pathways in silico with biochemical evidence in the
literature. Poolman et al. (2009) built the first genome-scale plant
metabolic reconstruction, which could respire on heterotrophic
media in silico and produce biomass components in proportions
that matched in vivo observations. de Oliveira Dal’molin et al.
(2010a) investigated autotrophic biosynthesis of plant biomass,
showing that the model correctly predicted the reactions used for
both photosynthesis and photorespiration. de Oliveira Dal’Molin
et al. also developed a metabolic reconstruction of a C4 plant (de
Oliveira Dal’molin et al., 2010b) containing plastidial reactions
for photosynthesis. This reconstruction was shown to be capa-
ble of performing three known subtypes of C4 photosynthesis.
In other work, Saha et al. (2011) show that genetic perturbations
in the phenylpropanoid biosynthesis pathway could be simu-
lated in silico, producing an impact on cell wall composition that
compared favorably with experimental data from known maize
mutants.

The validation approaches described above are based on a few
well-known biochemical pathways, and involve large genome-
scale metabolic reconstructions, built to provide a systems-level
understanding of how ametabolic network behaves under certain
conditions. For example, Schwender and Hay (2012) investigated
how a metabolic reconstruction exhibited variation in reaction
activity in response to variation in the biosynthetic demands of
oil and protein as storage products in the plant embryo and were
able to identify the utilization of a pathway within the network
of reactions that was not yet characterized in the literature. Sim-
ilarly, Töpfer et al. (2013) explored the means with which a set
of pathways in a metabolic reconstruction responded to various
conditions of light and temperature, showing, in one case, the
preference for methylerythritol 4-phosphate pathway over the
mevalonate pathway in isoprenoid biosynthesis, and also gen-
erating a new hypothesis for the role of homocysteine–cysteine
conversion.

Genome-scale metabolic reconstructions are generated based
on the annotation of all gene products in the full genome, and,

thus, they include every reaction that can be catalyzed by the
plant. However, a multi-cellular organism will activate different
subsets of their genes in different organs, tissues, developmental
stages, and environmental conditions. To be accurate, genome-
scale metabolic reconstructions must represent the reduced
metabolism that truly exists in cells of a specific type and in a spe-
cific condition. Most reconstructions mentioned previously were
either intended to represent a leaf cell or the primary metabolism
of a generic plant cell. Other metabolic reconstructions have been
built to target specific tissues and organs, such as the seeds of
barley (Hordeum vulgare; Grafahrend-Belau et al., 2009), and
the embryos of oilseed rape (Brassica napus; Hay and Schwen-
der, 2011a,b; Pilalis et al., 2011). Grafahrend-Belau et al. fol-
lowed up their study of barley seeds by buildingmanually curated
metabolic reconstructions of barley stem and leaf, and integrating
the three reconstructions into a single model (Grafahrend-Belau
et al., 2013). Recently, several new approaches have emerged to
integrate large-scale data (Baerenfaller et al., 2008) in an auto-
mated manner to either generate new condition-specific models
(Mintz-Oron et al., 2012), or to constrain the behavior of indi-
vidual reactions in a full genome-scale model to better reflect the
behavior of specific organs or tissues (Töpfer et al., 2013).

The ongoing explosion in plant transcriptome sequencing,
driven by advances in next-generation sequencing (NGS) and by
the relative ease of sequencing a collection of cDNAs as opposed
to predicting gene models in plant chromosomes (Ozsolak and
Milos, 2011), means that many transcript profiles are now pub-
licly available, and individual laboratories can afford to gener-
ate new transcript profiles for individual experiments. Indeed,
Töpfer et al. used their own transcript profiles, which they gener-
ated from Arabidopsis rosettes (Töpfer et al., 2013). Several com-
putational methods have been developed that are able to integrate
transcript profiles with a metabolic reconstruction to produce
improved predictions of reaction utilization and flux.

Töpfer et al. used E-flux (Colijn et al., 2009), which fits flux
predictions based on gene expression data, but does not attempt
to reduce a full genome model to a tissue or organ specific ver-
sion. The Töpfer et al. work was focused on several primary and
secondary metabolic pathways that are known to be active with
the rosettes of Arabidopsis. Mintz-Oron et al. used the iMAT
approach (Jerby et al., 2010; Zur et al., 2010), which generates
aggregate models based on random sampling of fluxes to fit gene
expression data. While this approach provides a more compre-
hensive account of the metabolic network, the extensive sam-
pling can be cumbersome. An updated method eliminates the
need for random sampling and thereby runs faster (Wang et al.,
2012). This method searches for an optimal solution by itera-
tively activating each reaction whose associated genes have high
expression, which means that the method still performed many
optimizations. We have developed a new approach that requires
far fewer optimization steps, allowing for transcriptome-based
metabolic reconstructions to be formed from transcript profiles
at a greater speed and with less complexity. We note here the
introduction of the term transcriptome-based to reflect this class
of model, which is based on fitting a genome-scale model to a
select subset of gene expression data. The term tissue-specific is
often used formodels of this type. However, expression data often
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does not capture the entire behavior or a tissue, nor does a sin-
gle tissue necessarily reflect a single biological behavior (e.g., leaf
tissue consists of several sub-cell types).

We demonstrate our approach for reconstruction of
transcript-specific models with a new genome-scale metabolic
reconstruction of maize. Our new genome-scale maize model
includes three important enhancements over previously
published models: (i) an expanded and improved biomass
composition; (ii) improved gene-protein-reaction associa-
tions where low confidence gene-reaction mappings based
on poor evidence or purely computational predictions have
been removed; and (iii) improved compartmentalization of
reactions to subcellular organelles based on a combination of
literature evidence, curation, and gapfilling algorithms. The
improved gene-reaction associations in our new model were
critical to our use of maize transcript profiles (Davidson et al.,
2011) to produce new transcriptome-based models of the leaf,
embryo, and endosperm in maize. We applied our novel model
reconstruction method to maximize the activity of reactions
associated with high expression genes while removing as many
reactions associated with low expression genes as possible.
We also adjusted the biomass composition of our embryo and
endosperm models to better fit the actual composition data for
these tissues by curating data for individual components from a
variety of literature sources. To test the accuracy of our models,
we explored how well they replicate the flux profiles measured
for central carbon metabolism in embryo and endosperm tissues
(Alonso et al., 2010, 2011). This analysis demonstrates that our
models have an improved fit between the fluxes generated in
silico and the fluxes measured in vivo. All models produced from
this work are available for download from the DOE Systems
Biology Knowledgebase (http://kbase.us) and the PlantSEED
resource (Seaver et al., 2014).

