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Cervical spinal injuries are a significant concern in all trauma injuries. Recent military con-
flicts have demonstrated the substantial risk of spinal injury for the modern warfighter.
Finite element models used to investigate injury mechanisms often fail to examine the
effects of variation in geometry or material properties on mechanical behavior. The goals
of this study were to model geometric variation for a set of cervical spines, to extend
this model to a parametric finite element model, and, as a first step, to validate the
parametric model against experimental data for low-loading conditions. Individual finite
element models were created using cervical spine (C3–T1) computed tomography data for
five male cadavers. Statistical shape modeling (SSM) was used to generate a parametric
finite element model incorporating variability of spine geometry, and soft-tissue material
property variation was also included. The probabilistic loading response of the paramet-
ric model was determined under flexion-extension, axial rotation, and lateral bending and
validated by comparison to experimental data. Based on qualitative and quantitative com-
parison of the experimental loading response and model simulations, we suggest that the
model performs adequately under relatively low-level loading conditions in multiple load-
ing directions. In conclusion, SSM methods coupled with finite element analyses within
a probabilistic framework, along with the ability to statistically validate the overall model
performance, provide innovative and important steps toward describing the differences in
vertebral morphology, spinal curvature, and variation in material properties. We suggest
that these methods, with additional investigation and validation under injurious loading
conditions, will lead to understanding and mitigating the risks of injury in the spine and
other musculoskeletal structures.
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INTRODUCTION
Cervical spine injuries are of significant concern in all trauma
injuries, particularly given the potential for spinal cord injury
in unstable injuries, with an estimated 42% of all cervical spine
injuries being unstable (Milby et al., 2008). Recent military con-
flicts (i.e., Iraq and Afghanistan) have demonstrated the substan-
tial risk of spinal injuries for the modern warfighter due to the high
occurrence of traumatic injuries in combat. Explosive mechanisms
resulted in inertial injuries due to direct blast injury and/or sub-
sequent impacts in 75–78% of combat casualties (Belmont et al.,
2012) and 28–39% of these injuries were suffered in the head/neck
(Wade et al., 2007; Owens et al., 2008; Belmont et al., 2012).
Although muscle strain is the most common injury in the neck,
warfighters have experienced vertebral compression fractures and
fracture of the spinous process in the lower cervical vertebrae, as
well as interspinous ligament injuries in the lower cervical spine
(Anderson, 1988; Schall, 1989; Coakwell et al., 2004).

Mechanisms of bony or ligamentous injury in the cervical spine
and elsewhere have been investigated using finite element model-
ing, a common tool of structural analysts. Finite element models
of the spine or spinal motion segments often employ generalized
anatomical geometry or subject-specific geometry where the mor-
phology of spinal components (e.g., vertebrae, intervertebral disks,
and ligamentous structures) is described based on a specific set of
imaging data, in either an explicit or idealized manner (Kallemeyn
et al., 2010). However, such generic or individualized models do
not allow for investigation of the full range of effects of variation
in vertebral and spinal segment orientation and geometry and the
influence of geometrical factors on the mechanical behavior of the
spine (Laville et al., 2009).

Statistical shape modeling methods have been used to describe
variability in the morphology of a population of anatomical struc-
tures in terms of a random field representation (Cootes et al., 1994;
Lorenz and Krahnstover, 2000; Kaus et al., 2003; Rueckert et al.,
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2003). Current applications of statistical shape modeling (SSM)
include automated image segmentation, image or object regis-
tration, object recognition, and disease diagnosis (Rueckert et al.,
2003; Benameur et al., 2005; Dornaika and Ahlberg, 2006; Ferrarini
et al., 2006; Rao et al., 2006; Koikkalainen et al., 2007). Statistical
shape models capture the variability of biological structures by
projecting a high dimensional representation of the structure onto
a lower dimensional subspace of possible shapes constructed from
a population of training shapes. A modeling approach combining
SSM with finite element modeling allows investigation of loading
behavior in specific individuals, as well as over the full range of
morphological variability described within the model set.

