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Understanding adaptive genetic variation and its relation to environmental factors are
important for understanding how plants adapt to climate change and for managing
genetic resources. Genome scans for the loci exhibiting either notably high or low
levels of population differentiation (outlier loci) provide one means of identifying genomic
regions possibly associated with convergent or divergent selection. In this study,
we combined Amplified Fragment Length Polymorphism (AFLP) genome scan and
environmental association analysis to test for signals of natural selection in natural
populations of Liriodendron chinense (Chinese Tulip Tree; Magnoliaceae) along a
latitudinal transect. We genotyped 276 individuals from 11 populations of L. chinense
using 987 AFLP markers. Both frequency-based (Dfdist and BayeScan) and correlation-
based (MLM) methods were applied to detect outlier loci. Our analyses recovered both
neutral and potentially adaptive genetic differentiation among populations of L. chinense.
We found moderate genetic diversity within populations and high genetic differentiation
among populations with reduced genetic diversity toward the periphery of the species
ranges. Nine AFLP marker loci showed evidence of being outliers for population
differentiation for both detection methods. Of these, six were strongly associated with at
least one climate factor. Temperature, precipitation, and radiation were found to be three
important factors influencing local adaptation of L. chinense. The outlier AFLP loci are
likely not the target of natural selection, but the neighboring genes of these loci might
be involved in local adaptation. Hence, these candidates should be validated by further
studies.

Keywords: outlier loci, environmental gradient, genome scan, local adaptation, Chinese Tulip Tree

INTRODUCTION

Climate change has become a major threat to global biodiversity (Davis and Shaw, 2001; Parmesan,
2006). There is a growing evidence for shifts in species distributions and abundance in response
to climate change (Parmesan, 2006; Matías and Jump, 2015). Species may be able to locally adapt
to the new climatic conditions in current locations through genetic changes (Gienapp et al., 2008).
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Local adaptation of populations to climate has been revealed
in a variety of plant species (González-Martínez et al., 2006;
Savolainen et al., 2007; Coop et al., 2010; Hancock et al.,
2011). Documenting the genetic basis of local adaptation
governed by natural selection is important for understanding
how plants adapt to their environment and respond to climatic
changes.

Ecologists have studied local adaptation using reciprocal
transplant experiments (e.g., Chartier et al., 2013). Population
geneticists utilize genetic tools such as quantitative trait locus
(QTL) mapping (Tanksley, 1993) and multiple-marker-based
‘neutrality’ tests (Storz, 2005) to study the genetic basis of local
adaptation. For forest species, however, reciprocal transplant
experiments and QTL mapping are not suitable for analysis of the
adaptive genetic responses to climatic change due to their longer
juvenile phase (Savolainen et al., 2007). Genome scans are an
approach for identifying marker loci that are linked to selectively
relevant target loci through ‘genetic hitchhiking’ (Luikart et al.,
2003). Genome scans are widely used to detect signatures of
local adaptation to environmental conditions (Bonin et al., 2007;
Wood et al., 2008; Fischer et al., 2011; Buckley et al., 2012).
In this method, large numbers of loci sampled throughout
the genome are genotyped for many individuals sampled from
two or more populations. Estimating population differentiation
for all loci allows identification of ‘outlier loci’ whose level
of differentiation among populations is either much greater
or much less than that expected under neutral expectations
(Lewontin and Krakauer, 1973; Storz, 2005; Foll and Gaggiotti,
2008; Nosil et al., 2009; Fischer et al., 2011). These outlier loci are
assumed to be in linkage disequilibrium with genes involved in
adaptive evolution due to genetic hitchhiking (Luikart et al., 2003;
Schlötterer, 2003). Amplified Fragment Length Polymorphism
(AFLP) markers (Vos et al., 1995) are popular for performing
whole-genome scans for species whose genomes have not been
sequenced due to their high polymorphism, ease of genotyping
and analysis, and low cost (Mattersdorfer et al., 2012; Westberg
et al., 2013). AFLP genome scans have been extensively used
in studies of plant populations, e.g., Howea (Palmae; Savolainen
et al., 2006), Silene (Caryophyllaceae; Minder and Widmer, 2008),
Mikania (Asteraceae; Wang et al., 2012), and Themeda (Poaceae;
Dell’Acqua et al., 2014).