Materials and Methods

Biochemistry
We used the plant biochemistry database built for the PlantSEED
project (Seaver et al., 2014). This database is notably built on
KEGG (Kanehisa and Goto, 2000; Kanehisa et al., 2012) and
MetaCyc (Caspi et al., 2012), which had been integrated using
InChI (Heller et al., 2013) strings generated from mol files pro-
vided by both databases. The integration includes several plant
biochemistry databases such as the BioCyc databases for Ara-
bidopsis thaliana (Arabidopsis; AraCyc v11.5 Mueller et al., 2003;
Zhang et al., 2010), and maize (MaizeCyc v2.2.2 Monaco et al.,
2013 and CornCyc v4.0 Zhang et al., 2010), and several pub-
lished metabolic models for A. thaliana (de Oliveira Dal’molin
et al., 2010a,b, 2011; Saha et al., 2011; Mintz-Oron et al., 2012)
and maize (de Oliveira Dal’molin et al., 2010b; Saha et al., 2011).
The metabolic reconstructions we built depend on this integra-
tion, and the reactions for the respective Arabidopsis and maize
metabolic reconstructions are thus drawn from this database.

Compartments
An important aspect of plant metabolic models is the compart-
mentalization of reactions into plastids, mitochondria, and other

organelles. To accurately capture this compartmentalization, we
downloaded localization data for proteins from PPDB (Sun et al.,
2009), SUBA (Tanz et al., 2013), AraCyc, MaizeCyc, and Corn-
Cyc. We systematically avoided any protein localizations gener-
ated solely via computational predictions. From PPDB, we only
used data that the PPDB team had curated. From SUBA, we
only used data from GFP experiments, which are more reliable
than the data frommass spectrometry experiments. Finally, from
AraCyc, MaizeCyc, and CornCyc, many reactions are localized
according to biochemical support such as the histidine pathway
in plastids (Ingle, 2011). Even if the genes associated with these
pathways do not have localization data, we considered them to
be localized if there was experimental evidence for the gene-
reaction associations. Much of the localization data could only
be applied directly to either of the two different species, and
therefore we propagated the associations between Arabidopsis
and maize by using the same conservative approach we applied
to EnsemblCompara protein families in the PlantSEED project
(Vilella et al., 2009; Kersey et al., 2014; Seaver et al., 2014).

Model Pathway-Gapfilling
A new gapfilling algorithmwas applied during the reconstruction
of all our plant genome-scale models. This algorithm provides
a means of identifying the minimal set of reactions that must
be made reversible or added to the model in order to activate
as many gene-associated reactions in the model as possible. The
constraints of the optimization problem resemble the constraints
for existing classical gapfilling approaches (Satish Kumar et al.,
2007; Kumar and Maranas, 2009).

Nsuper • v = 0 (1)

0 ≤ vi ≤ 100zi i = 1, . . . , rgapfill (2)

zfor,i + zrev,i ≤ 1 i = 1, . . . , rgapfill (3)

−100 ≤ vex,i ≤ 100γi i = 1, . . . , mtransported (4)

Equation (1) represents the mass balance constraints, where
Nsuper is thematrix of stoichiometric coefficients through all reac-
tions in our model plus all candidate reactions added from our
biochemistry database, while v is the vector of fluxes through all
model and database reactions represented in the Nsuper matrix.
In these and all other constraints, reversible reactions have been
decomposed into separate forward and backward component
reactions to ensure that all fluxes are always positive. Equation (2)
sets the bounds on the flux through reaction i, where vi is the flux
and zi is a binary use variable equal to zero when the flux is zero
and equal to one otherwise. Equation (3) ensures that the forward
and backward components of the same reaction may not both be
active at the same time; in our formulation, this constraint is the
sole reason for using binary variables. Equation (4) establishes the
growth conditions for the gapfilling analysis; metabolites present
in the growth media (e.g., heterotrophic media or autotrophic
media) have a γi of 1 in Equation (4). Otherwise γi is zero.

In addition to these standard constraints, we applied a new
constraint that introduces a slack flux for all reactions found in
the original un-gapfilled model:

vfor,i + vrev,i + δi ≥ 0.01 i = 1, . . . , rmodel (5)
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Equation (5) states that the sum of the net flux through reaction i
(vfor,i+ vrev,i) and the slack flux for reaction i (δi) must be greater
than or equal to 0.01. As a result of this constraint, a reaction can
only have a net flux of zero if the corresponding slack flux is 0.01.
Thus, the slack flux is a variable used to identify reactions that
carry no flux in the model. We utilize this new slack flux for this
purpose in the objective function for our gapfilling.

Objective:

Minimize

rannotated
∑

i= 1

a
(

γactivate,iδi
)

+

rgapfilling
∑

i= 1

(

γgapfill,ivi
)

(6)

This new objective functionminimizes the sum of the slack fluxes
associated with the reactions included in our original model
while simultaneously minimizing the flux through all gapfilled
reactions added to the model from our database. The purpose
of this objective function is to maximize the number of gene-
associated reactions that carry flux while minimizing the num-
ber of gapfilled reactions added to the model. This effectively
gives precedence to the gene-associated reactions in our model.
The activation coefficient, γactivate,i, dictates the cost of leaving
a gene-associated reaction inactive, while the gapfilling coeffi-
cient, γgapfill,i, dictates the cost of adding a gapfilled reaction to
the model. In our gapfilling studies, we set γactivate,i equal to one
for all gene-associated reactions, while we computed γgapfill,i as
described in our previous work (Henry et al., 2009, 2010).

We also used a scaling factor a in our objective function, which
scales the cost of leaving some model reactions inactive against
the cost of adding new reactions to the model from the database.
We explored values for a ranging from 0.01 to 0.25, but we found
only a small effect on the solutions produced. Generally, an a of
0.1 generated the most well-balanced gapfilling solutions.