The objectives of this study were to develop and implement
methods based on SSM to describe the multivariate morphology
and geometry within 3D imaging data for a set of cervical spines,
to extend this model to a parametric finite element model of the
cervical spine, and to quantitatively validate the performance of
the parametric model against non-destructive experimental data.
This study is the first step in this research program with the overall
goal of investigating the effects of geometry and morphometry
variation on the complex risks associated with cervical injury in
scenarios that might be experienced in the occupational exposure
of the modern warfighter, with the intent to provide the basis for
mitigating these injuries in further work.

METHODS
IMAGE PROCESSING
Five cadaver specimens representative of the 50th percentile male
warfighter (based on weight) were obtained and the cervical
(C3–T1) spine of each specimen was scanned using a computed
tomography (CT) system (Aquilion 64, Toshiba – Medical Sys-
tems, Tokyo, Japan). CT data were filtered using a sequence of
median and anisotropic diffusion filtering to reduce data noise.
Filtered data were semi-automatically segmented to extract verte-
bra data from the CT image data (Figure 1) (Seg3D, The Center
for Integrative Biomedical Computing, University of Utah, Salt
Lake City, UT, USA). Watertight triangulated surfaces were gener-
ated to describe the outer boundary of each vertebra (e.g., five
cervical spines× seven vertebrae) by computing the isosurface
geometry for the segmented data region and smoothing the result-
ing surfaces to remove any stair-stepping effects due to out of
plane image resolution (Figure 1) (MATLAB R2012a, The Math-
works, Inc., Natick, MA, USA). Vertebral surfaces were resam-
pled, resulting in approximately 4,000 faces for each triangulated
surface.

FIGURE 1 | Image processing pathway from CT data to segmented
data to vertebral surface.

DEVELOPMENT OF INDIVIDUAL SPINE MODELS
All vertebral surfaces were positioned based on visual observa-
tion to yield nominal anatomic orientation of the full cervical
spines and to correct for any positioning errors present dur-
ing CT scanning (Scheer et al., 2013). The five surfaces at each
vertebral level were registered to each other using an arbitrarily
selected vertebral surface as the template. Vertices from the tem-
plate surfaces were mapped onto the remaining four surfaces at
each vertebral level and repositioned using a coherence point drift
algorithm such that all vertices were positioned at correspond-
ing anatomic locations between all vertebral surfaces at the same
cervical level (Figure 2) (Myronenko and Song, 2010). Thus, the
resulting vertebral surfaces were defined by the same surface mesh
definition due to vertex correspondence across the set of verte-
brae at each vertebral level. Average vertebrae were determined
by averaging vertex positions for all vertebrae at each vertebral
level.

Volumetric tetrahedral meshes consisting of 25,000–35,000 ele-
ments (5,500–6,800 nodes) were defined for the average vertebral
surfaces and refined to improve mesh quality (Tetgen, Weierstrass
Institute for Applied Analysis and Stochastics, Berlin, Germany;
Stellar, University of California, Berkeley, CA, USA). At each ver-
tebral level, the average vertebral mesh was elastically warped to
match each individual vertebra using displacement vectors cal-
culated between corresponding surface vertices on the average
vertebral mesh and each individual vertebral surface, resulting in
a set of five corresponding vertebral mesh models for each cervical
level (ANSYS v11.0, ANSYS, Inc., Canonsburg, PA, USA). Indi-
vidual corresponding vertebral meshes were transformed back to
the nominal anatomic position of the appropriate vertebra within
each cervical spine.

FIGURE 2 | A set of corresponding vertices is identified using blue,
yellow, red, magenta, and orange dots on three different vertebral
surfaces.
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FIGURE 3 | Surface node sets were selected on adjacent vertebrae to
specify the boundary of the intervertebral disk.

FIGURE 4 | Splines were fit to the sets of nodes defining intervertebral
disk boundaries on adjacent vertebrae and the resulting splines were
projected to the vertebral endplates. Similarly, an ellipse was defined to
represent the interface of the disk nucleus and annulus and projected to
the adjacent vertebral endplates. Surfaces were defined by connecting the
resulting closed curves and adjacent vertebral endplates further bounded
the intervertebral disk space.