A major limitation of genome scans is that they often
detect false positives due to a departure from Hardy–Weinberg
equilibrium and the assumption of the population structure
model (Excoffier et al., 2009). Natural selection generates gradual
changes in allele frequencies at outlier loci along environmental
gradients (Manel et al., 2010). Thus, outlier loci can potentially
be detected by a strong correlation between allele frequencies and
environmental parameters (Coop et al., 2010). The correlative
approach need not take population structure into account and
can be used to seek confirmation of outlier loci following the
identification of candidate loci with genome scan methods (Joost
et al., 2007; Nunes et al., 2011; Bothwell et al., 2012; Henry and
Russello, 2013).

Liriodendron chinense (Hemsl.) Sarg. (Magnoliaceae),
commonly known as the Chinese Tulip Tree, is a self-
incompatible, highly outcrossing and tall deciduous species

(Hao et al., 1995). The species ranges widely in subtropical
China and northern Vietnam, usually in mountains at elevations
from ca. 450 to 1800 m (Hao et al., 1995), but is found only
in scattered populations throughout its distribution. Its North
American sister species, L. tulipifera, is similarly widespread
in eastern Northern American broadleaf forests (Parks et al.,
1994) but is much more common. Previous studies with
microsatellite markers recovered a moderate level of within-
population genetic diversity and strong genetic differentiation
in L. chinense (Yang et al., 2016). The distribution pattern of
L. chinense provides a suitable study system for examining
divergent selection in natural populations along a latitudinal
transect.

Outlier analysis has the potential to detect loci that have
experienced both convergent and divergent selection. Strong
selection for fitness conditions uniform among populations will
prevent divergence by genetic drift, whereas strong selection
pressures that are heterogeneous among populations will produce
loci more diverged than expected by genetic drift. Divergent
selection in natural populations has been well studied in a
few model organisms in which candidate genes for traits of
interest are known (e.g., Meyer et al., 2009). However, less
is known about how changing climatic conditions will affect
most species, including the tulip tree. This study combines
an extensive sampling design with an AFLP genome scan and
correlation analyses to test for signals of natural selection in
natural populations of L. chinense along a latitudinal transect.
Such information is essential for devising optimum management
strategies for an in situ conservation program and the long-term
survival of this species.

MATERIALS AND METHODS

Plant Materials
In 2008, 1-year-old twigs with mature buds were collected from
276 individuals representing 11 populations of L. chinense along
a rough latitudinal transect (Table 1; Figure 1). All twigs were

TABLE 1 | Characteristics of 11 investigated natural populations of
Liriodendron chinense.

Population Location Sample
size

Latitude
(N)

Longitude
(E)

SNJ (C) Shennongjia, Hubei province 28 31.401 110.405

JS (C) Jianshi, Hubei province 20 30.713 109.680

NS (C) Xuanen Hubei province 30 29.682 109.716

K (C) Longshan, Hunan province 24 29.067 109.067

ZJ (C) Zhijiang, Hunan province 28 27.597 109.638

SN (C) Suining, Hunan province 29 26.448 110.108

YY (C) Youyang, Chongqing 24 28.968 108.656

SW (M) Chengkou, Chongqing 30 32.030 108.628

JH (C) Jianghe, Guizhou province 30 26.497 108.690

ST (C) Songtao, Guizhou province 20 28.157 109.319

ZY (M) Ziyuan, Guangxi province 27 25.850 110.363

C, central population; M, marginal population.
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FIGURE 1 | Geographic location of 11 populations of Liriodendron chinense sampled along a latitudinal transect.

wrapped with a damp paper towel and stored at 4◦C until DNA
extraction was carried out.

AFLP Genotyping
Genomic DNA was extracted from buds with the
cetyltrimethylammonium bromide (CTAB) method (Doyle
and Doyle, 1987). The quality and concentration of the DNA
were determined by electrophoresis on 1% agarose gels with
kDNA markers.