In this gapfilling formulation, we utilize continuous linear flux
variables in our objective function rather than the more typi-
cal binary variables (e.g., zfor,i and zrev,i) (Kumar et al., 2007).
This adjustment reduced the compute time required to obtain
a globally optimal solution by over 90% while having no appre-
ciable impact on solutions obtained. This use of linear variables
has been previously proposed in other published gapfilling algo-
rithms, with detailed sensitivity analyses performed and similar
results obtained (Latendresse, 2014). Thus, we do not repeat the
sensitivity analysis here.

Transcriptome-Based Pathway-Gapfilling
Our method for producing transcriptome-based models builds
on the pathway-gapfilling approach (see previous used during the
reconstruction of our models. Our pathway-gapfilling approach
attempts to maximize the number of number of active gene-
associated reactions. This approach further refines the model
toward a specific transcriptome by maximizing the activity of
reactions associated with highly expressed genes while minimiz-
ing active reactions associated with minimally expressed genes.
This formulation includes flexibility permitting high-expression
reactions to remain “off” if activating them requires the function
of too many low expression reactions, and vice versa.

The first step of this algorithm is to categorize every reac-
tion in the model as either high expression or low expression.
This is done by assigning an expression score, Eexp,i, to every
gene-associated reaction i as follows:

Eexp,i = Max(Cexp,i,j) i = 1, . . . , r j = 1, . . . , ci (7)

Cexp,j = Min(Pexp,j,k) j = 1, . . . , ci k = 1, . . . , pj(8)

Pexp,k = Max(Gexp,k,l) k = 1, . . . , pj l = 1, . . . , gk(9)

In Equations (7)–(9), the reaction expression score, Eexp,i, is equal
to the maximum of the complex expression scores, Cexp,i,j for all
ci protein complexes catalyzing reaction i; the complex expres-
sion scores are equal to the minimum of the protein expres-
sion scores, Pexp,j,k, for all pj protein subunits of each complex
j; and the protein expression scores, are equal to the maximum of
all gene expression scores, Gexp,k,l, associated with the gk genes
encoding each protein subunit. The gene expression score is
equal to the normalized expression value of gene in the tran-
scriptome being used as the basis to construct the model. In
our analysis, the expression value of each gene was normalized
by the median expression value for the same gene across all 37
conditions included in our data set, which included data from
numerous organs, tissues, and growth conditions.

Reactions with an expression score falling below 0.2 were cat-
egorized as being “low expression.” Biologically, a score of 0.2
means that the critical genes associated with the reaction are
expressed at 20% of their average expression across all 37 con-
ditions included in our transcriptomics data. This represents a
conservative calling of “low expression” genes. We then applied
the gapfilling algorithm as described in Equations (1)–(6) with
two modifications: (i) the mass-balance constraints encoded by
Equation (1) only included the stoichiometry of the reactions in
the gapfilled full genomemodel (stoichiometry was not expanded
to include the entire biochemistry database as done in full gapfill-
ing); and (ii) the objective function was altered to maximize the
high expression reaction activity while minimizing flux through
low-expression reactions (Equation 10).

Objective:

Minimize

rhigh
∑

i= 1

a
(

Eexp-high,iδhigh,i
)

+

rlow
∑

i= 1

a
(

Eexp-low,ivlow,i

)

(10)

Similar to our gapfilling formulation, this objective functionmin-
imizes the flux through the low expression reactions while also
minimizing the slack fluxes associated with all high expression
reactions. This maximizes the number of high expression reac-
tions with a non-zero flux while setting the flux through as many
low expression reactions as possible to zero. Again, we use a scal-
ing factor a in our objective function, which scales the cost of
leaving some high expression reactions inactive against the cost
of activating some low expression reactions. We explored values
for a ranging from 0.01 to 0.25, with only minimal effect on the
solutions produced. We found an a of 0.1 generated the most
well-balanced solutions.
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Comparison with Estimated Fluxomics Data for
Embryo and Endosperm
In order to calculate how well the metabolic model can match
experimentally measured flux data for a list of specific reactions,
we applied a QP where we minimized the distance between the
predicted fluxes and the experimentally measured fluxes. The QP
utilized the standard FBA constraints:

Nmodel • v = 0 (11)

vmin,i ≤ vi ≤ 1000 i = 1, . . . , rmodel (12)

−50 ≤ vex,i ≤ 50γi i = 1, . . . , mtransported (13)

Equation (11) represents our mass balance constraints, where
Nmodel is the stoichiometry matrix for all model reactions and
v is the vector of fluxes through all model reactions. Unlike our
gapfilling formulation, in this study, reversible reactions were not
decomposed. Equation (12) represents the bounds on the flux
through each reaction, with the lower bound vmin,i being zero if
a reaction is irreversible and −1000 is a reaction is reversible. As
in our gapfilling formulation, Equation (13) sets the bounds of
uptake of nutrients from the environment.

In the quadratic objective function of our QP, we minimize
the deviation of our predicted fluxes (vi) from the experimentally
measured fluxes (vexp,i):

Minimize

rmeasured
∑

i= 1

(

vexp,i − vi
)2

(14)

This approach is similar to that adopted by Lee et al. (2012),
but by using QP, we find a single solution and avoid the iter-
ative approach they describe. The calculations were done when
the model was grown on heterotrophic media. After the minimal
distance between experimental and model predicted fluxes was
found via the QP problem as described above, we performed a
Spearman correlation between the experimental flux values and
the actual predicted flux values found by the solution when the
model reached the minimal distance. The results in the form of
the Spearman value and the p-value of the Spearman correlation
are shown in Table 2.

Results

A High-Quality Evidence-Based Genome-Scale
Metabolic Reconstruction of Maize
In order to generate a metabolic reconstruction based on avail-
able evidence, as described in the Materials and Methods Sec-
tion, we started by building a full genome-scale metabolic
reconstruction that integrated every reaction and gene-reaction
association from all available resources. We then refined this
model by removing the reactions and gene-reaction associations
that did not have available support such as literature citation,
human curation, or notation of presence in a specific com-
partment. We call this refined model an Evidence-Based Model.
Here we described the process applied to complete this model
refinement.