In order to define intervertebral disk models, vertices bounding
the approximate location of the intervertebral disk were selected
on the adjacent vertebral endplates of the average cervical spine
model (Figure 3). Due to mesh correspondence, vertices selected
on the average motion segment models defined disk boundaries
for all individual motion segments. Splines were fit through each
set of selected surface vertices, resulting in a set of closed curves
lying on the respective endplate surface and defining disk bound-
aries on adjacent endplates of the individual cervical spine models
(Figure 4). Ellipses with dimensions proportional to the disk
boundary curves were defined at the centroid of adjacent endplate
curves and projected on to adjacent surfaces in order to define
the interface between disk nucleus and annulus (Figure 4). Sur-
faces defining outer boundaries of the disk annulus and nucleus
were generated between appropriate splines on adjacent vertebral

FIGURE 5 |Typical intervertebral disk model with separate annulus and
nucleus models.

endplates and disk endplate surfaces further bounded the interver-
tebral disk space. A hexahedral mesh of the intervertebral disks was
defined within the bounded disk space for each individual spines
(Truegrid, XYZ Scientific Applications, Inc., Livermore, CA, USA)
(Figure 5).

Facet joint cartilage was modeled by projecting the set of surface
triangles that define facet surfaces of adjacent vertebrae outward
along the vertex normals to form a single layer of wedge ele-
ments. Facet cartilage elements were defined for each facet surface
using a constant thickness, which was iteratively determined to
maximize joint contact without facet surface interference. Liga-
ments (e.g., anterior longitudinal ligaments, posterior longitudi-
nal ligaments, interspinous ligaments, ligamentum flavum, and
intertransverse ligaments) and facet joint capsules were modeled
using discrete spring elements to connect selected nodes on adja-
cent vertebrae. The facet regions and nodes representing ligament
attachment sites were determined from the average cervical spine
mesh. Mesh correspondence allowed the same sets of surface tri-
angles and nodes to be used on each of the individual spine
models.

Individual spines were translated such that the centroid of the
central vertebra (e.g., C4) was located at the origin of the Carte-
sian space in order to register individual spines while maintain-
ing individual spine intersegmental spacing and curvature. Each
individual volumetric model of the spine included C3–T1 verte-
brae, intervertebral disks, facet joints, and relevant ligamentous
structures (Figure 6).

DEVELOPMENT OF STATISTICAL SHAPE MODELS OF THE CERVICAL
SPINE
A SSM was generated to describe and investigate geometric vari-
ability in the set of five cervical spines. Joint point distribu-
tion models were constructed from all individualmeshes. The
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FIGURE 6 | Average cervical spine model note: vertebral bodies are shown in gray, intervertebral disks are shown in blue, facet elements are shown in
yellow, and ligaments are shown in red.

volumetric mesh for each individual was described by a shape
parameter vector as:

pi =
(
v1x , v1y , v1z , . . . , vjx , vjy , vjz

)T
(1)

where vj(xyz) are the three-dimensional coordinates of the nodes in
the volumetric spine model, j= 1, . . . , J = 54,960 nodes in the vol-
umetric mesh, and i= 1, . . . , n= 5 denote each individual spine
in the set.

The mean shape of all components (e.g., vertebrae, disks, facets,
and ligament attachment points) in the set of cervical vertebrae
was defined as:

p =
1

n

n∑
i=1

pi (2)

and the correlation between individual models in the set was given
by the empirical covariance matrix:

S =
1

n

n∑
i=1

(
pi − p

) (
pi − p

)T
(3)

A principal components analysis (PCA) of the covariance matrix,
S, results in a set of k= n− 1 eigenvalues (λk) and eigenvectors
(qk), which are the principal directions spanning a shape space
centered at the mean, p. The proportion of the total variance
described along each eigenvector is equal to its corresponding
eigenvalue divided by the sum of all eigenvalues; eigenvectors cor-
responding to the largest eigenvalues describe the majority of the
variance. Thus, the finite element mesh for each cervical spine in
the set were described in terms of the average model and a weighted
linear combination of uncorrelated principal shape modes as:

pv = p+
m∑

j=1

cj

√
λj qj (4)

where pv is a vector containing coordinates for all nodes in the FE
model, m is the number of eigenvalues, λj, and deviation from the
average spine, p, was determined as the sum of the products of
a set of scalar weighting factors, cj, and SSM standard deviations,√

λj , along the qj (eigenvector) directions (Bredbenner et al., 2010;
Nicolella and Bredbenner, 2012).

