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In both humans and animals brief synchronizing bursts of epileptiform activity known
as interictal epileptiform discharges (IEDs) can, even in the absence of overt seizures,
cause transient cognitive impairments (TCI) that include problems with perception or short-
term memory. While no evidence from single units is available, it has been assumed
that IEDs destroy information represented in neuronal networks. Cultured neuronal
networks are a model for generic cortical microcircuits, and their spontaneous activity
is characterized by the presence of synchronized network bursts (SNBs), which share a
number of properties with IEDs, including the high degree of synchronization and their
spontaneous occurrence in the absence of an external stimulus. As a model approach to
understanding the processes underlying IEDs, optogenetic stimulation and multielectrode
array (MEA) recordings of cultured neuronal networks were used to study whether
stimulus information represented in these networks survives SNBs. When such networks
are optically stimulated they encode and maintain stimulus information for as long as
one second. Experiments involved recording the network response to a single stimulus
and trials where two different stimuli were presented sequentially, akin to a paired pulse
trial. We broke the sequential stimulus trials into encoding, delay and readout phases
and found that regardless of which phase the SNB occurs, stimulus-specific information
was impaired. SNBs were observed to increase the mean network firing rate, but this
did not translate monotonically into increases in network entropy. It was found that the
more excitable a network, the more stereotyped its response was during a network burst.
These measurements speak to whether SNBs are capable of transmitting information in
addition to blocking it. These results are consistent with previous reports and provide
baseline predictions concerning the neural mechanisms by which IEDs might cause
TCI.

Keywords: optogenetics, stimulus memory, network excitability, interictal spike, epilepsy, transient cognitive
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INTRODUCTION
Cellular and network memory mechanisms underlie
psychologically relevant processes like working memory and
perception. These basic memory mechanisms include “hidden”
and “active” mechanisms which reference the short-term
adaptation of neurons to repeated stimulation as is revealed
in “paired-pulse” experiments and the remnants of stimuli
that persist as reverberations of action potentials in neuronal
circuits (Buonomano and Merzenich, 1996; Mongillo et al., 2008;
Buonomano and Maass, 2009). In epilepsy, the performance
of many tasks that rely on these basic memory mechanisms,
from motor planning to perception to working memory, can
be disrupted by abnormal focal discharges of synchronized
neural activity between seizures, an effect known as transitory
cognitive impairment or TCI (Binnie et al., 1987; Stafstrom,
2010). These abnormal discharges last 70–200 ms and are
known as interictal epileptiform discharges (IEDs; de Curtis and

Avanzini, 2001; Binnie, 2003). IEDs likely arise from excessively
synchronous inputs to a focal set of neurons that are possibly
impaired by ion channel abnormalities or activated by the
local release of glutamate by glia (Rogawski, 2006). Recently,
a rodent model of TCI was developed using the short-term
memory task, delayed match to sample (DMS; Kleen et al., 2010).
The DMS task has three phases: an encoding phase where the
first stimulus (the “sample”) is presented, an intervening delay
phase, and a recall phase where matching and mismatching
cues are presented to elicit responses. Kleen et al. (2010)
recorded hippocampal IEDs throughout the DMS task, but found
only hippocampal IEDs occurring during the recall phase of
DMS impaired performance. The authors argue this indicates
the hippocampus only processes DMS-relevant information
during the recall phase. However, the depth electrodes used
in these experiments could not resolve whether the activity of
hippocampal neurons encodes stimulus-specific information nor
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could they show whether this information was maintained or
destroyed by IEDs. The current study uses multielectrode array
(MEA) recording and optogenetic stimulation to investigate
whether neuronal networks continue to represent stimulus-
specific information after synchronized bursts of network activity
have occurred. Using a laser projection system, optogenetically
modified, dissociated cultures of cortical neurons can be
optically stimulated with complex stimuli such as random dot
patterns (Dranias et al., 2013). When these neurons are plated
on MEAs, the network activity that results from stimulation
can be recorded and the firing rate of neurons and patterns
of recruitment encode the identity of stimuli for hundreds of
milliseconds after the stimulation has been removed (Dranias
et al., 2013). In addition to displaying the ability to encode
stimulus information in neuronal firing rates, cultured neuronal
networks can maintain stimulus-specific information across
delays where no network activity has been observed for hundreds
of milliseconds (Buonomano and Merzenich, 1996; Dranias
et al., 2013). In these cases, stimulus information is said to be
represented by hidden memory mechanisms and can be revealed
using protocols like paired-pulse facilitation which are sensitive
to synaptic adaptation and involve the sequential presentation of
stimuli across a delay (Buonomano and Maass, 2009). A number
of theorists and computational modelers have posited that this
simple mechanism of stimulus-specific adaptation is the primary
mechanism the brain relies on when performing novelty and
familiarity detection in DMS-like tasks (Grossberg, 1980; Brown
and Xiang, 1998; Brown and Aggleton, 2001; Yassa and Stark,
2008).

Synchronous Network Bursts (SNBs) arise spontaneously
in cultures of living neuronal networks and appear to be an
intrinsic property of any densely connected recurrent neural
network (Wagenaar et al., 2005; Chiappalone et al., 2009; Hales
et al., 2012; Maheswaranathan et al., 2012). Given that cultured
neuronal networks can maintain stimulus-specific information
across short delays, two experiments were performed to test
whether this information is disrupted by SNBs. In the first
experiment one of four possible stimuli was presented on each
trial and trials interrupted by SNBs were compared to control
trials to measure how much stimulus information was lost. A
multiclass (4 class) Support Vector Machine (SVM) classifier is
used to analyze these trials. In the second experiment a sequence
of two stimuli is presented separated by a short delay. A binary
(2 class) SVM classifier is used to analyze these trials. Like
the paired pulse experiment, this experiment aims to measure
whether information about prior stimulation is stored across a
delay where there is no neural activity. Unlike the paired pulse
experiment, the sequential stimulus experiment aims to detect
evidence of stimulus-specific information, not just evidence of
prior stimulation. In the sequential stimulus protocol, the identity
of the first stimulus varies while the identity of the second
stimulus is fixed. The adapted response of the network to the
second stimulus is analyzed to measure how much information
it contains about the first stimulus. In order to test whether
stimulus-specific information survives an SNB, experiments were
broken into three phases: encoding (first stimulus), delay, and
recall (second stimulus). Once it was established that SNBs

destroy stimulus-specific information, the firing rate, entropy,
and similarity of network responses during SNBs were measured.
It was hypothesized that if the SNBs act as white noise and
interfere with the stimulus representation, network response
patterns should be dissimilar and these trials will have a high
entropy. As an alternative it was hypothesized if SNBs ‘overwrite’
stimulus-elicited responses by saturating active units then SNB
network response patterns should be similar and have a low
entropy.

MATERIALS AND METHODS
PRIMARY NEURON CELL CULTURE
E18 Sprague-Dawley rat pups are decapitated and utilizing aseptic
technique, cortical tissue is dissected from the embryonic brain
and placed directly into a 15 ml sterile plastic vial containing
10 ml ice-cold HBSS or Hibernate-E medium (BrainBits)1 and
brought to a laminar flow hood for extraction of neurons from
the cortical tissue. E1 is defined as the day after the plug
is determined to be sperm-positive (Poon et al., 2014). All
procedures carried out were approved by the Institutional Animal
Care and Use Committee (IACUC) of the National University
of Singapore. Poly-D-lysine and fibronectin coated 60 electrode
MEA-containing culture dishes (Multi Channel Systems) are
prepared as described previously (Van de Ven et al., 2005; Dranias
et al., 2013). Cortical neurons from multiple pups are dissociated,
and plated onto MEAs in aliquots of 40 uL at a density of 1× 105

neurons per MEA dish. Prior to plating, neurons are transfected
with plasmid DNA encoding ChannelRhodopsin-2 (ChR2, a kind
gift from Karl Deisseroth) fused to EYFP for visualization and
carrying mutations H134R and T159C which were introduced
to increase current (Nagel et al., 2005). Transfection was carried
out using electroporation (Amaxa nucleofector II device and kit,
Lonza Inc.) After electroporation and plating, MEAs were filled
with approximately 1 mL NB-Active 4 cell medium (BrainBits)
with 10% fetal bovine serum (FBS), covered with a plastic cap
with Teflon film (ALA-Scientific), and the dish was placed into the
incubator (37C, 5% CO2). The cell medium was replaced every
2–5 days and Yellow Fluorescent Protein (YFP) expression was
visible within 24 h of transfection.