Initial Reconstruction of Full Genome-Scale

Metabolic Models
We built our initial genome-scale metabolic reconstructions for
Arabidopsis and maize using all reactions and genes obtained
from all available resources. The resources included KEGG,
the respective BioCyc databases, and the respective published
metabolic models for Arabidopsis and maize (de Oliveira
Dal’molin et al., 2010a,b; Saha et al., 2011). The two initial recon-
structions are named “Full” and were composed of 6399 total
reactions for Arabidopsis and 6458 for maize (Table 1).

Although we used multiple sources, we note that every pub-
lished metabolic model available was in turn derived from KEGG
and the respective BioCyc database. These databases are dynamic
and improved over time, and, as a consequence, the published
models are considered outdated. We therefore did not fully inte-
grate the published metabolic models with two important excep-
tions: transport reactions and organellar reactions. These two sets
of reactions, with the exception of those present in the model
generated by Mintz-Oron et al. (2012), were manually reviewed
in order to ensure that intra-organellar metabolic networks were
active. We therefore ensure that these reactions are included.

The most telling statistic in comparing the Full metabolic
reconstructions for both species is that maize has many more
gene-reaction associations. This is partly because maize has
undergone a recent whole-genome duplication event (Schnable
et al., 2009), thus creating many paralogs, and partly because,
for the MaizeCyc and CornCyc databases, many gene-reaction
associations were predicted, and thereby included many similar
homologs.

For each metabolic reconstruction, we showed the number of
reactions that came from each source in Figure 1. In the Evi-
denced models, most of the reactions originated from BioCyc
databases because KEGG provides comparatively little literature
evidence for gene-reaction associations. In contrast, there is sig-
nificant overlap between the KEGG database and the metabolic
models published by the Nielsen/Maranas groups. This is because
those metabolic models were generated from KEGG alone. We
also highlight the variation in the number of reactions, compart-
mentalized reactions, transport reactions and genes between our
models and those in the literature in Figure 2. In the case of the
number of reactions, compartmentalized reactions and transport
reactions in the Full and Evidenced models for both species, we
show that the models created in this work are larger than the
published models, with the exception of the model published by
Mintz-Oron et al. Our models are larger than other published
models primarily due to the more comprehensive database of
biochemistry and plant annotations from which we generate our
models, as well as the inclusion of recent database updates in
our new model. The model published by Mintz-Oron et al. is
larger still generally because it was expanded to include many
computationally predicted compartmentalized reactions and
transporters.

Compartments
By using the protein localization data collected from various
sources, we were able to confirm the presence of∼2000 reactions
in eight compartments (plastid, mitochondrion, peroxisome,
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TABLE 1 | A list of metabolic models generated in our work and their statistics.

Species Type/Organ/Tissue Reactions Compounds Gene-reaction Gapfilled

associations reactions

Arabidopsis thaliana Full 6399 6236 16,577 1073

Arabidopsis thaliana Evidenced 2801 2864 4262 697

Zea mays Full 6458 6250 35,226 979

Zea mays Evidenced 2629 2634 5540 667

Zea mays Evidenced/Leaf 2322 2635 4656 925

Zea mays Evidenced/Embryo 2304 2636 4680 885

Zea mays Evidenced/Endosperm 2280 2636 4602 920

FIGURE 1 | Number of reactions in the Full and Evidenced metabolic

reconstructions for Arabidopsis and maize. The bars represent the

number of reactions shared with each of the four primary biochemical

sources used to build the Full metabolic reconstruction. Reactions are

counted multiple times if they are present in multiple compartments. The “All”

category corresponds with reactions that are shared between all four

sources, and the “None” category corresponds with reactions present in

compartments that are not otherwise found in the primary sources due to

protein localization evidence. The dominant source of reactions was the

BioCyc databases, ∼50% more reactions originated from AraCyc and

MaizeCyc/CornCyc than from KEGG. In addition, the dominant source of

evidence for gene-reaction evidence came from AraCyc, and as a result, far

fewer reactions are shared between the Evidenced metabolic reconstructions

and the published counterparts, which were originally derived from KEGG.

endoplasmic reticulum, nucleus, cell wall, vacuole, and Golgi
body). We collected gene localization data for 12,398 Arabidop-
sis genes and 8737 maize genes for eight compartments in the
metabolic reconstructions (see Materials and Methods), and we
added reactions to the appropriate compartment whenever they
were associated with a localized gene. We find that the gene
localization data led to more than 700 reactions being placed in
new locations that are not otherwise designated in the databases
and published models used as sources; the “None” column in
Figure 1 indicates this. In the next Section, we highlight two
reactions as an example of this. We show a breakdown of the
number of reactions found in each compartment (Figure 3), and
this highlights that the majority of the reactions are found in the
plastid. Furthermore, we qualitatively examined the contribution
of each database to the localization of reactions (Figure 4). The

total number of reactions assigned to any compartment in the
Full maize metabolic reconstruction by PPDB data is 1675, by
GFP data is 1077, and by AraCyc data is 429. The PPDB data
accounts for more reactions in the plastid, mitochondrion, and
peroxisome, and the GFP data accounts for more reactions in
the remaining compartments. Whilst there is some agreement
between the sources, the number of reactions assigned to a com-
partment by PPDB or GFP alone is a validation of our decision to
use multiple sources of evidence-based localization data.

Evidence for Gene-Reaction Associations
As stated above, we wish to refine our Full metabolic recon-
structions to only contain reactions with reliable evidence for
gene-reaction associations. Almost every gene-reaction associa-
tion found in KEGG, and in any plant BioCyc databases that is
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FIGURE 2 | Comparison of the number of reactions, genes,

compartmentalized reactions, and transport reactions found in the

Full and Evidenced metabolic reconstructions for Arabidopsis and

Maize and the published metabolic models. For each of the published

metabolic models, we also show the number of reactions, genes,

compartmentalized reactions, and transport reactions that are shared with

both the Full and Evidenced metabolic reconstructions. The number of

reactions and genes in the Full metabolic reconstructions dwarf the numbers

in the other models. The model generated by Mintz-Oron et al. was the first

plant metabolic model to be published for which integration from more than

biochemical source was performed, and as such, it has more reactions than

the other published models. However, AraCyc has since gone through

several expansions, which explains why so many more reactions are in the

Full metabolic reconstructions (Figure 1). The high number of genes in the

Full maize model is indicative of the number of paralogs for which

computational predictions are made by multiple sources. Only 40% of the

genes in iRS1563 are found in the Evidenced maize metabolic

reconstruction. The Evidenced metabolic reconstructions contain over 1000

reactions that are found in other compartments (notably in the plastid, see

Figure 4), which is approximately 10 times more than the number of

compartmentalized reactions found in the models from the Nielsen and

Maranas labs. The process of creating the metabolic model of Mintz-Oron

et al. predicted many more compartmentalized and transport reactions than

those found in the Evidenced metabolic reconstruction for Arabidopsis, but

only 25% of the compartmentalized reactions and 13% of the transport

reactions are found in the Evidenced metabolic reconstruction.