Accordingly, the highly correlated 3D spine geometry variables
are reduced into a relatively small set of uncorrelated and inde-
pendent composite morphological traits. All variability within the
original set of spine models (originally described by over 164,880
variables) is now described by the weighting factors for four prin-
cipal components for each cervical spine. Principal components
are new descriptive variables that, by definition, are linear com-
binations of the original descriptive variables and, furthermore,
all geometry information in the original models is retained in the
new model descriptions.

In order to investigate the variability in vertebral morphology,
intersegmental orientation, and overall curvature in the cervi-
cal spine models, a series of variation models were created and
compared to the average models. Principal component weighting
factors in Eq. 4 were modified to generate models describing the
difference of 1.0 standard deviation of each principal component
(i.e., shape mode) from the average model.

DEVELOPMENT OF A PARAMETRIC FINITE ELEMENT MODEL OF THE
CERVICAL SPINE
The statistical shape model of the cervical spine (including ver-
tebrae, disks, and ligaments) was generated in a form directly
applicable to finite element analysis and geometry variation in the
finite element model was explicitly described by principal com-
ponent weighting factors. The average spine segment model was
created. Additionally, the effects of spine geometry variation were
investigated by modifying the average model with the geometry
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Table 1 | Random variable definitions.

Random variables Value Distribution

type

Weighting factor for PC1 0.0±1.0

(−0.9–0.9)

Truncated

normal

Weighting factor for PC2 0.0±1.0

(−0.9–0.9)

Truncated

normal

Weighting factor for PC3 0.0±1.0

(−0.9–0.9)

Truncated

normal

Weighting factor for PC4 0.0±1.0

(−0.9–0.9)

Truncated

normal

Bulk modulus for intervertebral disks 10.99±8.47 MPa Lognormal

Scale factor for ALL load curve (C3–C5) 0.2500±0.0422 Lognormal

Scale factor for ALL load curve (C5–T1) 0.2500±0.0480 Lognormal

Scale factor for PLL load curve (C3–C5) 0.2500±0.0709 Lognormal

Scale factor for PLL load curve (C5–T1) 0.2500±0.0260 Lognormal

Scale factor for ISL load curve (C3–C5) 0.2500±0.0520 Lognormal

Scale factor for ISL load curve (C5–T1) 0.2000±0.0211 Lognormal

Scale factor for LF load curve (C3–C5) 0.1250±0.0352 Lognormal

Scale factor for LF load curve (C5–T1) 0.1250±0.0211 Lognormal

Scale factor for JC load curve (C3–C5) 0.1250±0.0206 Lognormal

Scale factor for JC load curve (C5–T1) 0.1250±0.0205 Lognormal

PC, principal component; ALL, anterior longitudinal ligament; PLL, posterior lon-

gitudinal ligament; ISL, interspinous ligament; LF, ligamentum flavum; JC, joint

capsule.

traits carried by the principal components (Eq. 4). Principal com-
ponent weighting factors were defined as random variables with a
mean, standard deviation, and distribution shape (Table 1). Ver-
tebrae were modeled as rigid bodies, as this investigation did not
consider vertebral fractures.

The effects of variation and uncertainty in intervertebral disk
and soft-tissue material properties were also investigated by con-
sidering appropriate material parameters as random variables.
Each disk was modeled with a separate annulus and nucleus.
Soft-tissue material properties were modeled based on experi-
mental data found in the literature. Material behavior of the
annulus was modeled with a transversely isotropic hyperelastic
model with viscosity and material parameters were determined
from experimental data provided by Lucas et al. (2006). Lucas
et al. collected experimental data for the annulus using a ramp
and hold loading protocol, with a high rate ramp (52 mm/s) to
0.88 mm and a 10-s hold period, and also under sinusoidal load-
ing conditions (2 Hz with 0.65 mm peak-to-peak displacement).
Material properties used in the present model were determined
using the relaxation data and validated successfully against the
dynamic loading data. The bulk modulus of the annulus was
defined as a random variable (Table 1). A Prony series was defined
to approximate the viscoelastic relaxation behavior of the annulus
(Table 2). Material behavior of the nucleus was modeled using