Amplified fragment length polymorphism analysis was carried
out by following the method of Vos et al. (1995). Amplification
was performed with 13 primer combinations, with each primer
having three selective nucleotides (Supplementary Table S1). The
EcoRI selective primers were labeled with fluorescent dye (6-
FAM). Selective PCR products were sized against an internal
standard (GeneScan-500 ROX, Applied Biosystems) on an
ABI Genetic Analyser 3730 (Applied Biosystems) and analyzed
by GeneMarker v2.2.0 (Applied Biosystems). Amplification
products were scored for the presence or absence of bands, and
non-discernible fragments (clearly identifiable bands with high
peaks) were excluded from the analysis. The bands between
50 and 400 bp were scored as present (1) or absent (0).
To test the repeatability of AFLP procedure, AFLP analysis
was replicated twice for 12 randomly selected individuals,
starting from DAN extraction down to capillary electrophoresis
of the selective PCR products for each primer combination.
AFLP loci with more than one score discrepancy for any
primer combination were excluded from subsequent statistical
analysis.

Data Analyses
Genetic Diversity and Genetic Structure
The percentage of polymorphic loci (PPL) at 5% level corrected
for the sample bias, expected heterozygosity within populations
[HS, analogous to Nei’s (1973) unbiased expected gene diversity
(HeN) assuming Hardy–Weinberg equilibrium], and population
genetic differentiation (FST) were computed with AFLP-SURV
version 1.0 (Vekemans et al., 2002). To conduct genetic diversity
comparison between central and marginal population, we defined
the central and marginal populations of L. chinense by their
geographic locations. In this study, the furthest north (SW) and
south (ZM) population were referred as marginal population.

To quantify the degree of genetic differentiation among
populations and infer the most appropriate number of
subpopulations (K) for interpreting the data without prior
information about the number of populations sampled and
to which population each individual belonged, we used the
individual-based population assignment test implemented in the
program STRUCTURE (Pritchard et al., 2000). STRUCTURE
analysis was conducted with only those markers that showed no
indication of outlier behavior in BayeScan analysis. Ten replicates
of each simulation from K = 1 to 20 were performed at 100,000
Markov’s chain Monte Carlo (MCMC) simulation by sampling
after a burn-in period of 50,000 iterations. The admixture
model and uncorrelated allele frequencies were chosen for the
analysis. The most likely estimate of K was predicted from plots
of ad hoc posterior probability models of 1K. 1K statistics are
more appropriate than the highest LnPr (X|K) method to infer
population number (Evanno et al., 2005). Population genetic
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differentiation was also estimated from the neutral data set (loci
that showed no indication of outlier behavior in both methods)
and the outlier data set (loci that showed an indication of outlier
behavior in both methods).

Outlier Detection
Two complementary methods were applied to detect outlier loci
of all populations in L. chinense. To reveal the impact of the
variation in Ne among populations on the outlier detection,
outlier tests were performed on the two marginal populations
(SW, ZY) and two central populations (ZJ, NS) with similar
population size. Firstly, Dfdist (Beaumont and Nichols, 1996) was
used, which implements a hierarchical Bayesian approach based
on summary statistics under Wright’s (1943) infinite island model
at migration–drift equilibrium (Beaumont and Balding, 2004).
Most common alleles (allele frequency > 99%) were discarded
both for the estimation of the empirical multilocus FST, and
for simulations. The null distribution of FST (a ‘trimmed’ mean
FST) was obtained by removing 30% of the highest and lowest
single-locus FST estimates according to the recommendation by
Beaumont and Balding (2004). This ‘trimmed’ mean represents
the ‘neutral’ FST values, supposedly uninfluenced by outlier loci.
Coalescent simulations were performed to generate data sets
with a null distribution based on 50,000 simulations and infinite
island model. Outlier loci were detected by comparing empirical
FST values for each locus (empirical distribution) against a
null distribution of FST values expected from a neutral drift
model (simulation distribution). The 0.995 or 0.005 quantiles
were chosen to define an envelope within which 99% of the
data points are expected to lie (Wang et al., 2012). Any loci
occurring outside the expected range were considered as potential
outliers.