not AraCyc, are computationally predicted (Zhang et al., 2010;
Nakaya et al., 2013; Kanehisa et al., 2014; Seaver et al., 2014).
Additionally, in many of the cases, and this problem is particu-
larly acute in plants, the set of computationally predicted genes
associated with reactions may be homologous, but do not per-
form the same catalytic function (i.e., they are out-paralogs). The
large number of gene-reaction associations in the Full metabolic
reconstruction for maize highlights this problem because maize,
as a species, had a recent whole-genome duplication leading to
additional paralogs (Schnable et al., 2009). It is important to
identify the correct gene-reaction associations, because the genes
duplicated by whole-genome duplication in maize appear to be
down-regulated (Schnable and Freeling, 2011; Schnable et al.,
2011).

We tackled this problem of over-annotation in two steps.
First we included the gene-reaction associations for which there
is evidence from two primary sources, AraCyc and PlantSEED
(Mueller et al., 2003; Zhang et al., 2010; Seaver et al., 2014). The
PathwayTools software enables users to assign evidence codes for
gene-reaction associations, and in particular we were able to weed
out all the gene-reaction associations where the evidence codes
indicated that only a computational prediction was made. The
PlantSEED project manually reviewed many of the gene-reaction
associations found in AraCyc and elsewhere (Seaver et al.,
2014), but also included many carefully reviewed in-paralogs
(Sonnhammer and Koonin, 2002; Seaver et al., 2014), thus allow-
ing us to include a greater number of gene-reaction associa-
tions in our metabolic reconstructions. By using these sources
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FIGURE 3 | Comparison of the number of reactions found in each of

the compartments in the Full and Evidenced metabolic

reconstructions for Arabidopsis and maize. Evidence from AraCyc,

PPDB, and SUBA was used to assign each reaction to different

compartments. The substantial difference in the number of reactions in each

compartment for the Full and Evidenced models is a result of the large

number of gene-reaction associations in the Full model, which in turn is a

result of the many computational predictions used to make the associations.

As such, the use of protein localization evidence to assign reactions to

compartments is far more reliable with the use of evidence for the

gene-reaction associations in the Evidenced model. ER, Endoplasmic

reticulum.

of evidence, we produced an evidence-based metabolic recon-
struction for Arabidopsis that contained only those reactions for
which there was gene-reaction association evidence from AraCyc
and PlantSEED, which we denote as “Evidenced.” The Evidenced
metabolic reconstruction for Arabidopsis is smaller, with 2801
reactions, and a smaller number of gene-reaction associations
(Table 1). The number of reactions in the Evidenced metabolic
reconstruction is 44% that of the Full metabolic reconstruction,
but the number of gene-reaction associations is 26%, which is an
indication of how many computational predictions are made for
genes associated with reactions which otherwise have evidence
for their associations with other genes.

In the second step of our model refinement, we considered
the lack of evidence for any other species, given that much bio-
chemical research in plants has been on Arabidopsis as a model
organism. As a result, there exist only a tiny number of gene-
reaction associations with evidence in MaizeCyc and CornCyc
combined, and to create an Evidenced model for maize, one must
consider propagating the gene-reaction associations from Ara-
bidopsis. In order to avoid the pitfall of over-annotation, and yet
create a reliable set of gene-reaction associations for maize, we
used the same very conservative approach we applied to Ensem-
blCompara protein families in the PlantSEED project, described
below (Vilella et al., 2009; Seaver et al., 2014). This approach
greatly reduced the number of maize orthologs found in the same
protein family as the Arabidopsis genes found in the Evidenced
Arabidopsis metabolic reconstruction. In doing so, we are able
to create an Evidenced metabolic reconstruction for maize by
adding to the model only the reactions for which the associ-
ated genes have orthologs in the Evidencedmetabolic reconstruc-
tion for Arabidopsis. The Evidenced metabolic reconstruction for

maize has 2631 reactions and,∼30,000 fewer gene-reaction asso-
ciations than found in the Full metabolic reconstruction (∼84%;
Table 1).

We highlight the utility of our approach with an example
involving two reactions from the mevalonate pathway. Simkin
et al. report, using YFP-fused constructs, that Phosphomeval-
onate kinase (PMK) and Mevalonate diphosphate decarboxylase
(MVD) localize to the peroxisomes (Simkin et al., 2011). The
complementary reactions for these two enzymes are found in
AraCyc, MaizeCyc, and CornCyc, albeit without any localization
data attached, and with experimental evidence only available for
one enzyme in AraCyc. Thus, only one reaction (MVD) would
be included in the Arabidopsis model and would only be cytoso-
lic. The evidence for the gene-reaction associations is found in
PlantSEED in the form of manual curation, and leads to both
reactions being included in the Arabidopsis model. The results
for the enzyme localization from Simkin et al. are found in SUBA,
and the two reactions were therefore correctly added to the per-
oxisome in the Arabidopsis model. Finally, the use of Ensem-
blCompara protein families as described above leads to the cor-
rect maize genes being associated with the same reactions, and
the reactions being thus added to the peroxisome in the maize
model.