Table 2 | Viscoelastic properties for the intervertebral disk annulus.

i : 1 2 3 4 5

C3–C5

Si 0.7440 0.1098 0.0356 0.0251 0.0855

τi 0.001 0.01 0.1 1.0 1000.0

C5–T1

Si 0.7440 0.1098 0.1580 0.0251 0.1053

τi 0.001 0.01 0.1 1.0 1000.0

Si, Prony series coefficients defining the relaxation function; τi, characteristic time

constants for the prony series, where values are given in seconds. Viscoelastic

properties were obtained from Lucas et al. (2006).

Table 3 | Material properties for the intervertebral disk nucleus.

Bulk modulus (MPa) Poisson’s ratio Viscosity coefficient

2.19 0.49 0.3

Material properties were obtained from Teo and Ng (2001).

a fluid material model and material properties were determined
from the literature (Table 3) (Teo and Ng, 2001; Nicolella et al.,
2006). Material behavior for the ligamentous and capsular struc-
tures was defined using experimental force-displacement data that
were collected under quasi-static loading conditions (Yoganandan
et al., 2000) (Figure 7). As multiple spring elements were used
to model anterior longitudinal ligaments, posterior longitudinal
ligaments, interspinous ligaments, ligamentum flava, and joint
capsules, experimental soft-tissue force-displacement data were
scaled to account for distribution of the soft-tissue response over
multiple discrete elements. Soft-tissue scale factors were treated as
random variables (Table 1).

The effects of variation in spine geometry and soft-tissue
material properties on cervical spine kinematic response were
determined by sampling the appropriate variable distributions
100 times using a Latin Hypercube approach within a probabilis-
tic framework (NESSUS v8.0, Southwest Research Institute, San
Antonio, TX, USA). Additionally, the contributions of each prin-
cipal component to model loading response were investigated by
creating the average model and models created by modifying the
average model with the geometry traits described by +1 standard
deviation of each principal component (Eq. 4), where principal
components were considered individually. Disk and soft-tissue
material properties were defined using mean values. In all model
simulations, T1 was fixed and pure flexion-extension, left–right
axial rotation, or left–right lateral bending moments of ±2.0 Nm
were applied to C3 and models were solved using LS-DYNA v. 971
(LSTC, Livermore, CA, USA).

VALIDATION OF THE PARAMETRIC FINITE ELEMENT MODEL OF THE
CERVICAL SPINE
A hierarchical probabilistic verification and validation approach
was used to quantify the performance of the parametric cer-
vical spine model (ASME, 2006; Nicolella et al., 2006). Briefly,
in previous work, material model parameters for the various
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FIGURE 7 | Experimental load-displacement data for soft-tissue material behavior.

ligaments and intervertebral disk components were determined
and validated and the kinematic response of each motion segment
(e.g., C3–C4, C4–C5, and C6–C7) was validated against inde-
pendent experimental data without any alteration to the material
model parameters. In the present work, the performance of the full
C3–T1 parametric spine model was validated against independent

experimental response data collected using cervical (C2–T1) spec-
imens obtained from seven “normal” young human cadaver spec-
imens (five males and two females; aged 33.4± 11.7 years with a
range of 20–51 years) provided by Wheeldon et al. (2006). Liga-
mentous soft tissue was left intact in the experimental specimens.
Wheeldon et al. fixed the T1 vertebra to a six-axis load cell,
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preconditioned the spine segment, and applied quasi-static pure
moments of 0.33, 0.5, 1.0, 1.5, and 2.0 Nm to C2, resulting in cer-
vical spine flexion-extension. Reaction load and vertebral rotation
data were recorded throughout the experimental testing. Wheel-
don et al. (unpublished data) used an identical loading protocol to
load the cervical segments in left–right axial rotation and left–right
lateral bending.