MEA RECORDINGS
Extracellular electrophysiological recordings of neurons were
made from 60 electrode MEA dishes using the MEA1060
hardware system (Multi Channel Systems). Recordings were
performed on an anti-vibration table and in a Faraday cage.
During experimental recordings, the cell culture medium
(NBActive4) was replaced with Dulbecco’s phosphate-buffered
saline containing glucose and pyruvate (DPBS, Sigma). MC_Rack
software (Multichannel Systems) was used to acquire extracellular
signals that were high pass filtered at 300 Hz and low pass filtered
at 3 kHz with 2nd order Butterworth filters. Action potentials or
“spikes” were detected using a voltage threshold rule. The value
of the threshold was between 7–12 µV and was determined by the
user for each dish based on the observed amount of channel noise.

1www.brainbitsllc.com
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Electrophysiological data was imported into MATLAB using the
Neuroshare API library.2

OPTICAL STIMULUS PRESENTATION AND IMAGING
The MEA system was mounted on an inverted microscope
during recordings (Eclipse Ti, Nikon). Fluorescent and Brightfield
images were captured from the MEA dishes via a cooled CCD
camera (Orca, Hamamatsu). Optical stimuli were presented
onto the MEA using a 25 mW 488 nm laser (Spectra-Physics)
beam which was passed through an acousto-optic tunable filter
(AOTF, AA Opto-Electronic), optically expanded, passed through
a polarizing filter and projected onto a reflective LCoS Spatial
Light Modulator microdisplay (SLM, Holoeye Photonics AG)
(Dranias et al., 2013). Blue light patterns reflecting off the SLM
were passed through a second polarizing filter and projected
onto the neuronal network growing on top of the MEA. All
elements of the optical projection system were bolted to the anti-
vibration table. TTL pulses generated by MATLAB synchronize
recordings and stimulus presentations. The random dot stimuli
were constructed from 18–22 randomly positioned squares on a
10 × 10 grid and had an image size of approximately 1.25 mm
square when projected onto the MEA dish with an effective light
intensity of 0.1 mW/mm2.

Beginning at 5 days in vitro (DIV), cultures were screened for
ChR2-YFP expression. Cultures exhibiting YFP expression in the
range of 1% +/− 0.5% were monitored for spontaneous single
unit electrophysiological activity. Optical stimuli of increasing
spatial resolution were presented to active dishes to test for
functional expression of ChR2: networks showing a differentiated
response to squares in different locations of a 2× 2 grid were then
tested with patterns of random dots from a 10 × 10 grid. Dishes
showing a differentiated response to at least 5 of 30 random
dot patterns were selected to undergo further study. In addition,
networks in this study needed to have a limited but useful number
of SNBs. Each step in this screening process eliminates about 1

2 of
dishes. Data arises from separate batches: 1905- Dish 1, Dish 4;
0504- Dish3; 2106- Dish 3, Dish 5.

EXPERIMENTAL PROTOCOLS
Random dot stimuli consisted of 18–22 randomly positioned
squares on a 10 × 10 grid occupying 1.25 mm2 on an MEA dish.
Single stimulus presentation experiments are used to test whether
SNBs disrupt stimulus information represented in lasting network
activity. During single stimulus presentations one of four random
dot stimuli is presented for 100–200 ms. A multiclass (4 class)
SVM classifier was used to analyze these trials to identify stimulus-
specific information (see section Stimulus Information Time
Series). Sequential stimulus presentation experiments are similar
to paired-pulse experiments and aim to test whether SNBs disrupt
hidden network representations of stimuli. During sequential
stimulus presentations the first stimulus (cue) is presented for
100–200 ms, followed by a delay period of 1 s after which the
second probe stimulus is presented. While cue stimuli vary on
different trials, the probe stimulus is the same on every trial.
Two cue stimuli were alternated on trials so a binary (2 class)

2www.neuroshare.org

SVM classifier is used to analyze these trials (see section Stimulus
Information Time Series ). Responses to the probe are analyzed
to see if they reflect information about specific cue stimuli. Like
paired pulse experiments, the sequential stimulus experiments are
used to detect evidence that the network stores information in
the absence of neural activity. However in the sequential stimulus
task the stimuli differ and the information to be measured regards
the identity of past stimuli, rather than simple evidence of past
stimulation. In order to minimize the possibility that action
potentials are transmitting stimulus information during the delay
period, unit activity is monitored during sequential stimulus
trials and trials with unit activity during the final 200 ms of
the delay period are flagged for later analysis. The persistence
of cue-specific information was measured in both trials using a
time-series constructed from Support Vector Machines (SVMs;
see below).

EXPERIMENTAL TRIALS WITH AND WITHOUT SNBs
Network responses were sorted into trials with and without
SNBs. During single stimulus presentation trials, SNBs were
detected using a threshold rule of more than 20 spikes in the
first 590 ms. During sequential stimulus presentation experiments
“control trials” are those trials where no SNBs occur until after
the second (probe) stimulus. This protocol aims to investigate
information stored using hidden mechanisms so control trials
are additionally restricted to trials where there is no unit activity
during the final 200 ms of the delay period. Trials with SNBs
were divided into three types based on the phase in which
an SNB occurred: cue, delay, or probe. A cue phase trial with
SNBs was deemed to occur if an SNB occurred prior to or
coincident with the cue stimulus. A cue period SNB was identified
whenever half the mean number of spikes per trial occurred in
the first 590 ms of the trial. A delay phase trial with SNBs was
deemed to occur when an SNB was observed between cue and
probe stimuli. The delay phase SNB was identified whenever half
the mean number of spikes per trial occurred in the interval
between cue and probe, followed by a 100–300 ms pause in
which no spikes were observed prior to presentation of the probe
stimulus. Probe phase trials with SNBs were deemed to occur
whenever an SNB immediately preceded or coincided with the
probe stimulus. The probe SNB was identified when at least
20 spikes occurred in a 300 ms time window starting from
100 ms prior to probe presentation until 100 ms after probe
presentation. Trials presented in figures were selected in order
to convey the typical network responses and do not represent
observed frequencies of each trial type; rather trials are typically
presented in some equally weighted distribution of across classes
(50–50 or 33-33-33).

STIMULUS INFORMATION TIME SERIES
Support vector machines (SVMs) were used to distinguish
network responses to different stimuli.

The SVM time series is constructed using multiple,
independent SVMs to measure how stimulus information
varies over time (Nikolić et al., 2009; Dranias et al., 2013). Each
SVM analyzed a 100 ms time bin and is trained to recognize
differences in the pattern of recruitment and firing rate of
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neurons in that time window. SVM classifiers label network
responses on single trials according to the stimulus it predicts was
presented. SVMs perform either 4-choice classifications (single
stimulus task) or 2-choice classifications (sequential stimulus
task) and are implemented in MATLAB using libsvm (Chang
and Lin, 2011). The baseline or chance rate of classification was
either 1

4 or 1
2 , depending on the number of stimuli used in the

experiment as all stimuli were presented an equal number of
times (in blocks of 64 pseudorandom trials).

Data points making up the stimulus information time series
were computed by SVMs focused on classifying data from a single
time bin. Using notation, the construction of the SVM array
and time series can be understood more precisely. Each trial was
divided into n 100 ms bins:

(bin1, bin2, bin3, ... binn)

Hence for a 2 s trial, there would be 20–100 ms time bins (n = 20).
An independent SVM classifer is assigned to analyze data in each
time bin:

(SVM1, SVM2, SVM3, ... SVMn)

In the case of a 2 s trial (n = 20), there would be 20 independently
trained SVMs, each focused on analyzing the data from a
corresponding time bin. Data in every time bin was constructed
by computing a population spike count vector. Each spike count
vector, spikei (where i corresponds to bini), is 60 dimensional (59
electrodes and a ground) and records the number of spikes seen
in each unit in a 100 ms time bin. The 60th channel (ground) was
assigned a default value of 1 in every time bin (preventing dividing
by zero). Hence each vector is:

spikei = (count1, count2, count3, . . . count60)

= (count1, count2, count3, . . . count59, 1)

Hence on a given 2 s trial, j, there would be 20 spike vectors,
corresponding to each time bin:

spike1,j, spike2,j, spike3,j, . . . spike20,j

Each SVM classifier is focused on analyzing the data of a single
time bin and uses multiple trials worth of spiking data during
training and testing. Typically 70% of the trials for a given
experiment were used for training an individual SVM and the
remaining 30% of trials for testing. Hence for an experiment
where there are 800 trials, SVM7 in bin7, would be trained on the
set of spike data:

{spike7,1, spike7,2, spike7,3, · · ·spike7,560}

But then the SVM7 model is tested on the remaining spike data:

{spike7,561, spike7,562, spike7,563, · · ·spike7,800}

The average accuracy across all training or testing trials is then
reported. Only data that is linearly separable will have an accuracy
of 100%. The stimulus information time series is contructed
by presenting the average accuracy of individual SVMs as time-
ordered data points. To control against bias on individual training

or testing sets, each SVM retrained and tested 50 times using
different subsets of spike count data and the mean accuracy across
these 50 training and testing epochs is reported in the stimulus
information time series. In figures a red line typically indicates the
amount of stimulus information during the training phase and a
blue line indicates the amount of stimulus information during the
testing phase.