We generated a corresponding metabolic model for all four
of our metabolic reconstructions by adding a biomass equa-
tion matching that used by the PlantSEED and containing more
than 90 compounds. We also utilized a new pathway gapfilling
method (see Materials and Methods) that attempts to gener-
ate biomass and simultaneously activate all reactions with asso-
ciated genes. The pathway gapfilling recommended reactions
to add to our models to produce biomass and improve the
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FIGURE 4 | Comparison of the sources responsible for the number of

reactions found in each of the compartments in the Full and

Evidenced metabolic reconstructions for maize. The assignment of

reactions to compartments is done by using evidence from AraCyc, PPDB,

and SUBA. In general, the number of reactions in different compartments

appears to be mostly influenced by a single source. More reactions are

assigned by AraCyc to the endoplasmic reticulum; by PPDB to the plastid,

mitochondrion, and peroxisome; and by GFP experiments listed in SUBA to

nucleus, cell wall, vacuole, and Golgi body. The pairing of PPDB and SUBA

shares evidence more frequently in all compartments with the exception of

the endoplasmic reticulum where there is more agreement between AraCyc

and SUBA.

function of all the pathways included in the model. We tested
our gapfilled models by simulating growth on heterotrophic
media in the KBase environment before applying the transcript
profiles.

Transcriptome-Based Metabolic Reconstructions
of Maize
Maize Transcriptomics
We built transcriptome-based metabolic reconstructions of
maize, derived directly from the gapfilled genome-scale Evi-
denced metabolic model, such that each transcriptome-based
model will be a subset of the Evidenced metabolic model. To

generate these transcriptome-based metabolic reconstructions,
we used RNA-Seq data collated at qTeller (http://qteller.com/,
downloaded on 02/04/2014). The data consists of 37 experiments
from nine sources, covering a range of cells, tissues, organs,
and conditions. As an initial exploration of how the transcript
profiles may affect a transcriptome-based model, we computed,
for each of the datasets, and at 10 different thresholds, the
number of reactions in the genome-scale Full and Evidenced
metabolic models for maize that would be active in the organ
or tissue, and conditions from which the transcript profiles were
retrieved (Figure 5). The threshold was applied to the reaction
expression scores (Equations 7–9), and as the threshold increases,
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FIGURE 5 | Fraction of active reactions in the Full and Evidenced

metabolic reconstructions for maize at different thresholds. An

expression score is computed for each reaction (Equations 7–9) using maize

transcript profiles from qTeller (http://qteller.com). The transcript profiles are

ordered by the sizes of the resulting metabolic reconstruction when the

threshold applied is one, thus the smaller reconstructions with fewer active

reactions are positioned at the top of the figure. Although the Evidenced

metabolic reconstruction has half the number of reactions found in the Full

metabolic reconstruction, both models appear to shrink at similar rates when

increasing the threshold. Two sets of tissues, in general, have more inactive

reactions at lower thresholds: (1) reproductive tissues, such as pollen and

anthers, as well as tissues consisting of single cell types such as mesophyll

and bundle sheath, and (2) tissues which originated from the Zeanome

project.

the number of reactions that would be active in the resulting
metabolic reconstruction decreases. The results show that the
smallest metabolic reconstructions are derived either from data
from specific cell types (mesophyll and bundle sheath) or highly
reproductive tissues (pollen and anthers); the other tissues and
organs with larger reconstructions encompassed multiple cell
types and in general, up to a threshold of four, show little dif-
ference in the sizes of the resulting metabolic network. Further-
more, qualitatively, it appears that the relative change in the

network sizes is similar across organs and tissues in both the
Full and Evidenced metabolic models. Finally, using several of
the transcript profiles from the same source appears to consis-
tently result in metabolic networks that are relatively smaller,
notably those from the Zeanome dataset (http://www.ncbi.
nlm.nih.gov/Traces/sra/?study=SRP011480), which is an impor-
tant reminder that, when performing in silico experiments using
transcript profiles, one must ensure they come from the same
source.
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To investigate further, we explored how the threshold creates
gaps in the primary metabolism of transcriptome-based mod-
els. We aggregated the various pathways under nine different
categories of primary metabolism as defined by the PlantSEED
project (Seaver et al., 2014) and we explored how these pathways
shrink in size as the threshold is increased (Figures 6, 7). Over-
all, within each pathway category, a similar pattern is observed
where the sex organs and single-cell transcript profiles result
in the smaller metabolic model, and for all transcript profiles,
there appears to be a similar decrease in the sizes of the path-
ways. However, it is notable that this pattern varies from cat-
egory to category and from organ to organ or tissue to tissue.
Many essential reactions that may be necessary for a derived
metabolic model to operate may be inactivated by the use of a
simple expression threshold. For instance, within almost every
category, there are reactions for which the computed expres-
sion score is zero or constitutively low (Figure 7), but the reac-
tions are essential. Reactions in the “Fatty acids” category would
appear to be the most impervious to the use of a low threshold as
many, if not all, of the reactions appear to exhibit a medium to
high expression score across most organs and tissues. A notable
example is the set of reaction expression scores computed from
the transcriptome labeled Embryo_25DAP (25 days after pollina-
tion), which matches our understanding of the embryo typically
being rich in lipids. As it is therefore not reasonable to use a
simplistic approach to generate transcriptome-based metabolic
models, we thus develop a novel method for applying the gene
expression levels in transcript profiles directly to the genome-
scale metabolic model (see Materials and Methods). The method
attempts to activate every reaction that is associated with a highly
expressed gene whilst minimizing activity of reactions associated
with minimally expressed genes. The results of the generation
of these models from transcript profiles using this method are
found in Section Generating the Transcriptome-Based Metabolic
Models. However, first we address the derivation of new biomass
compositions to represent the leaf, endosperm and embryo
tissues.

High-Quality Maize Biomass Equation for Leaf,

Endosperm and Embryo Tissue
One use for the metabolic models we build is to predict the
biosynthesis of plant biomass components. This is done by cre-
ating a specialized biomass composition reaction that contains
each of the biomass components in relative proportions, and
by “maximizing” biomass production when simulating growth
in the metabolic model. All of the prior published metabolic
models for plants have assumed a basic biomass composition
that contained mostly primary metabolites. Little emphasis was
placed on the diversity of compounds that a plant biosynthe-
sizes. For our transcriptome-based metabolic models, we aim
to distinguish between the functions of the models by provid-
ing a high-quality biomass composition reaction representing the
organ or tissue from which the modeled transcriptomes were
collected. We constructed these reaction based on an exten-
sive literature search. Here we describe a biomass that contains
more cofactors and fatty acids, supported by almost 30 litera-
ture references, including detailed quantifications. The following

paragraphs briefly described the biomass composition along with
the relevant references.