In order to evaluate the predictive performance of the paramet-
ric cervical spine model under non-destructive loading conditions,
the mean and one-standard deviation load response envelopes
were qualitatively compared between the model predictions and
the experimental data for each loading model. In order to quan-
tify model performance, we implemented a general performance
metric that characterizes the disagreement between the model

FIGURE 8 | Variation in geometry and alignment described by principal
component (PC) 1.

FIGURE 9 | Variation in geometry and alignment described by principal
component (PC) 2.

variation and relevant experimental data variation (Ferson et al.,
2008; Francis et al., 2012). This quantitative metric provides a
generalized approach to validation, rather than focusing on com-
parison of the mean predicted and experimental behaviors (Ferson
et al., 2008). Empirical cumulative distribution functions (CDFs)
were fit to the experimental data obtained from seven cervical
spine specimens at each of five applied moment values (0.33,
0.5, 1.0, 1.5, and 2.0 Nm) over the loading range for each loading
mode (e.g., flexion-extension, axial rotation, and lateral bending).
Empirical CDFs were also fit to the predicted loading response
for each loading mode at identical applied moment values, where
response data were determined for each of the models generated
by 100 Latin Hypercube samples of the variable space. Area metric
values were determined as the total area difference between the

FIGURE 10 | Variation in geometry and alignment described by
principal component (PC) 3.

FIGURE 11 | Variation in geometry and alignment described by
principal component (PC) 4.
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CDFs for the experimental results and the model predictions at
each of the five applied moment values for each loading mode
and have units of degrees, as with the loading response. How-
ever, metric values are directly associated with the loading level;
therefore, metric values were normalized by the mean experimen-
tal rotational displacement at each loading point. The resulting
dimensionless values were used to measure the agreement between
the response distributions over the full range of loading for each
loading mode.

RESULTS
The first principal component explains 63.8% of the total vari-
ability in cervical spine geometry, the first and second together
explains 78.1%, and the first three principal components explain
90.3% of the geometric variability in the five cervical spine seg-
ments,with the remainder of the variability described by the fourth
principal component.

Differences in morphology of individual vertebrae, interseg-
mental orientation, and overall spinal curvature are evident in
qualitative comparisons between the average and variation models
of the cervical spine (Figures 8–11). Variations in intersegmental
orientation in each of the three major axes are clearly visible and,
in some cases, obscure variations in specific vertebral morphology,
although differences in posterior process shape and length is most
evident. The cumulative effects of intersegmental variation over
the cervical spine lead to overall variation of the full cervical spine
segment.

As expected, investigation of the effects of spinal morphology
variation on predicted loading response resulted in quantifiable
variation in the loading responses between the average model
and models created by combining the average model and the
geometry variation described by +1.0 standard deviation of each
principal component (Figures 12–14). Response variations were
determined as percentage change with respect to the mean model.
In the case of flexion-extension (Figure 12), principal component

FIGURE 12 | Effects of geometry variation on flexion-extension.

4 had the largest effect on the flexion response (17.3%) and prin-
cipal component 3 had the largest effect on extension (23.2%).
Principal component 4 had the largest effect on axial rotation
(Figure 13), with 19.5 and 25.5% variation for right and left
rotation, respectively. In the case of lateral bending (Figure 14),
principal component 3 had the largest effect on right bending
(22.4%) and principal component 2 had the largest effect on left
bending (27.1%).

Qualitatively, the mean and variation in the probabilistic
results closely match those of the experimental results. In general
(Figures 15–17), the variability of the predicted response is greater
than that of the experimental response; however, the mean pre-
dicted response lies within the +1.0 standard deviation envelope

FIGURE 13 | Effects of geometry variation on axial rotation.

FIGURE 14 | Effects of geometry variation on lateral bending.
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FIGURE 15 | Kinematic response and normalized CDF area metric for
flexion-extension.

FIGURE 16 | Kinematic response and normalized CDF area metric for
left-right axial rotation.

for experimental data in all cases. The parametric model also pre-
dicts greater variation than the experimental results as the applied
moment increases for each loading mode.

Disagreement between model and experimental CDFs were
quantified using the normalized CDF area metric as between 0.22
and 0.45 for each time point in extension (Figure 15), between
0.03 and 0.19 for right axial rotation (Figure 16), and ranges
between 0.13 and 0.24 for all time points for all other loading
modes (Figures 15–17).