When measuring how much information was destroyed on
trials where an SNB occurred, the SVM When measuring how
much information was destroyed on trials where an was trained
on trials where no SNB occurred and then tested on trials
with SNBs. Methods for quantifying the accuracy, significance,
reliability, and generalization of classifier results are discussed in
statistical methods.

BINARY NETWORK ACTIVITY VECTORS
Patterns of network activity were reduced to a binary vector that
indicated whether a given channel was active or not in a 250 ms
time bin. A unit is active when its firing rate is 3 STD above its
inter-trial interval firing rate, similar to the rule for characterizing
neuronal avalanches (Beggs and Plenz, 2004; Pasquale et al., 2008;
Chen et al., 2010). Time bins were fixed at 250 ms windows
to facilitate averaging and comparisons across different trials.
The duration of the window was selected because it captures
the initial stimulus-elicited network response, separating it from
the subsequent network bursting response. The ground electrode
channel was assigned a value of one rather than zero, preventing
undefined division operations.

ENTROPY TIME SERIES
In order to measure the number of different ways the network
responds to stimuli, a time series was constructed by breaking
the data into 250 ms time bins and counting the number of
different binary network activity vectors observed across all trials.
Some binary network activity vectors occur more frequently than
others and in order to measure this stereotypy, the number of
exemplars of each binary network activity vector is counted and
these tallies are used to compute the entropy. Smaller entropy
values indicate network responses during a given time bin are
highly stereotyped while higher entropies during a given time bin
indicate the patterns of network responses are diverse, with the
upper limit of different response patterns being the number of
observed trials. Entropy is computed by counting the number of
unique binary network activity vectors that occurred in each time
bin and then adjusting this number by the frequency that each
unique binary network response occurred:

H(x) = log2N −
1

N

∑
i

nilog2ni

Where “x” represents the outcome space of observed network
responses, H is the entropy, N is the total number of binary
network activity vectors, and ni represents the count of binary
network activity vectors in each class, i, of equivalent binary
vectors. To make the entropy an intuitive measure of how
stereotyped the network responses are, entropy is plotted as the
“equivalent number” of distinct network responses that would
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be associated with a given entropy value under the assumption
that network responses arise from a uniform distribution. Hence,
for each time bin, the entropy is plotted as 2H(x), giving the
equivalent number of outcomes when the outcome space is
composed of equally weighted classes. Time bins in the time series
were set to 250 ms, except for the first time bin which was 550 ms.
A weakness with entropy measurements is that they count the
number of different responses but not how different the response
are from each other.

CROSS-CORRELATION MATRIX OF BINARY NETWORK ACTIVITY
VECTORS
Data was broken into 250 ms time bins and a cross-correlation
matrix was computed to compare the binary network activity
vectors recorded on different trials. The cross correlation matrix
was computed using the module clusterdata from the Statistics
Toolbox in MATLAB. After the cross correlation matrix was
computed, trials were sorted into clusters using a dendrogram
algorithm that clusters similar network responses. After the
network responses had been clustered by similarity, the trials
in each cluster were examined to see which stimulus had
been presented and the trials within the cluster were re-
sorted by stimulus identity. Using this clustering approach it
is possible to see whether two different neural responses are
similar to each other despite having different binary network
activity vectors (Raichman and Ben-Jacob, 2008). Hence the
cross-correlation matrix complements entropy measurements by
showing whether different network responses can be clustered
into similar responses; this can indicate that some of the trial-
to-trial variations in network responses are due to noise rather
than fundamentally different patterns of activity. In diagrams,
clusters of similar responses form reddish squares along the
diagonal.

STATISTICAL METHODS
Machine classifiers known as SVMs were used to analyze single
trial network activity and predict the identity of the stimulus
driving that activity. Several approaches were used to quantify the
accuracy, significance, specificity, reliability, and generalization of
the classifiers. The accuracy of the classifier on both training and
testing sets is reported using the mean correct classification rate,
which is the complement of the misclassification rate (which is
sometimes characterized using loss functions). The significance
and specificity of SVM classification on single trials is established
using 200 trials of random label shuffling, a monte carlo approach
to characterizing how the classifier treats a randomly labeled data.
The best and worst classification accuracy rates (5th and 95th
percentiles) were recorded each classifier as dotted lines about the
baseline (theoretical) chance rate of correct classification (either
1
4 or 1

2 , depending on the number of stimuli). These confidence
intervals help establish the significance of the correct classification
rates. To insure generality and reliability of classifier results, single
trials of network responses from each experiment were broken
into training (70%) and testing sets (30%) for cross validation
with repeated random subsampling. The repeated random
subsampling controls for how bias relating to the unfair sampling
of training and testing vectors affects classifier performance.

Classifiers were retrained and tested 50 times and for each repeat,
a different set of training and testing data is randomly selected
from the experimental data. The average accuracy of the classifier
on both training and testing sets is reported with the standard
error of the mean (SEM). The mean (correct) classification rate
and SEM demonstrate the reliability and generality of classifier
methods (similar to the misclassification rate (the complement of
accuracy) or a derivative loss function). In classification figures,
the average classification accuracies are reported with solid lines
and standard errors with gray shadows. When comparing trials
with and without SNBs, modulations of accuracy in classification
are recorded as mean percent of the values without SNBs,
with standard error. The entropy of two categories of trials is
compared: trials with and without SNBs. However, the number
of trials in each category is not equal. In order to directly compare
the entropy of these two categories, a random sample of trials
is taken from the larger category, equal in size to the number of
trials in the smaller category. This random sampling is repeated
300 times and the mean entropy is reported along with the
99th percentile extremes of the mean values seen across the
resampling process are plotted as gray shadows behind the mean
trend line wherever entropy was reported. For the category with
the smaller number of trials, the entropy is computed directly.
Wherever variables such as firing rate, number of active channels,
and normalized entropy are compared across different networks,
these variables were first standardized within each network.
Standardization was done by computing the means and variances
for each variable across all time bins. The values for firing rate,
channel number, or entropy were then replaced with a standard
score in each time bin and correlations between variables over
time were computed after pooling data across all networks (or
over a specified local time range):

r =
1

nm− 1

∑
ij

(
Xij −MX

Sx

)(
Yij −MY

Sy

)

Where MX and MY represent the mean values of the network-
specific standardized variables Xij, Yij pooled over all networks j
and time bins i.

RESULTS
SYNCHRONIZING NETWORK BURSTS (SNBs) DISRUPT NETWORK
RESPONSES TO SINGLE STIMULI
Primary cortical neurons were cultured and transfected using
ChR2 (Figures 1A,B). Static images of random dots were
optically projected onto the networks, eliciting responses typically
lasting 100–200 ms. Signals associated with this stimulation
were electrophysiologically recorded using an MEA and spikes
recorded by each electrode are translated into spike times
(Figures 1C,D). Approximately 1–5% of trials were interrupted
by SNBs. The occurrence of SNBs appeared unchanged across the
recording session of single stimulus presentations (unsorted data
shown in Figure 1E, sorted shown in Figure 1F). Simple stimulus
presentation experiments involve presenting one of four stimuli
to the dish in a pseudo random order. Figures 1E–H shows the
responses of one network to four different stimuli (Batch 1905-
Dish 4).
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FIGURE 1 | Primary Culture, ChR2 transfection, and Multielectrode Array
(MEA) Signals. (A) Light microscopic image of primary neuronal culture at 8
days in vitro (DIV9) on a 60 electrode microelectrode array (MEA) transfected
with Channel Rhodopsin-2 (ChR2) plasmid DNA coupled to Yellow
Fluorescent Protein (YFP). (B) Image taken using a 4X objective and 510 nm
excitation light to visualize ChR2-YFP expression. 2405-Dish3. (C) The MEA
samples unit activity at 22 kHz. A threshold for detecting spikes in voltage is

set based on observation of background noise levels. (D) When a threshold
depolarization event or spike is detected, the “spike time” is recorded along
with a 3ms clip of the waveform and saved in a data file. (E) Peristimulus
rasterplots of spike times. Spike times are pooled from across all units in the
network. TTL trigger signals are recorded and used to align data to stimulus
onset, allowing the raster plots to be created. Each row indicates one trial.