Amino acids
The biomass fraction attributable to protein is estimated to be
8 and 11.6% of dry weight in endosperm and embryo, respec-
tively (Ingle et al., 1965). To quantify the relative contribution
of each amino acid in the endosperm, the total amino acid
context determined experimentally by Misra et al. (1972) was
used with two exceptions. Firstly, the cysteine content was dou-
bled as the reported value concerned cystine. Secondly, the glu-
tamate:glutamine and aspartate:asparagine ratios were deduced
from the composition ofmature Zein proteins (Wu et al., 2012) to
estimate their individual contribution. For composition of amino
acids in embryo, the sequences of two globulins were used, which
account for 20% of total embryo protein (Belanger and Kriz,
1989; Wallace and Kriz, 1991). Water loss due to formation of
the peptide bond was taken into account.

Nucleic acids
The biomass fraction attributable to DNA was reported to be
0.038 and 0.015% in endosperm and embryo, respectively, while
that attributable to RNA was reported to be 0.3 and 0.1% in
endosperm and embryo, respectively (Ingle et al., 1965). The
biomass fraction attributed to each nucleotide was estimated
using published GC content (Haberer et al., 2005).

Carbohydrates
The endosperm biomass fraction attributable to carbohydrates
was calculated to be about 90% of dry mass (Ingle et al., 1965;
Alonso et al., 2011). Of this carbohydrate fraction, 77.6% is
starch, 16.6% is cell walls (Alonso et al., 2011) and the remain-
ing 5.8% is free sucrose, fructose, and glucose (Ingle et al., 1965).
The reported composition of endosperm cell walls (Dewitt et al.,
1999) was used to calculate the quantities of the majority of the
monosaccharides. The embryo biomass fraction attributable to
carbohydrates is calculated to be 58.5% (Rolletschek et al., 2005;
Alonso et al., 2010). Of this carbohydrate fraction, 49.6% is starch,
42.7% is cell walls (Alonso et al., 2010) and the remaining 7.7% is
free sucrose, fructose, and glucose (Rolletschek et al., 2005). The
reported composition of cell walls (McCann et al., 2007) was used
to calculate the quantities of the majority of the monosaccharides
and the ratio of monosaccharides found in the leaf (Penning de
Vries et al., 1974) was used to calculate ribose, glucuronate, and
galacturonate content.

For both endosperm and embryo, the galactose, glycerol,
and sulfoquinovose biomass fraction was estimated using val-
ues for galactolipids, glycerolipids, and sulfolipids, respectively
(see the Section Lipids and Sterols). Finally, further evidence
was used to deduce the biomass fraction of inositol (Teas,
1954).

Phenolic compounds
The cell wall of maize is considered to contain two main types of
phenolic derivatives: p-coumaric acid and ferulic acid (Assabgui
et al., 1993; Saulnier et al., 1995).
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FIGURE 6 | Fraction of active reactions involved in different

categories of plant primary metabolism at different thresholds. An

expression score is computed for each reaction (Equations 7–9) using

maize transcript profiles from qTeller (http://qteller.com). The results

shown here are for the Evidenced metabolic reconstruction for maize.

The figure indicates that between categories of primary metabolism and

from tissue to tissue, the fraction of active reactions exhibits substantial

variation. Some tissues have a high fraction of reactions active at a

high threshold within certain categories, for example, within the tissue

sample named “Embryo_25DAP” (25 days after pollination) and within

the category of Fatty acids. This result reflects a known biological

function of the embryo, as a store of lipids. The high degree of

variation in the number of active reactions at different thresholds in plant

primary metabolism is a strong indication that using a single gene

expression threshold across an entire metabolic reconstruction may

produce undesired results.
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FIGURE 7 | Boxplots describing the distribution of computed

reaction expression scores (Equations 7–9) from the transcript

profiles of two tissues and within the different categories of plant

primary metabolism. Almost every category contained at least one

reaction with a reaction expression score of zero. Furthermore, for the

“Energy” and “Lipids” categories, more than half of the reaction

expression scores are zero. It can be seen that the median reaction

expression scores for “Embryo, 25DAP” are higher, which supports the

observation made for this tissue in the previous figure (Figure 6).

Additionally, the lower quartiles of the reaction expression scores in the

“Carbohydrates” and “Cell wall” categories are higher for “Endosperm,

25DAP.” Both of these categories include pathways involved in sugar

metabolism, and this supports the known biological function of the

endosperm as a storage of starch.

Vitamins and cofactors
As key components of metabolism, we emphasized biosyn-
thetic pathways of cofactors more than the published metabolic
models, and specified the biomass fraction assigned to each
of the B vitamins and other cofactors with greater accuracy.
The list of vitamins and cofactors included biotin, thiamin
diphosphate, NAD and derivatives, FAD and FMN, coenzyme
A, 4-phosphopantetheine, tetrahydrofolate and its derivatives,
α-tocopherol, ascorbate, ubiquinone-9, lipoic acid, heme, and
pyridoxal-5′-phosphate (Cameron and Teas, 1948; Teas, 1954;
Giri et al., 1960; Ingle et al., 1965; Metz et al., 1970; Weber, 1987;
Battey and Ohlrogge, 1990; Shannon et al., 1996; Szal et al., 2003;
Tumaney et al., 2004; Shi et al., 2005; Drozak and Romanowska,
2006; Hu et al., 2006; Naqvi et al., 2009; Perez-Lopez et al., 2010;
Richter et al., 2010; Enami et al., 2011; Spielbauer et al., 2013;
Seaver et al., 2014).

Pigments
Two pigments were included in our endosperm and embryo
biomass: β-carotene, and lutein (Weber, 1987).

Lipids and sterols
Lipids represent 1.5 and 32.6% of the biomass of endosperm
and embryo, respectively (Weber, 1979). The biomass composi-
tion of fatty acids and sitosterol, campesterol, stigmasterol, and
phytosphingosine in this study were based on those reported by
Weber (1979). Galactose, glycerol, and sulfoquinovose content
were also calculated based on the lipid composition.

Carboxylic acids and other compounds
Many other compounds compose plant biomass, and we included
here a list of a subset of these for which a value is reported

in the literature: cis-aconitate, citrate, malate, oxaloacetate lac-
tate (Skogerson et al., 2010; Rolletschek et al., 2011), and
S-adenosylmethionine (Apelbaum and Yang, 1981). Choline and
ethanolamine were estimated from the values for phosphatidyl-
choline and phosphatidylethanolamine, respectively. Finally, the
mineral content of the biomass was set at 5%, split evenly
between potassium and chloride (Penning de Vries et al.,
1974).