DISCUSSION
This study demonstrated that significant variability was present in
the geometry of a small group of cervical spine segments, both in
terms of vertebral morphometry and in the intervertebral orien-
tation and overall spinal curvature. Furthermore, SSM is capable

FIGURE 17 | Kinematic response and normalized CDF area metric for
left-right lateral bending.

of efficiently describing variability in the complex vertebral mor-
phometry, intersegmental orientation,and overall spinal curvature
and demonstrates the complex relationship between predicted
response and variation in model input parameters. Although we
have investigated conditions within the non-destructive loading
range of the cervical spine, we suggest that, with additional valida-
tion under destructive loading conditions, the present implemen-
tation of parametric SSM-based finite element analysis methods is
applicable to investigations of cervical spine injury mechanisms.
These loading scenarios include those that might be encountered
during high-speed impact in a moving vehicle, as the result of an
explosive blast, or the ejection of a fighter pilot. More importantly,
the parametric high-fidelity description of variability in spinal
morphology, along with the ability to vary relevant material prop-
erties within a probabilistic framework allows the investigation
of the effects of body size, position, mass distribution, and other
relevant factors on injury risk prediction.

Intersegmental orientation and spinal curvature is highly vari-
able between individuals and has a substantial role in individual
disposition to neck and back injuries, including muscular fatigue
or soft-tissue injuries, as well as more serious injuries related to
hyperflexion and hyperextension (Coakwell et al., 2004; Frechede
et al., 2006). Variation in intersegmental orientation and over-
all spinal curvature are modeled implicitly in the current SSM
approach; however, explicitly modeling vertebral orientation and
spinal curvature variables would allow the investigation of the role
and interaction of vertebral morphology, intersegmental orienta-
tion, and spinal curvature variables on the likelihood of injury
under various loading conditions.

The small sample size of spines is a limitation of the present
study and it remains to be seen whether the range of morpholog-
ical differences observed within the study sample are sufficient to
describe a larger population of warfighters. In this study, we choose
to focus on the development of a model of the 50th percentile
male as a starting point, with the intent to develop methodology
somewhat representative of the loading response of an “average”
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male warfighter. The geometric and material property variation
described in the cervical spine model may well be different than
that within the experimental set of spines; however, probabilistic
methods allowed investigation of the effects of variability in mor-
phology and material properties on kinematic response. Based on
qualitative and quantitative comparison of the model simulations
to experimental loading response data that is currently available,
we suggest that the model performs adequately under relatively
low-level loading conditions in multiple loading directions. In
ongoing work, the cervical spine model is being exercised and val-
idated against destructive loading modeling blast conditions for
the same set of spines used to construct the model. It remains to
be determined whether differences in vertebral morphology and
spine geometry and the ability to describe these differences using
a small set of principal shape modes will be capable of future
risk classification under the widely varying scenarios that may be
encountered by a warfighter. We also note ligament material prop-
erties were defined based on quasi-static loading conditions and
this may present a limitation in evaluation of the model under
destructive, high rate loading conditions.

In earlier work involving a parametric cervical spine model
based on idealized vertebral geometry, we have demonstrated
that both morphological differences between small female, large
female, small male, and large male groups (determined by body
mass) and material properties of ligaments and the intervertebral
disks have a substantial effect on the predicted kinematic response
under loading modes (e.g., flexion-extension, axial rotation, and
lateral bending) with identical applied moments (Nicolella et al.,
2006). Other groups using idealized parametric models of mod-
els with subject-specific geometry have also found that geometry
and orientation and material models employed in describing soft-
tissue behavior in both cervical spine motion segments lead to
differences in the loading response (Kumaresan et al., 1999; del
Palomar et al., 2008; Laville et al., 2009; Kallemeyn et al., 2010).
In other work, finite element models of the cervical spine were
deformed to model gross global changes in curvature (e.g., lor-
dosis, straight, and kyphosis models) based on specified Cobb
angle (Frechede et al., 2006). Distributions of strains, forces, and
moments along the cervical spine were found to be dependent
on loading condition (e.g., vehicular rear-end, frontal, lateral, and
oblique impact) and global cervical curvature affected the mag-
nitude of strains, forces, and moments experienced by the spine
in all loading directions. However, we are unaware of probabilis-
tic investigations where SSM methods were combined with finite
element analyses to systematically investigate the effects of the
continuous normal geometric variation in a sample of spines
and material property uncertainty on loading response in the
cervical spine. We suggest that the ability to continuously vary
vertebral morphology, intersegmental orientation, and spinal cur-
vature along with soft-tissue material properties within realistic
parameter spaces strongly enhances the current investigative tools
employed to understand and mitigate the risk of fracture and
soft-tissue injuries in military combat scenarios.