Dfdist assumes that populations are at migration–drift
equilibrium, which does not often occur in natural populations
(Manel et al., 2009). The outlier loci identified by the Dfdist
approach could be false positives (Herrera and Bazaga, 2008).
To minimize the detection of false positives, we used BayeScan1,
which is suitable for dominant markers such as those in AFLP and
allows the estimation of the posterior probability of a given locus
under selection (Foll and Gaggiotti, 2008). The Bayesian method
assumes that allele frequencies within a population follow a
Dirichlet distribution under Wright’s (1931) island model. The
Bayesian method estimates population specific FST coefficients
under a wide range of demographic scenarios and considers
different amounts of genetic drift between populations (Foll
and Gaggiotti, 2008). In addition, small numbers of samples
can be analyzed by BayeScan with the risk of a low power,
but with no particular risk of bias (Foll and Gaggiotti, 2008).
A threshold value for determining loci under selection was
evaluated in accordance with Jeffreys’ (1961) interpretation, i.e.,
log10 PO > 2.0 was considered as decisive evidence for selection.
We employed a threshold of log10 PO > 2.0 for the rejection
of the null hypothesis in each of the conducted tests. BayeScan
analysis was conducted with a burn-in of 50,000 iterations,
a thinning interval of 50, and a sample size of 10,000. The

1ibe.ch/software/BayeScan/index.html

number of pilot runs was kept at 20 with length of 5,000
each.

Association with Climatic Parameters
Climate data, which included thermal, precipitation and total
radiation records over the period 1971–2000 from more than
100 weather stations across the geographic range of L. chinense,
were gathered from the China Ecosystem Research Network2

(in Chinese). Sixty-three climatic parameters, including mean
temperature per year, monthly minimum and maximum
temperatures, monthly average temperatures, monthly average
precipitation, mean precipitation per year, total radiation each
month, and mean radiation per year, were obtained from this
database.

TASSEL (Bradbury et al., 2007) was used to identify
significant associations between the population-level allele
frequencies and climate factors. The basic assumption of
this association analysis is that natural selection along an
environmental gradient generates changes in allele frequencies
at loci linked to selected genes (Schoville et al., 2012). Based
on a Q model and the most stringent model of Q + K,
Q-values (the membership coefficients for each individual)
estimated from STRUCTURE for the neutral data set and/or
kinship values (genetic covariance between pairs of individuals,
K) calculated with SPAGeDi (Hardy and Vekemans, 2002)
were used as covariates in mixed linear regression (MLM)
analysis.

RESULTS

Genetic Diversity and Genetic Structure
Thirteen primer pairs resolved a total of 987 unambiguous bands.
The PPL per population ranged from 29.0 to 84.2%, with a mean
value of 54.2%. The values of genetic diversity as estimated by
expected heterozygosity (H) varied from 0.136 to 0.220, with a
mean value of 0.174. The central populations had a higher H
(0.200) than the average (0.174) across the 11 populations and
was higher than that of marginal populations (Figure 2).

The overall value of FST based on all loci was 0.198. It was
0.171 and 0.571 for neutral and outlier loci, respectively (Table 2).
Pairwise FST values at outlier loci between pairs of populations
ranged from 0.169 to 0.899, whereas those at neutral loci ranged
from 0.066 to 0.309 (Supplementary Table S2).

The plot of 1K against a range of K-values showed the
highest peak at K = 2. The 1K statistics were found to be more
appropriate than those from the highest LnPr (X|K) method to
infer population number (Evanno et al., 2005). STRUCTURE
analysis provided strong evidence for the presence of two
independent populations (Clusters I and II). Cluster I only
comprised population SW, and cluster II was mainly distributed
among other populations. Individuals in ZJ populations were
admixed and inherited from two different ancestors; this was also
the case for the neutral data set (Figure 3).

2http://www.cern.ac.cn/0index
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FIGURE 2 | Genetic diversity and trend line of 11 populations of
L. chinense in the western region. Populations are arranged by
descending latitude. C in the bracket represents central population and M
indicates marginal population. Fitted curves are polynomial quadratic. H:
expected heterozygosity; PLP: proportion of polymorphic loci at the 5% level.

TABLE 2 | Genetic diversity and genetic differentiation of 11 populations of
L. chinense based on overall loci, natural loci, and outlier loci.