Generating the Transcriptome-Based Metabolic

Models
We used the novel transcriptome-based gapfilling approach (see
Materials and Methods) along with three separate transcript
profiles to generate metabolic models that are specific to the
leaf, endosperm and embryo, which are named “Leaves 20-day
old seedling – field,” “Endosperm 25 days after pollination,”
and “Embryo 25 days after pollination” (Davidson et al., 2011)
http://www.ncbi.nlm.nih.gov/bioproject/80041). We used these
three transcript profiles in particular because they came from
the same experiments and, therefore, were processed in a similar
manner.

We applied the three transcriptome profiles separately to the
Evidenced metabolic model of maize (see Materials and meth-
ods Section) to generate three separate metabolic models that can
grow in heterotrophic media. All three metabolic models con-
tained an average of 2302 reactions (Table 1), which is 88% of
the number of reactions in the Evidenced model, and there are
2153 reactions that are found in all three of them. By compari-
son, the final compartmentalized model created by Mintz-Oron
et al. (2012) for Arabidopsis has 3508 reactions and the resulting
tissue-specific models generated from their work has on average
2848 reactions, which is 81% of the reactions in their full model.
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TABLE 2 | Comparison of prior published model of maize with the models

generated by this work using the percentage of blocked reactions and the

spearman rank correlation coefficient when using fluxomics data (p-value

in parentheses).

Type/Tissue Blocked Endosperm Embryo

reactions (%)

iRS1563∗ 53 0.69 (2.3× 10−3) 0.46 (7.5× 10−2)

Full 30 0.99 (9.4× 10−51) 0.99 (7.1× 10−54)

Evidenced 21 0.99 (4.7× 10−34) 0.83 (1.7× 10−10)

Evidenced/Endosperm 16 0.99 (1.3× 10−29) n/a

Evidenced/Embryo 16 n/a 0.83 (8.6× 10−10)

∗Saha et al. (2011).

This result indicates that our approach, while using a full set of
gene expression data for the maize transcript profiles to gener-
ate smaller models, results in models whose sizes are similar to
other work on generating organ and tissue-specific models for
a plant.

Comparison of Fluxes in Tissue-Specific
Metabolic Reconstructions to Fluxomics Data
We have described a process that generates and refines metabolic
models in three steps, generating metabolic models at each step.
We can now show how these metabolic models not only compare
with fluxomics data, but how that comparison improves at each
step, resulting in transcriptome-based models with the closest fit
to the original fluxomics data.

The experimental data we used were fluxes for central car-
bon metabolism estimated using 14C labeling in two different
tissues, the embryo and endosperm (Alonso et al., 2010, 2011).
The reactions from these two studies were matched to the reac-
tions in the models, and we used the approach described in Sec-
tion Comparison with Estimated Fluxomics Data for Embryo and
Endosperm to fit the fluxes within the models to the experimen-
tally determined fluxes. We report the Spearman correlation and
its p-value in Table 2, showing that the correlation is high for
both transcriptome-based models. This result indicates that the
central carbon metabolism of the models generated in this work
is able to perform as observed in the original tissues. The reac-
tions used here have amedian expression score of 6.60 and 7.17 in
the embryo and endosperm transcriptomics dataset, respectively,
but the lowest expression score is ∼1.2 for both tissues. This last
statement in turn exemplifies the importance of our approach,
in ensuring that reactions with a low expression score are still
included in model generated from a transcript profile if consid-
ered to be essential for the metabolic functioning of the organ or
tissue.

Discussion

In this manuscript, we created a total of seven metabolic recon-
structions for two species (see Supplementary Material). In suc-
cession, we created two Full metabolic reconstructions for Ara-

bidopsis and maize, comprised of many possible sources of plant
biochemistry reconciled into single large networks. These Full
models also included many predicted gene-reaction associa-
tions, a subset for which we found evidence either in the lit-
erature or via human inference, and we used these to create
a more reliable metabolic reconstruction for the two species.
Finally, via use of a novel, simple and fast organ and tissue-
specific pathway gapfilling method, along with well-curated
biomass for the leaf, endosperm and embryo, we gener-
ated three metabolic models specific for these organ and tis-
sues. The evidence that we used, for both the genes whose
products catalyze the reactions and the localization of gene
products in different compartments, is comprehensive and
reliable.

Our approach allows us to create relatively large metabolic
reconstructions that compare favorably to the prior published
metabolic models, albeit with a smaller set of gene-reaction asso-
ciations. This enables us to apply transcriptome data with a high
degree of confidence. The approach is validated by the fact that
the embryo and endosperm models retained nearly every reac-
tion of central carbon metabolism. This was done both by the
body of evidence available for the gene-reaction associations, and
the pathway gapfilling method which included reactions with a
low expression score, but were essential to the models. Finally,
it was shown that the same models can be active and able to
replicate the activity observed in published experimental flux-
omics datasets. To date, we believe we are the first to apply such
wide-ranging body of evidence to the generation of large-scale
metabolic reconstructions.

All of our work was carried out through the DOE Systems
Biology Knowledgebase (KBase; http://kbase.us/), an open
software and data platform that aim to enable researchers
to predict and ultimately design biological function. The
data is publicly available within KBase workspaces named
“Maize_Tissue_Models” (https://narrative.kbase.us/functional-
site/#/ws/objects/Maize_Tissue_Models) and also via the
PlantSEED website (http://plantseed.theseed.org). The KBase
software environment allows researchers to copy the individual
metabolic models and to explore the models using the suite of
modeling tools available.
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Data Sheet 1.ZIP
Zip file of metabolic models in SBML format. All seven metabolic
models, the Full metabolic and Evidenced metabolic models for
Arabidopsis and maize and the three tissue-specific metabolic
models for maize leaf, endosperm, and embryo are available for
download in SBML format.

Data Sheet 2.XLSX
Spreadsheet of metabolic models. An Excel spreadsheet con-
taining details for the seven metabolic models and also
containing details of their relationships with prior pub-
lished models, and the reaction-gene and gene-compartment
evidence.
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