(Continued )
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FIGURE 1 | Continued
No consistent trends in SNB frequency across time were observed. Time
from stimulus presentation shown on x-axis (ms), trial number on y -axis.
Data from response to “stimulus 2” by 1905-Dish4. (F) Recorded trials
sorted according to the whether or not a spontaneous network burst (SNB)
interrupts the presentation of an optical stimulus and analyzed. Other
conventions as (E). (G) Peristimulus raster plots showing spiking responses
of network, pooled across all units. Each row indicates one stimulus
presentation. Stimulus identity varies from left to right: on left, responses to
stimulus 1; center, responses to stimulus 3; on right, responses to stimulus
4. Data from trials without SNBs. Other conventions as (E). (H) Peristimulus
raster plots showing spiking responses of the network pooled across all
units on trials with SNBs. Stimulus identity varies from left to right: on left,
responses to stimulus 1; center, responses to stimulus 3; on right,
responses to stimulus 4. Other Conventions as (G).

In order to quantify how much stimulus information is
lost during trials with SNBs, SVMs were trained to classify
the electrophysiological responses of neuronal networks to
different random dot stimuli. SVMs are linear classifiers and they
classify data by separating them with linear decision boundaries
(Figure 2A). The SVMs were trained using 70% of the trials
without SNBs (training set; Figure 2B). The array of SVMs
is unable to classify neural responses at an accuracy of 100%,
even on its training set (classification accuracy on training set
is indicated by a red line in the graph at bottom of Figure 2B).
This indicates that network responses to different stimuli are not
linearly separable. Figures 2C,D provide examples of how the
array of classifiers (optimized using training data) analyze single
trials from the remaining 30% of trials (the “testing set”). Overall
generalization was good and the classification accuracy for testing
data was comparable to training data (blue dashed line, graph at
bottom of Figure 2B).

The pattern of activity on trials with SNBs was very
different from that seen during control trials without SNBs
(Figures 1, 3). During control trials stimuli elicit a reliable spike
train (Figures 3A,B, black hash marks) that activates a specific set
of electrodes (Figures 3C,D). In trials with SNBs that interrupt
presentation of stimuli (Figures 3A,B, red hash marks) can
activate very different sets of electrodes (Figures 3E,F). Data is
from 640 trials which consist of 160 trials per stimulus (Batch
2106-Dish 5).

When SVMs are trained using data from control trials without
SNBs and then tested using previously unencountered data of the
same type, the SVMs can classify the unencountered data with
a high level of accuracy, usually in excess of 80% (Figure 3G).
Overall dishes, the average accuracy of classification in the first
300 ms following stimulus offset was 55.6% ± 25.8% (SD,
n = 6; ± 0.9% SEM) on training trials and 53.2% ± 25.0%
(SD, n = 6; ± 0.8% SEM) on testing trials (chance rate of
accuracy is 25%). Peak accuracy occurs in the 100 ms time
bin 100 ms after stimulus offset: 80.1% ± 18.3% (SD, n = 6;
± 0.9% SEM) on training trials and 78.2% ± 16.1% (SD, n = 6;
± 0.9% SEM) on testing trials. However, when SVMs that had
been trained on control trials are used to classify trials with
SNBs, classification accuracy falls to chance levels (Figure 3H).
This indicates SNBs destroy stimulus-specific network activity
during.

SNBs USE MORE THAN ONE MECHANISM TO DISRUPT RESPONSES TO
STIMULI
Trials with SNBs were analyzed from four cultured neuronal
networks (1905- Dish 1, Dish 4; 0504- Dish3; 2106- Dish 3).
As described in the Methods section, 12 time bins of data were
standardized for each network and correlations computed on
the pooled 48 data points. These comparisons reveal that the
mean firing rate, number of active channels and normalized
entropy are all positively correlated. In particular, mean firing
rate was positively correlated with both the normalized entropy
and number of active units (r = 0.40, p = 0.0052; r = 0.96,
p < 0.0001) and the number of active units was positively
correlated to the normalized entropy (r = 0.48, p = 0.0008).
These correlations suggest that a simple dynamical model can
explain the results: SNBs are associated with the recruitment
of additional units, the activation of which increases the mean
firing rate and results in higher entropies because more active
units mean more unique patterns of network activity. However,
when SNB responses were examined on a case by case basis, this
trend did not hold for all the networks. Figure 3 displays data
from two neuronal networks (Batch 1905, Dishes 1 and 4). The
figures in the left column present data from a neuronal network
where this correlation does not hold during the occurrence
on an SNB (Figures 4A,C,E,G,I). The figures in the right
column present data from a second neuronal network where this
correlation does hold during SNBs (Figures 4B,D,F,H,J). These
contrasting results indicate that the simple mechanism proposed
previously does not explain the behavior of SNBs in all networks,
warranting closer examination of network responses. In order to
understand why different networks are associated with different
response patterns, data from trials with and without SNBs were
analyzed.

Figures 4A,B show the pattern of activate channels during
trials with SNBs (top row) and control trials (bottom row)
using the same single-stimulus presentation protocol detailed in
Figure 3. These images demonstrate that at the time of stimulus
presentation (or SNB occurrence) more units are active during
trials with SNBs than control trials. This difference in activation
level is also reflected by a large difference in the overall mean
firing rate during both trial types (Figures 4C,D). When just these
two statistics are considered, the response dynamics of the two
networks are qualitatively very similar despite the large differences
in the overall mean firing rate, and number of active channels
between the two networks (the firing rate in the first network
is larger by a factor of 4 and number of channels larger by a
factor of 1.5). When entropy is considered, the responses of the
networks during control trials continue to be very similar: entropy
peaks in the third time bin and then declines (Figures 4E,F, black
lines). This indicates that for control trials mean entropy tracks
mean firing rate. However when trials with SNBs were considered,
very different trends in entropy were observed between the two
networks. For the second network, entropy follows the trend
outlined previously and increases during an SNB along with mean
firing rate and the number of active channels (Figure 4F, red
line). Whereas in the first network, entropy actually decouples
from the mean firing rate during an SNB (Figure 4E, first and
second time bins) and doesn’t peak until the firing rate subsides a
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FIGURE 2 | Detection of Stimulus Information Using Linear Support
Vector Machines (SVMs). (A) Network responses to 12 stimulus
presentations (data from 2106-Dish 5, DIV11). Six trials involve the
presentation of stimulus 2 and 6 trials stimulus 4. On left and right are
examples of network responses represented as heatmaps. Left: heatmaps
showing network responses on three different presentations of Stimulus 4.
Network represented by 8 × 8 colored arrays in which each colored cell
represents an electrode position and the cell color represents spike rate (color
code ranges from blue to red indicating 0 to 4 spikes per 100 ms). Right:
heatmaps showing network responses to three presentations of Stimulus 2.
Same conventions and color codes described for stimulus 4 (left). Center :

Scatter plot showing responses of two units across these 12 representative
trials. Responses to stimulus 2 are indicated by an “X” and responses to
stimulus 4 are indicated by an “O”. Data points reflect the number of spikes
observed at each unit in a 100 ms bin starting 200 ms post-stimulus. The
x-axis indicates the number of spikes recorded from the unit at electrode 10
while the y -axis counts the number of spikes from the unit recorded at
electrode 41. The line in red is the projection of the decision boundary used
by the SVM to classify stimulus 2 from stimulus 4. Classification is effected
by taking the inner product of the decision boundary vector with the spike
count vector of an individual trial. Inner products with positive values are