Loci N HT HS FST

Overall loci 987 0.217 0.174 0.198

Neutral loci 932 0.206 0.171 0.171

Outlier loci 9 0.456 0.198 0.571

N, number of loci scored; H, total gene diversity; HS, mean within-population
expected heterozygosity; FST, genetic differentiation.

Outlier Analyses
In the Dfdist analysis, 21 outlier loci (2.13% of AFLPs) were
identified as being outside of the 99% null distribution. Among
these, 16 exhibited more divergence and five exhibited less
divergence than the majority of loci, consistent with divergent
and convergent selection, respectively (Figure 4). BayeScan
analysis identified 43 high-differentiation loci at a threshold
of log10 PO > 2.0 (posterior probabilities higher than 0.99),
corresponding to 4.36% of all loci (Figure 5), all of which
exhibited increased differentiation. A total of 55 loci were
identified by either Dfdist or BayeScan analyses, with nine loci
were detected by both methods. For two marginal populations
and two central populations, Dfdist analysis identified 9 and
10 outlier loci, and BayeScan analysis detected four and nine
outlier loci, respectively. One and two outlier loci were detected
by both methods for two marginal populations and two central
populations, respectively.

Genetic Variation Associated with
Climate Parameters
The GLM test based on a Q model yielded 114 loci (11.6%)
that exhibited a significant association with one or more climatic
factors at the significance threshold set to 1.0E−10. Eleven
of 21 loci (52.4%) detected with Dfdist were significantly
associated with at least one climate factor. Twenty-eight of 43

loci (65.1%) detected by BayeScan were significantly associated
with at least one climate factor (Supplementary Figure S1).
Six of nine loci (66.7%) detected by both Dfdist and BayeScan
were significantly associated with at least one climatic factor
(Supplementary Figure S2 and Table 3). Based on the most
stringent model of Q + K, only one locus (896) was found
to be associated with the climate factors. This locus was also
detected by Dfdist, BayeScan, and association analysis with the
Q model.

DISCUSSION

Genetic Diversity and Genetic Structure
Liriodendron chinense showed an intermediate level of intra-
population genetic diversity (Hs = 0.174) as compared with
AFLP genetic diversity observed in other endangered tree
species (e.g., Malus sylvestris: HeN = 0.225, Coart et al.,
2003; Berchemiella wilsonii var. pubipetiolata: HeN = 0.163,
Kang et al., 2007; Eucommia ulmoides: HeN = 0.174, Yao
et al., 2012). A similarly moderate level of gene diversity was
also found in 29 range-wide populations of L. chinense with
microsatellite markers (HE = 0.570). The genetic structure
revealed by AFLPs (FST = 0.198) is also largely concordant
with the pattern revealed by microsatellites in L. chinense
(Yang et al., 2016). Stronger genetic structure based on non-
neutral markers was also revealed in other studies and explained
through the absence of gene flow facilitating the establishment
of local adaptations (e.g., Midamegbe et al., 2011). The pattern
of genetic diversity found in L. chinense most likely reflects
historical demography and biological traits of this species.
Despite historical fragmentation due to montane glaciation and
subsequent climatic oscillation, the high longevity of the species
may buffer the species against the loss of genetic diversity
and allow the long-term maintenance of genetic variation in
such an ancient species. In addition, limited pollen and seed
dispersal among relict populations might contribute to the
extraordinarily high diversity among populations found in this
species.

The central–marginal hypothesis predicts lower genetic
diversity and higher genetic differentiation in marginal
populations of a species’ range as compared with those in
the central regions (Sagarin et al., 2006; Eckert et al., 2008).
In our study, populations of L. chinense in the middle-latitude
regions tend to have higher genetic diversity than those
of low latitude and high latitude regions, which supports
the central–marginal hypothesis. This is consistent with
evidence from microsatellite markers, in which higher
genetic variation was observed in the core populations
as compared with southern marginal populations at large
geographical scales (Yang et al., 2016). From field observations,
we found that the peripheral populations are smaller
and more fragmented. Peripheral populations with small
population size may suffer from reduced gene flow and strong
genetic drift, leading to lower genetic diversity and higher
genetic differentiation than those in central populations
(Eckert et al., 2008).
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FIGURE 3 | Genetic relationships among the 11 populations studied with STRUCTURE based on total loci, neutral loci, and outlier loci. Each individual
is represented by one vertical column and populations are separated by vertical bars. Populations are arranged by descending latitude.