We note that in validation of the present model under
low-loading conditions in multiple directions, uncertainty and
variability in both experimental results and model inputs (and,
therefore, model results) are considered stochastically through

the determination of a empirical distributions to describe exper-
imental results and the use of probabilistic modeling methods to
determine computation results. Therefore, we have quantitatively
compared the statistical distributions resulting from both simula-
tion predictions and experimental observations (Liu et al., 2011).
The CDF area metric employed here to quantify disagreement
between model predictions and experimental data evaluates the
ability of the model to not only predict the mean, but the amount
of variation in the experimental response. Additionally, the met-
ric prevents incorrect “validation” of model predictions based on
experimental data with large corridors of uncertainty. At each time
point for each loading mode, the CDF area metric is a quantitative
measure of agreement between model predictions and experimen-
tal data with reliance on expert opinion to evaluate the accuracy
of the predictions. This is relatively straightforward to understand
since the metric can be displayed graphically and has an intuitive
meaning. Furthermore, unlike other computational model valida-
tion approaches, the area metric incorporates variability in both
the experiment and model. It has a minimum value of 0, indicating
the experimental and model CDF are the same, and has an infinite
maximum value with increasing values indicating an increasingly
poor match. We note that the quantitative error metric provides
relative error (rather than absolute error) within the range of data
analyzed and is, of course, dependent on whether the experimental
data used for comparison is representative of the conditions mod-
eled. As such, the area-based metric is limited in the case where the
experimental data are insufficient (Liu et al., 2011). We have not
exercised the model to produce injury in this study, and therefore,
have not fully explored the kinematic and dynamic range of the
model and Wheldon et al. have not thoroughly exercised the exper-
imental specimens (Wheeldon et al., 2006; unpublished data).
Accordingly, we suggest that some concern regarding insufficiency
of experimental data may be reduced.

A potential use of a quantitative metric, such as the one used
in the current analysis, is to investigate the effect of the use of
alternative sources of data for material constitutive modeling, the
incorporation of additional validation data when available, and
the comparison of alternative or competing models and modeling
approaches. A limitation of the area validation metric, however,
is that an established standard for what constitutes an “accept-
able” validation threshold has not been established. Therefore, this
and other validation metrics should be used within the context
of the overall objectives and goals of the use of the computa-
tional model. Qualitative comparison of the mean and standard
deviation envelopes of the experimental and simulated loading
responses suggest that the amount of error realized in the sim-
ulations are acceptable for the applied loading conditions. The
quantitative metric values in each loading mode suggest that error
is greater near the so-called “slack region” close to an applied
moment of 0 Nm, where the model is not explicitly accounting
for the ligamentous laxity that exists within cadaveric specimens.
We note that in subsequent investigations utilizing this paramet-
ric cervical spine model with injurious loading conditions, we will
be less concerned with areas of laxity during low-level loading
and more concerned with the peak regions of the loading range;
however, it remains to be seen whether a similar pattern of error
will be present over a larger loading range.
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In conclusion, SSM provides a means of explicitly describ-
ing complete spinal morphology and geometry and allows the
complex spatial variation in intersegmental orientation to be
statistically investigated between individuals. SSM methods cou-
pled with finite element analyses within a probabilistic frame-
work, along with the ability to quantitatively validate the over-
all model performance, provides innovative and important steps
toward describing differences in vertebral morphology, interseg-
mental orientation, and spinal position and curvature, as well as
important variation in material properties, which may directly
lead to understanding and mitigating the risks of soft-tissue
and hard tissue injury in the spine and other musculoskeletal
structures.
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