(Continued )
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FIGURE 2 | Continued
assigned to class 1 and negative values to class 2. The scatter plot is a
restricted view of the overall network activity and examples of
network-wide activity shown on left and right reveal additional units may be
active on every trial. (B) Spikes recorded from cultured neuronal networks
are counted and classified using an array of linear SVMs. Top: Peristimulus
raster plot of network spikes (pooled across all units) to stimulus 2 on trials
at are not interrupted by SNBs. Other conventions as Figure 1E. Bottom:
Average accuracy of SVM classification across training trials (solid red line)
and testing trials (solid blue line). A unique linear SVM is assigned to every
100 ms bin and each SVM is trained to classify only data from that time bin.
SVMs are trained using a “batch mode” algorithm. 70% of single trial data
is used for training and 30% of single trial data is used for testing classifier
generalization. Red line plots the average accuracy with which a linear SVM
can classify trials from the dataset it was trained on. Accuracy below 100%
indicates that network responses in the training set are not linearly
separable. The chance rate of classification is 25% for experiments where
four stimuli are presented (solid black line). Dotted lines about the chance
level (black line) represent the highest (90th percentile) and lowest (10th
percentile) rates of accurate classification seen after 200 Monte Carlo
simulations using a trained SVM but with datapoints that are randomly
assigned to different classes (random relabeling). The blue line represents
the mean classification accuracy observed when trained SVMs classify data
from testing trials. Time is represented on x-axis, classification accuracy on
y -axis (percentage of single trials classified correctly). (C) Application of
trained SVM model to a single trial of test data (trial #33, stimulus 4,
Figure 1G). Top: Peristimulus rasterplot of all units recorded from network
on a single trial. Each unit is shown on a single row, spikes are shown as
colored dots, the color of the dot is specific to the unit, aiding discrimination
of which spike belongs to which row (unit). y -axis indicates unit number,
x-axis time (ms). Middle: Peristimulus graph of the spike count associated
with each 100 ms bin. The spike count in each 100 ms bin is encoded by
intensity (colorbar at right provides a key for interpreting spikes counts).
Time relative to stimulus onset shown on x-axis (ms), y -axis encodes units.
Bottom: Accuracy of individual SVMs associated with each 100 ms time bin.
Each SVM is either correct or incorrect (y -axis indicates “hit” or “miss”).
Correctly classified time bins are indicated by a black marker, incorrectly
classified time bins are indicated by a red marker. x-axis indicates time in
ms, with a different SVM assigned to analyze data from every 100 ms time
bin. (D) Analysis of spiking activity from a different single testing trial (trial
#89, stimulus 1, Figure 1G). Other conventions as (C). Data in (B–D) from
1905-Dish4.

bit in the third time bin. Hence the entropies of networks can be
significantly different in the time bins where SNBs occur.

To determine whether SNBs activate a single stereotyped
pattern, act like white noise, or activate a small number of
different stereotyped patterns, the similarity of network responses
was assessed using cross correlation and similar responses were
clustered and then ordered within each cluster by the stimulus
that was presented on the trial. As qualitative differences in
network responses were most profound during the first two
time bins, a clustering analysis of these responses was done for
both trial types (Figures 4G–J). During control trials, network
responses during the first time bin are similar and are composed
of one or a few stereotyped responses (Figures 4G,H, left; similar
responses are grouped into the same red clusters). In both
networks the largest cluster of similar responses in the first time
bin corresponds to the trivial case where no units are active.
This case reflects low baseline activity and the absence of external
stimulation in the first time bin. For the first network 76% of trials
have a null response (and hence are similar) while in the second
network 63% of trials have a null response. This analysis indicates

that the low entropy seen on control trials during the first time
bin is due to one type of stereotyped response: no response.
In the second time bin an external stimulus is applied to the
networks and a number of very different network responses are
observed. Here network responses are influenced by the identity
of the stimulus that is presented on each trial. Although only
four stimuli are presented in nearly equal proportion, many
more response clusters are seen, indicating the same stimulus
does not always elicit the same response (Figures 4I,J, left
arrays). In addition, different stimuli do not always yield different
responses—when averaged across both networks, the typical
cluster of similar network responses is composed of network
responses to about 2 different stimuli (0.9 bits or 1.87 stimuli per
cluster). This number is influenced by the algorithm employed
and in our hands SVM response classification outperformed all
such clustering algorithms.

SNBs occur mainly in the first and second time bins during
trials with SNBs. For both networks the largest clusters tended
to be in the first time bin, indicating that SNBs are more
stereotypical in the first time bin (Figures 4G,H, right). In the first
network, for trials with SNBs, 78% of responses during the first
time bin are grouped into a single cluster (Figure 4G, right). This
cluster was not stimulus-specific and includes network responses
to all four stimuli (3.68 stimuli or 1.844 bits). All four stimuli
were not equally represented in the cluster because one stimulus is
under-represented during trials with SNBs. The remaining 22% of
trials form several small clusters. These results suggest that in the
first network SNB responses are primarily slightly noisy versions
of a single stereotyped response. Clusters in the second network
were less well defined. One similarity cluster was composed of
about half the trials with SNBs while the remaining trials are
fairly unique (Figure 4H). This observation suggests again that
most responses are composed of a few stereotyped responses.
Analysis of the second time bin in trials with SNBs indicated that
network responses tend to group into similar responses that are
not sensitive to the identity of the four different stimuli that were
presented. For the first network, a single large cluster of trials with
similar SNB responses can still be observed (Figure 4I, right). For
the second network, the clusters are less similar to one another
(Figure 4J, right).

Results from Figure 4 indicate that in the first network
SNBs overwrite stimulus information by activating a single noisy
stereotyped response, while in the second network there are a
couple of noisy stereotyped SNB responses and a number of trial-
unique SNB-associated network response patterns.

SNBs DISRUPT ENCODING, STORAGE, AND RETRIEVAL OF
STIMULUS-SPECIFIC INFORMATION DURING A MODIFIED PAIRED
PULSE TASK
A modified paired pulse task was performed to test whether
SNBs can disrupt stimulus information stored across delays where
no neural activity is measured. The persistence of stimulus-
specific information is measured by the adaptation of the network
response to the presentation of the second of two stimuli.
However, unlike paired pulse tasks, the identity of the first
stimulus differs from trial to trial and the experiment aims
to uncover whether stimulus-specific information (not simply
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FIGURE 3 | Active Stimulus Memories are Disrupted by SNBs.
(A,B): Peristimulus raster plots of network wide responses to the
presentation of two random dot stimuli (left and right). Each row represents
a different stimulus presentation. Trials are sorted into control (black ticks)
and trials with SNBs (red ticks). Green and red vertical lines indicate the
onset and offset of stimulus. Time is on the x-axis (ms). (C,D) Average firing
rate in 20 ms bins during trials without SNBs. Colour map range is 0 to 8
Hz. Electrodes sorted by firing rate. (E,F) Average firing rate in 20 ms bins
during trials with SNBs, color map range 0 to 20 Hz. (G) Time series
measuring stimulus information during trials without SNBs. Data points
computed using SVMs to classify spike counts in 100 ms bins. Four stimuli
were presented to network and chance accuracy is 25% (dash-dot line).
Solid lines indicate classification accuracy on training (red) and testing
(black) trials. Classifier significance computed by taking the best and worst
classifications (95th percentile) after random shuffling of target labels
(dotted lines). (H) Time series of stimulus information during trials with
SNBs computed using SVMs trained on control data but tested on trials
with SNBs. Other details as (G). All responses from Batch2106-Dish5, DIV8
640 trials (4 stimuli × 160 presentations).

evidence of past stimulation) is disrupted by SNBs. The task is
divided into cue, delay and probe phases (Figure 5A). During

the cue phase, one of two possible stimuli is presented. A delay
ensues during which no stimuli are presented, followed by the
presentation of a single probe stimulus. The response of the
network to the probe stimulus is analyzed using SVMs for
evidence of cue-dependent adaptation. Figures 5B,C show the
responses of one cultured neuronal network to the two different
cue-probe sequences shown in Figure 5A. Trials without SNBs
were defined as those in which no network bursts occurred
prior to presentation of the probe stimulus (Figures 5B,C; black
rasters). During these trials the cue changes how the network
responds to the probe. When SVMs were trained to distinguish
network responses to either the cue or the probe, they were able to
accurately determine which stimulus had been presented during
the cue phase of the task on 71.1%± 4.3% of trials without SNBs
SEM, n = 3; Figure 5D). SVMs were capable of classifying the
adapted responses of the network during the probe phase equally
well (72.6%± 6.4%, SEM, trials without SNBs, n = 3).