FIGURE 4 | Results of FDIST analysis. The red line indicates the 99%
upper and lower confidence levels; loci beyond these levels are identified as
outlier loci.

Adaptation along a Latitudinal Transect
In order to identify genes and genomic regions potentially related
to local adaptation, the 987 AFLP markers were screened for the

FIGURE 5 | BayeScan plots of 987 amplified fragment length
polymorphism (AFLP) loci in 11 populations of L. chinense. The vertical
red line is the threshold [Log(PO) = 2] used for identifying outlier loci. Dots that
fall to the right of the threshold line are identified as outlier loci.

footprints of divergent selection among 11 populations along a
latitudinal transect. Simulation studies show that the BayeScan
test is more efficient than the Dfdist test in the identification
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TABLE 3 | Six loci related to local adaptation identified by all the three
methods.

Locus name Primer pairs Fragment length

442 F: E-AGG/M-CAA 142

492 F: E-AGG/M-CAA 227

493 F: E-AGG/M-CAA 228

530 G: E-AGC/M-CGA 103

570 G: E-AGC/M-CGA 188

896 L: E-ACA/M-CAA 140

of outlier loci with dominant markers (Pérez-Figueroa et al.,
2010). In our study, 2.1 and 4.4% of the total number of AFLP
fragments assayed were identified as putatively positive outlier
adaptive loci with Dfdist and BayeScan, respectively. As found in
other studies (e.g., Moore et al., 2014), the BayeScan test revealed
a much higher number of outlier loci than did the Dfdist test.
The overall outlier detection rates are similar to those reported
in other genomic scans based on AFLP markers. For instance,
3% in lake whitefish (Campbell and Bernatchez, 2004) and 3–4%
in lizards (Nunes et al., 2011) are typically reported as departing
from the neutral expectation.

The recovery of false positives can occur in population genome
scans. The statistical power of genome scan studies may be
affected by genotyping errors, poor genome coverage of AFLP
markers, statistical departures from the model assumptions,
complex population structure and demographic history (Nei and
Maruyama, 1975; Bonin et al., 2006; Excoffier et al., 2009; Meyer
et al., 2009), all of which have been thoroughly considered in the
previous reviews (Luikart et al., 2003; Beaumont and Balding,
2004; Storz, 2005; Bonin et al., 2006, 2007; Caballero et al.,
2008; Excoffier et al., 2009). Excoffier et al. (2009) showed outlier
analysis scan was sensitive to population model assumptions
by comparing island models and hierarchical models. The
perception of outliers can change drastically depending on
the assumptions used to model population structure (Nei
and Maruyama, 1975; Excoffier et al., 2009). Both Dfdist and
BayeScan used island model as the null hypothesis, however,
island model was an unrealistic population structure model as
most populations might violate the assumption of this model.
In the present study, variation in effective population sizes
(Ne) between the central and marginal populations suggests
L. chinense possibly departs from island model assumption and
lead to many false positives (Nei and Maruyama, 1975). Lower Ne
observed in the marginal populations leads to a wider distribution
of FST values among loci since stronger genetic drift may leave
genomic signatures that mimic selection. Thus, genetic drift
rather than natural selection may produce the ‘outlier loci’
(false positives), which was supported by the fact that fewer
outlier loci identified in two marginal populations compared to
two central populations when pairwise comparisons were made.
Hidden population structure causing correlated allele frequencies
can also lead to a high false-positive rate in the detection of
selection (Excoffier et al., 2009; Narum and Hess, 2011). The
SW population is divergent from other populations as shown
in Figure 3, which suggests the existing population structure
may have a major effect on outlier detection. However, nine loci

identified by both methods were also detected even when the
SW population was excluded in the analysis (data not shown).
In addition, demographic history can produce patterns similar to
positive selection, as in cases of severe bottlenecks, allele surfing
during population expansion, secondary contact, and isolation by
distance (Schoville et al., 2012; Lotterhos and Whitlock, 2014).