In order to compare this data with previous IED experiments,
trials with SNBs were segregated into three classes depending
on whether the SNB occurred prior to cue onset (Figures 5B,C;
red rasters), during the delay (blue rasters), or during the probe
presentation (green rasters). SVMs could not accurately classify
network responses to the probe for any of the three classes of trials
with SNBs. This was true when SVMs were trained using trials
without SNBs (Figure 5E) or trials with SNBs. However, different
results were seen among each of three classes of SNB-containing
trials when these SVMs were tested on their ability to correctly
distinguish cue stimuli. On delay or probe phase trials with SNBs
(Figure 5E; blue and green lines), SVMs were able to correctly
classify network responses to the cue stimulus. However, on cue
phase trials with SNBs, SVMs failed to correctly classify the cue
(Figure 5E; red line).

Figures 5F,G summarize the results of three experiments,
presenting the average accuracy that SVMs trained using control
trials were able to classify SNB-trial network responses to cue
stimuli (Figure 5F) and probe stimuli (Figure 5G). All three types
of trials with SNBs result in diminished capacity for SVMs to
classify network responses to the probe stimulus (Figure 5G).
As expected, SVMs were unable to classify network responses to
the cue stimulus during cue phase trials with SNBs (Figure 5F;
red bar) but were able to classify probe phase trials with SNBs
(Figure 5F; green bar). In the case of delay phase trials with
SNBs, classification results varied across dishes. An analysis of
seven dishes found that this variability correlated with the delay
between the cue-elicited response and the onset of the network
burst. When there was a long lag between the 100–200 ms
cue-elicited response and the onset of a network burst, SVM
classifiers that were trained on control trials generalized well to
delay phase trials with SNBs. In cases where the network bursts
followed quickly after the initial cue-elicited response, classifiers
generalized poorly. As a result there is a large standard error for
the blue bar in Figure 5F.

NETWORK EXCITABILITY DETERMINES THE PATTERN OF NETWORK
ACTIVITY
When network responses across all time bins were analyzed,
the same correlations found in the previous task were found in
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FIGURE 4 | The Number and Pattern of Units Activated by a SNB is
Network Specific. (A,B) Active units during trials with SNBs (top row) and
control (bottom row) for two networks: Batch1905-Dishes 1, DIV9 and 4,
DIV11 (left and right). Each 8 × 8 array is laid out in the same configuration as
the recording electrodes. Color map indicates probability that a given unit is
active in specified time bin. (C,D) Mean firing rate (spikes/s) during control
(black) or trials with SNBs (red). (E,F) Entropy time series. The entropy during
trials with SNBs (solid red line) measures how many unique network
response patterns were seen in each time bin (y = axis counts the equivalent
number of unique network response patterns associated with the entropy
value, see Materials and Methods). The number of trials with SNBs is the
upper limit on entropy (dashed red line; E: 46 trials with SNBs, F: 16 trials
with SNBs). Solid black line indicates the average entropy for 46 control trials

(E; sampled from 783 control trials, 46 trials with SNBs) or 16 control trials
(F; sampled from 816 control trials, 16 with SNBs). Trials without SNBs were
resampled 300 times and 99th percentiles are shown in gray. Other details as
in legend of Figure 1. (G–J) Cross-correlation matrices computed at two time
points for control (left) and trials with SNBs (right). Trials are sorted to form
clusters of similar network responses (red squares). Each cell in the cluster
compares the binary response vectors from the two trials as indicated by row
and column position and the Color map indicates the correlation distance
(response similarity) between the two binary network activity vectors (range
= 0 to 1). (G,H) Network responses from the first time bin, prior to stimulus
presentation, ranging −500 ms to 50 ms post-stimulus. (I,J) Network
responses from the second time bin, during and after stimulus presentation,
ranging from 50 to 300 ms post-stimulus.

the sequential stimulus task: firing rate, the number of active
channels and entropy are all positively correlated. In order to

investigate whether SNBs that occur during the delay phase
of the task might have properties different from those that
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FIGURE 5 | Spontaneous Network Bursts Disrupts Stimulus-specific
Information Stored Using Hidden Memory Mechanisms. (A) Modified
paired pulse task: the sequential stimulus task. Two stimuli were presented
sequentially to a neuronal network: a cue stimulus followed by a probe
stimulus after a short delay. The cue stimulus could be one of two random
dot stimuli. The probe stimulus was fixed for every trial. Marked in red,
blue, and green are the cue, delay, and probe phases that define the three
different kinds of trials with SNBs. (B,C) Peristimulus raster plot of
responses to two different stimuli, recorded from a DIV11 neuronal network
during the sequential stimulus task. Each row represents a different trial,
and trials are sorted into control and trials with SNBs. On trials without
SNBs, tick marks are black. Trials with SNBs are colored depending on
whether a spontaneous burst was observed during the cue (red), delay
(blue), or probe (green) phases. Other conventions as in Figure 3A.
(D) Time series identifying the amount of cue-related stimulus information
across the trial. Time series are constructed as discussed in Figure 3D.
SVMs were trained and tested on trials without SNBs. Accuracy of SVM on
classifying training trials is shown with dashed lines. Accuracy of SVM
classification on testing trials is shown by black solid line. Chance
classification is 50%, other conventions as in Figure 3D. (E) Time series
identifying the amount of cue-related stimulus information on trials with
SNBs. The SVM is trained using data from trials without SNBs (dashed
black line) and then tested on cue, delay, or probe phase trials with SNBs
(red, green, or blue lines, respectively). Other conventions as in (D). Data
(A)-(E) from 1905-Dish4, DIV11. (F) Mean change in classification accuracy
measured during presentation of the cue stimulus for each of the three
trials with SNBs (cue phase coded red, delay phase coded blue, probe
phase coded green). Change in accuracy characterized as a percent of the
classification accuracy during trials without SNBs. Vertical black lines on
each bar indicate SEM (n = 3, 1905-Dish 4 DIV11, 2106-Dishes 3 DIV10 and
5 DIV9). (G) Mean change in classification accuracy during presentation of
the probe stimulus. Other conventions as in (E), n = 3, 1905-Dishes 4
DIV11, 2106-Dishes 3 DIV10 and 5 DIV9).

interrupt the presentation of cues, delay phase network responses
on trials with and without SNBs were collected and analyzed.

Inspection of delay phase responses revealed these correlations
do not hold in all networks. Figure 6 presents data from two
networks that respond differently when stimulus presentation
is interrupted by an SNB. Figures 6A,D display the responses
of two different cultured neuronal networks during delay phase
trials with SNBs (top row) and trials without SNBs (bottom
row). When SNBs occur during the delay phase they recruit
a large number of units from across the network. In contrast,
on trials without SNBs, only a few units are activated by light
stimulation or during the delay. However in both cases, increases
in mean firing rate track increases in the number of activated units
(Figures 6B,E).

In the first network the overall correlation between active
units, firing rate, and entropy mostly holds during both control
and error trials (Figure 6C). The entropy on control and delay
phase trials with SNBs does not really diverge until the third time
bin, which is where an SNB occurs on delay phase trials with
SNBs. In the fourth and fifth time bins, the very high entropy
of the SNB response continued while activity on control trials
diminished to zero. Although this network mostly follows the
trends expected by the overall correlation, there are some small
variations in entropy that run counter to this the trend. During
the fourth time bin when both firing rate and the number of
active channels are at their peak, a slight decrease in entropy is
observed.

For the second network (Figure 6F), the pattern of entropy
during SNBs does not follow the trend expected by the overall
correlations. During the cue phase, presentation of the stimulus
increases entropy, mean firing rate and the number of active units
in both control and error trials. As with the first network, the
occurrence of a SNB in the third time bin is associated with
higher firing rates and more active channels, however entropy
decreases to levels below control trials for the same time bin.
Hence the response on SNB-trials was more stereotyped than
the response on control trials. In the fourth time bins, the
pattern of network activity on trials with SNBs became more
stochastic and entropy increased. However entropy did not peak
until the fifth time bin, which is associated with a markedly
lower firing rate and average number of active channels. While
activity is lower during control trials, the overall patterns in
mean firing rate, active units, and entropy did not deviate from
expected overall correlations. Interestingly, in both networks,
peak firing rate is associated with a reduction in entropy, and
in adjacent time bins where firing rate is lower, entropy is
higher.