Reducing the false positives as much as possible remains
a critical element in genome scanning (Thornton and Jensen,
2007). To reduce the number of false positives, we used both
Dfdist and BayeScan, two approaches that differ in algorithms
and assumptions (Paris et al., 2010; Wang et al., 2012), and we
used stringent significance thresholds in both analyses. We used a
conservative approach in estimating the number of loci involved
in local adaptation by excluding outliers specific to one or the
other analysis. This approach recovered nine loci that diverge
from neutrality and are thus likely involved in local adaptation.
Nevertheless, it is inherently difficult to identify which outlier loci
are false positives (Narum and Hess, 2011). The outlier loci must
be confirmed through further analysis, including sequencing and
molecular functional analysis of neighboring genes.

Because the outlier-detection methods used here (Dfdist
and BayeScan) do not directly integrate tests for specific
selection pressures (e.g., environmental factors) that cause
selection (Schoville et al., 2012), we also used an environmental
correlation strategy to identify loci underlying local adaptation.
Environmental association analysis is commonly used to detect
loci that have been subject to natural selection (Coop et al., 2010;
Eckert et al., 2010). In our study, 65.1% outlier loci identified by
BayeScan are strongly associated with climatic factors, and 52.4%
outlier loci identified by Dfdist possess a significant association
with at least one climatic factor. When applying GLM analysis to
the AFLP data set and taking population structure into account,
we found that six out of the nine loci identified by both Dfdist
and BayeScan were also found to be correlated with the climatic
factors. Although strong gene flow, distance effects, and historical
demography can create allele frequencies that are correlated
with environment parameters solely through neutral processes
(Manel et al., 2003; Eckert et al., 2010), suggesting that the
results of genome scans should be interpreted with caution, when
considered as a whole, our analyses suggest that at least six loci
are locally adapted and thus reveal evidence of divergent selection
among populations.

In the present study, temperature, precipitation, and radiation
were identified as the three major drivers of allele distributions
along the latitudinal transect (Supplementary Table S3). There is
increasing evidence that populations distributed over altitudinal
and latitudinal gradients are differentially adapted to spatially
variable environmental conditions (Saxe et al., 2001; Manel et al.,
2010), such as temperature (Jump et al., 2006; Kooyers and Olsen,
2012), precipitation (Manel et al., 2010), and radiation (Parisod
and Pascal-Antoine, 2008). The prominent role of temperature,
precipitation, and radiation in driving plant adaptation was also
revealed in previous studies (St. Clair et al., 2005; Richardson
et al., 2009; Manel et al., 2010). For instance, using population
genome scan methods, Richardson et al. (2009) found that several
AFLP outlier loci were strongly associated with temperature
and precipitation in Pinus monticola. Kooyers and Olsen (2012)
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found that allele frequencies at cyanogenesis genes were
associated with minimum winter temperature in Trifolium
repens. Through ecological niche modeling, precipitation and
temperature of the coldest quarter were found to be the main
factors contributing to geographic distribution of L. chinense
(Yang et al., 2016). In addition, He and Hao (1998) emphasized
the role of relative humidity of February to April and average
temperature of January to April in determining seed set in
L. chinense. Among the six outlier AFLPs, three were common
to the temperature, precipitation, and radiation partition. The
documented overlap of physiological mechanisms involved in
adaptation to different climatic factors was also inferred in other
studies (e.g., Prunier et al., 2011).

CONCLUSION

The results of this study revealed high levels of genetic
differentiation among populations and moderate levels of genetic
diversity within populations of L. chinense. Such information
can be useful in the protection of this endangered species. A set
of nine outlier loci that departed from neutral expectations
were revealed in 11 populations of L. chinense along a
latitudinal transect. Six of these were also found to be strongly
associated with at least one of the three climatic factors studied.
Precipitation from winter to spring, temperature, and radiation
in early spring were identified as key environmental factors
that contribute to the adaptive differentiation of this species.
This study paves the way for identifying the molecular basis
of local adaptation in L. chinense. Further studies are needed
to characterize the outlier AFLP bands, identify their genomic
locations and neighboring genes, and validate the underlying
genes involved in local adaptation in L. chinense. Pinpointing
these genes is made possible by the availability of the EST

(expressed sequence tags) database of L. tulipifera, a sister species
of L. chinense (Liang et al., 2008).
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