Network responses were analyzed and grouped by similarity
using cross-correlation matrices (Figure 7). Control trials (from
the network shown in Figures 6D–F) are shown at left and trials
with SNBs at right. The identity of the stimulus influenced the
occurrence of a network burst and as a result, the two stimuli used
in these experiments are not equally distributed among control
and SNB trials. Control trials are slightly biased towards stimulus
2 (stimulus label distribution entropy = 0.92 bits) and trials with
SNBs are biased toward stimulus 1 (stimulus label distribution
entropy = 0.77 bits). When all three cases are considered, the
average entropy of trials without SNBs was 0.94 bits and trials
with SNBs, 0.56 bits (n = 3).
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FIGURE 6 | Firing Rate, Active Channels, and Entropy of SNBs During
Sequential Stimulus Trials. Data from sequential stimulus trials are
presented as time series. (A) 8 × 8 arrays, indicating probability that
individual units are active from neuronal network, 1905-Dish4 DIV11. Each
array corresponds to one time bin. Conventions as in Figure 3A. Trials
without SNBs consist of trials where no SNB occurred. Trials with SNBs
consist of trials where an SNB occurred during the delay phase of
sequential stimulus task, a modified paired-pulse paradigm. (B) Mean firing
rate recorded across all units, averaged by trial (spikes per second). Black
line indicates trials without SNBs, red line trials with SNBs. Every time bin
after the first is 250 ms. (C) Entropy of network responses, plotted as

(Continued )

FIGURE 6 | Continued
the equivalent number of unique network response patterns. 76 trials with
SNBs are plotted in red. 76 trials without SNBs (randomly sampled 300
times from 150 trials without SNBs) are plotted in black. Other conventions
as in Figure 4C. (D) 8 × 8 arrays associated with a second neuronal
network, 2106-Dish 5 DIV9. (E) Mean firing rate of second network in
spikes per second. (F) Entropy of second network. 98 trials with SNBs are
shown in red. Black line represents the mean entropy of 98 trials without
SNBs drawn from a pool of more than 400 trials without SNBs by 300
re-samplings. 99th percentiles of the resampling are shown in gray. Other
conventions as in Figure 4C. When data from 3 cultures (1905-Dish 4
DIV11, 2106-Dishes 3 DIV10 and 5 DIV9) are pooled (n = 60 observations: 2
trial types across 10 time bins from 3 cultures with scores standardized
within each culture), the correlation between the mean firing rate and the
normalized entropy was r = 0.34 (p = 0.008); the correlation between the
number of active channels and normalized entropy was r = 0.35,
(p = 0.007); and larger numbers of active channels are correlated with
higher firing rates, r = 0.92 (p < 0.0001).

In Figure 7A, the response of the network to stimulus
presentation is analyzed. During control trials the first cluster of
similar network responses was found to be selective for stimulus
2 (0.52 bits) while the second cluster was nonselective (0.99
bits). During trials with SNBs the same pattern was found;
the first cluster of similar responses was selective for stimulus
1 (entropy = 0.29 bits) while the second cluster was relatively
nonselective (entropy = 0.82 bits). During the next time bin
(Figure 7B), the SNB occurred and on trials with SNBs most
of the network responses were grouped into a large red cluster
that was mildly selective for stimulus 1 (0.7 bits). The second,
smaller cluster was nonselective (0.94 bits). During control
trials, both clusters of similar network responses mildly favored
stimulus 2 (0.64 bits and 0.78 bits). In the next bin (Figure 7C)
control trials went silent and were stimulus non-selective (0.93
bits). A remnant of the SNB continued during trials with SNBs
and the network responses were, with the exception of one
outlier, grouped into one cluster. This cluster was nonselective
(0.8 bits).

Although not displayed, the second network (Figures 6A–C)
had similar trends: stimuli were unequally distributed amongst
trials with and without SNBs so that control and SNB trials had
entropy values of 0.98 and 0.49 bits, respectively. During stimulus
presentation, similar, highly selective responses were observed for
both control and SNB trials (average of 0.14 bits per cluster).
During the next time bin, where the SNB occurred, responses on
both control and SNB trials were relatively nonselective, with the
largest control cluster having an entropy of 0.92 bits and largest
cluster of SNB responses having an entropy of 0.22 bits. In the
next bin, control trials were silent with an entropy of 0.98 bits
and the SNB trials were all clustered into a single SNB response
except for 3 outliers. The entropy of that SNB response was
0.37 bits.

In summary, delay-phase SNBs, like pre-stimulus SNBs,
recruit one or possibly a few stereotyped patterns of active units.
Additional units get recruited in a stochastic fashion. When the
observations from all four networks are pooled, a trend in the
entropy on SNBs and mean firing rate in SNBs emerges: networks
that have a higher mean firing rate during SNBs (>500 spikes/s)
experience a reduction in entropy during SNBs while networks
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FIGURE 7 | Matrix Comparing Similarity of Bursting and Non-Bursting
Responses During Sequential Stimulus Trials. Matrices encode the
similarity of network responses. Color of cells indicates the similarity of
responses by correlation strength. Average entropy of the clusters is given
at top of each figure. Other conventions as in Figure 4. (A) Clusters of
similar network responses during time bin when stimuli are presented (50
ms to 300 ms) for control (left) and trials with SNBs (right). (B) Clusters of
similar responses during the time bin (300 ms to 550 ms) when the SNB
usually occurs on trials with SNBs (right). Data from trials without SNBs
also shown (left). (C) Clusters of similar responses during the third time bin
(550–800 ms) for trials without SNBs the relationship between similar
network responses and stimulus identity has deteriorated in this time bin.
Trials with SNBs remain unselective for stimuli. (1905-Dish4 DIV11).

that have a lower mean firing rate during an SNB (<500 spikes/s)
experience an increase in entropy during SNBs (Figure 8).

DISCUSSION
The results from the experiments described above demonstrate
that stimulus-specific information can be represented in
randomly organized neuronal network formed from disassociated
cortical neurons and that this information is disrupted when
synchronized bursts of network activity take place. Specifically,
when complex optical stimuli are presented to optogenetically
modified neuronal networks, different stimuli elicit different
patterns of neural activity and these patterns are disrupted
by SNBs (Figure 3). SVMs can be trained to recognize which
stimulus is being presented on single trials by classifying the

FIGURE 8 | Scatterplot of Mean Firing Rate and Normalized Entropy.
Data from 7 spontaneous network bursts (SNBs) from 4 networks
(1905-Dishes 4 DIV11 and 5 DIV9, 2106-Dishes 3 DIV10 and 5 DIV 9) in
7 experiments (circles). Networks with higher mean firing rates during
SNBs have lower normalized entropies; networks with lower mean firing
rates during SNBs have higher entropies (r = −0.78, p = 0.037).

pattern (unit number) and energy (firing rate) of neural responses
(Figures 3, 5). The activity of many units activity is redundant
and in agreement with a previous report, most of the stimulus
information can usually be extracted from about 4–5 units or
10% of recorded units (Dranias et al., 2013). The disruption
of these “active” representations of stimulus information by
SNBs has not been shown previously (Figures 3H, 5E). Cultured
neuronal networks can also store stimulus-specific information
across delays of several hundred milliseconds where no neural
activity has been measured (Dranias et al., 2013). This was
revealed using a modified paired pulse experiment in which
these “memory traces” are likely represented by the adaptation
of neurons or synapses and it is shown here that this stimulus-
specific adaptation is disrupted when SNBs occur during stimulus
presentations or during the delay (Figures 5B,C,E, 8). Together
these findings demonstrate networks bursts disrupt active and
hidden stimulus memory.

The structure of SNBs was characterized in addition to
measuring the effects of SNBs on stimulus information. A
correlation between entropy, firing rate, and the number of
active channels was observed. This correlation suggests a simple
and intuitive model that describes network dynamics during
an SNB: SNBs recruit additional units, increasing the overall
firing rate. With more units active and higher firing rates, more
distinct patterns of network activity are possible, hence network
entropy increases. However, not all the networks seemed to follow
this simple model of network dynamics. For some networks
increases in firing rates and active units did not increase entropy
(Figure 8).

Since the trend in entropy wasn’t constant, a cluster analysis
was performed to look at the structure of network responses.
It was hypothesized that SNBs either act as a noise source that
corrupts the representations of stimuli or that they overwrite
stimulus-elicited signals by saturating the network with activity.
The results from the cluster analysis were similar for trials
with SNBs from the single stimulus and sequential stimulus
experiments: SNBs do not act as white noise, nor do they simply
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saturate all the active units with activity. Instead SNBs tend to
activate one or a few stereotyped patterns that are noisy and
the number of different stereotyped responses varies between
dishes (Figure 8). In some networks, SNB responses are highly
reproducible and form almost a single cluster (Figures 4E,G).
In other networks, the SNB responses are more diffuse with
different patterns (Figures 4F,H). These results seem to occupy
a middle ground: some networks have stereotyped bursts while
others have several different noisy stereotyped response patterns
(Figures 4, 6, 8).

Work by Shew and others (Shew et al., 2009, 2011) provide an
explanation for this behavior. These researchers were exploring
how the balance between excitation and inhibition can influence
the capacity of neuronal networks to represent information. The
ability of a network to store information is limited by how
many states the network can occupy (Shew et al., 2011). Their
experiments demonstrate that an “inverted-U” describes the
relationship between network excitability and network entropy.
When a network is too excited it saturates and cannot occupy
more than one state. When a network is too inhibited, there is
no activity and again no information can be represented. This
rule is consistent with the observations made here (Figure 8).
However, in these experiments no pharmacological agents were
applied so the observed differences in entropy reflect the intrinsic
excitability of different neuronal networks. Some networks are
more excitable (have a higher mean firing rate during SNBs)
and in these networks an SNB will quickly saturate all available
units, decreasing entropy. Other networks are less excitable and
SNBs simply recruit more units, increasing network entropy
(Figure 6). Figure 6C demonstrates that this rule is at play
even in less excitable networks; when firing rate peaked in
this network, entropy actually decreased slightly. In terms of
applications to understanding epilepsy and IEDs, the balance
of excitation and inhibition in a network is a property known
to be critical in epilepsy (Raichman and Ben-Jacob, 2008).
Understanding how information representations are changed
when pharmacological agents are used to alter the balance of
excitation and inhibition in intrinsically excitable networks is an
area of future investigation.

The entropy time series provides some additional observa-
tional evidence to the generally acknowledged temporal evolution
of network responses to stimulation. Specifically it has been noted
that there is an initial orderly response to a stimulus that decays
into chaotic randomness (Jimbo et al., 2000; Kermany et al.,
2010). On trials without SNBs, entropy increases slightly during
stimulus presentation and then shows a larger increase just after
stimulus presentation when network responses transition into
disorder (Figures 4E,F, 6C,F).

The current study leverages a technical advantage to elaborate
the findings of previous paired pulse experiments and answers
a somewhat more difficult question: does stimulus-specific
information survive an SNB? In a sequential stimulus or
modified paired-pulse task, a neuronal network will normally
respond to the second stimulus with an adapted response
whose recruitment and activity levels vary depending on the
identity of the first stimulus (Figure 5D). SNBs disrupted any
dependency of the response of the second stimulus on the

identity of the first stimulus (Figure 5E). When an SNB occurs
during cue presentation, cue-specific information is not encoded
into network responses, and no stimulus-specific adaptation of
network responses to the probe stimulus is detected. When an
SNB interrupts presentation of the probe stimulus, no cue-
specific information can be found in the network response to
the probe, though the network response to the cue remains
intact. Finally, when an SNB occurs during the delay phase, the
network response to the probe no longer reflect stimulus specific
information (Figure 5G).

More general application of these results requires clarification
of what the behavior of this in vitro model of an isolated
network of cortical neurons has in common with the behavior
of networks in vivo, which are an integral part of a functional
brain. One property both networks appear to have in common
is the ability to represent different stimuli using spatiotemporal
patterns of activity in neural circuits (Buonomano and Maass,
2009). In cultured neuronal networks, different electrical stimuli
can be differentiated by the paths or circuits of neurons they
activate (Shahaf et al., 2008). This observation is confirmed
in our studies as the SVMs we use to identify stimuli act by
distinguishing stimuli on the basis of which units are recruited
and their firing rates (spatial pattern and energy). The heat
maps in Figures 3C,D also show that different patterns of
activation can be associated with different stimuli. The ability of
SNBs to recruit additional units and synchronize their activity
provides an explanation for how they are able to devastate
stimulus representations: SNBs recruit units from across isolated
parts of the network and provide these units with synchronized
input. The response elicited by an SNB is usually longer in
duration and higher in energy than optogenetic stimulation
so it is natural for the stimulus-specific pattern of adaptation
induced by optogenetic stimulation to be disrupted and SNB.
The ability of a network to store stimulus information using
different spatial patterns of activity, of networks to process
different stimuli in stimulus-specific circuits, of neurons to
maintain traces of past activation neural activity, and of network
bursts to recruit neurons and synchronize activity are all related
to fundamental network mechanisms shared by networks in
vitro and in vivo. Because of these shared properties and the
relative difficulty of using microelectrodes and making unit
recordings in vivo, this study provides observations on how SNBs
destroy stimulus information that can serve as a guide for future
hypotheses regarding cortical tissue that is epileptogenic and
prone to IEDs. It will be interesting to see if IEDs in a cortical
network have properties different from those that would be
expected from a generic neural network formed from dissociated
cortical neurons. If so, these results might help to reveal those
principles.

Returning to the question raised in the original study by Kleen
et al. (2010) that motivated this investigation: whether bursts
of epileptiform activity always destroy stimulus information
stored in an isolated neuronal network. The results of the
present experiments, grounded in more basic processes and
using microelectrodes and unit recordings, indicate that SNBs
do indeed destroy stimulus specific information, regardless
of timing. However there are a few questions and avenues
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of investigation left unanswered. First it appears that while
SNBs destroy stimulus-specific information, these bursts have a
nontrivial entropy and may convey some information. One piece
of information that survives an SNB appears to be nonspecific
information about stimulation. Further analysis of this question
might be an interesting avenue of future investigation. Another
question that this research didn’t examine but might be relevant
to more general questions is whether isolated neuronal networks
are capable of representing information about more than one
stimulus simultaneously. This question appears to relate to the
ability of a network to harbor isolated representations of stimuli.

Relating to statistical methods, the performance of the
classifier on training data was cross-validated with testing data
not encountered during classifier training using the method
known as repeated random subsampling (where data is repeatedly
randomly partitioned into training and testing sets). The classifier
was trained and tested 50 times with different random samples
of data. The average accuracy or correct classification rate
provides a measure of classifier reliability, similar to how its
complement, the misclassification rate, might be used in other
papers (or derivative measures that compute a loss function based
on the misclassification rate, e.g., kfoldloss). Our approach is
approximately equivalent to a 4-fold cross validation (or k-fold
validation where k = 4, which divides data into 75% training
and 25% testing), but instead of cycling through the 4 folds, we
test and train on 50 different random samplings. K-fold cross
validation has the disadvantage that it generally needs larger data
sets (i.e., the number of trials divided by k (size of the fold) should
be large enough the fold is likely to be a fair sample. The data sets
used here typically have 100–500 trials per class so it is unlikely
that a single k value larger than 4 could be selected to analyze all
data sets. Hence a k-fold cross validation approach is unlikely to
produce results different than those observed using random sub-
sampling.

IEDs are difficult to study in vivo and there have been no
experiments done to establish their impact at the neuronal circuit
level. This study provides observations on how SNBs destroy
stimulus information that can guide future hypotheses. The aim
of this study was to provide insight into the kinds of neural
dynamics that explain how synchronized bursts of neural activity
can disrupt cognitive processing. Because of advances in stem
cell technology, the development of new in vitro models of
basic processes relevant to cognitive and neurological disorders
has become increasingly relevant (Chiappalone et al., 2003;
Berger et al., 2011; Durnaoglu et al., 2011; Hales et al., 2012;
Stephens et al., 2012). The ability to culture human neurons
derived from patients with neurological diseases and to test
those cells using in vitro drug protocols will help researchers
develop individualized treatments for patients and perhaps even
aid in the development of new drugs for controlling negative
symptoms.
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