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Hearing loss has been linked to many types of cognitive decline in adults, including an
association between hearing loss severity and dementia. However, it remains unclear
whether cortical re-organization associated with hearing loss occurs in early stages of
hearing decline and in early stages of auditory processing. In this study, we examined
compensatory plasticity in adults with mild-moderate hearing loss using obligatory,
passively-elicited, cortical auditory evoked potentials (CAEP). High-density EEG elicited
by speech stimuli was recorded in adults with hearing loss and age-matched normal
hearing controls. Latency, amplitude and source localization of the P1, N1, P2 components
of the CAEP were analyzed. Adults with mild-moderate hearing loss showed increases
in latency and amplitude of the P2 CAEP relative to control subjects. Current density
reconstructions revealed decreased activation in temporal cortex and increased activation
in frontal cortical areas for hearing-impaired listeners relative to normal hearing listeners.
Participants’ behavioral performance on a clinical test of speech perception in noise was
significantly correlated with the increases in P2 latency. Our results indicate that changes
in cortical resource allocation are apparent in early stages of adult hearing loss, and
that these passively-elicited cortical changes are related to behavioral speech perception
outcome.
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INTRODUCTION
Adults with hearing impairment have been shown to exhibit con-
comitant deficiencies in cognitive performance (see Craik, 2007;
Tun et al., 2012, for a review). A possible reason for this inter-
action between hearing loss (HL) and cognition may be due
to an increase in cognitive load as greater attention is devoted
to auditory signals in hearing impairment. For instance, when
hearing-impaired adults allocate cognitive processing strategies to
understand a degraded incoming auditory signal, the increased
load at a basic processing level may detract from later cognitive
performance downstream (Pichora-Fuller et al., 1995; Pichora-
Fuller and Singh, 2006). As a result, cognitive processes such as
memory and executive function are adversely affected in hearing
impairment (Arlinger et al., 2009; Lunner et al., 2009; Rönnberg
et al., 2010, 2011a,b; Lin, 2011; Rudner et al., 2012; Lin, 2013).

Studies using functional neuroimaging, neural models, and
behavioral measures have demonstrated a strong relationship
between auditory cortical integrity and the processing of chal-
lenging auditory information, such as degraded signals and com-
plex speech in individuals with HL (Wingfield et al., 2006; Harris
et al., 2009; Miller and Wingfield, 2010; Peelle et al., 2010a,b,
2011; Wong et al., 2010).

Recent research has shown a compelling correlation between
degree of HL severity and all-cause dementia (including
Alzheimer’s disease), suggesting that increases in auditory

deprivation may subsequently influence overall cognitive decline
(Lin, 2011, 2012, 2013; Lin et al., 2011a,b). Lin et al. (2011a;
Lin, 2013) discuss the decrease in cognitive reserve accompany-
ing HL as a possible mechanism for the link between HL and
dementia. Cognitive or neural reserve reflects the ability of the
brain to compensate for the deleterious effects of sensory depri-
vation through the recruitment of alternative or additional brain
networks to perform a specific task (Boyle et al., 2008). Sensory
deprivation, as in HL, appears to tax the brain by altering normal
resource allocation, thereby affecting neural reserve and cogni-
tive performance. Given the relationship between degree of HL
and cognitive decline, there appears to be a clear need for sys-
tematically examining changes in cortical resource allocation as
HL progresses in severity from mild to profound, and to deter-
mine whether these changes are apparent at early stages of cortical
auditory processing. Electroencephalography (EEG) is a useful
measure to examine cortical changes associated with HL due
to its non-invasive nature, widespread use in clinical settings
and high temporal resolution important in measures of auditory
processing.

In this study, we examined cortical re-organization resulting
from HL in adult listeners with mild-moderate sensorineural
hearing impairment using high-density EEG. We evaluated oblig-
atory, passively-elicited P1, N1, and P2 components of the cortical
auditory evoked potential (CAEP) using source localization. We
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correlated CAEP changes with performance on a clinical test of
speech perception in noise to better understand the impact of
cortical changes in early stages of hearing decline.

METHODS
PARTICIPANTS
Adults between the ages of 37 to 68 years participated in
this study (n = 17). Subjects were recruited using fliers and
recruitment letters. Consent was obtained through documen-
tation approved by the University of Colorado at Boulder
Institutional Review Board. Hearing acuity was measured using
standard clinical audiometric procedures. Normal hearing (NH)
thresholds [below 25 dB Hearing Level (HL)] for frequencies
ranging from 0.25–8 kHz were observed for eight of the partic-
ipants (M = 50.5 years, SD = ±6.2 years), while the remaining
nine demonstrated HL (M = 56.9 years, SD = ±8.9 years). The
HL group showed, on average, NH from 0.25 through 1 kHz
and a mild-to-moderate sensorineural HL bilaterally from 2
to 8 kHz. Mean threshold audiograms for the two groups are
shown in Figure 1. Participants in the HL group had received
no clinical intervention, and many were unaware of their HL
at the time of enrollment, consistent with the mild nature
of their HL, and suggesting that their HL might have been
fairly recent. Participants reported no history of neurological
impairment. The NH group and HL group showed no sig-
nificant difference in age between groups [t(15) = −1.69, p =
0.537].

SPEECH PERCEPTION IN NOISE
The QuickSIN™, a clinical measure of auditory threshold for
sentences in background noise, was used to determine acu-
ity of speech perception in background noise (Killion et al.,
2004). Stimuli were presented via a speaker placed at 0◦ azimuth.
Standard clinical testing procedures were used: Listeners were
instructed to repeat two sentence lists, consisting of six sentences
each, presented at 65 dB HL. Background noise was increased for
each consecutive sentence in 5 dB increments, so that the signal-
to-noise ratio (SNR) began at 25 dB and ended at 0 dB for the last
sentence. The SNR score from the two lists was averaged for each

FIGURE 1 | Average pure tone thresholds across clinical test

frequencies (X-axis) for right and left ears, respectively. Intensity of
frequency presentation level is shown on the Y-axis. The normal hearing
group (NH) thresholds are depicted in solid black, and the hearing loss (HL)
group thresholds in dashed red. Vertical black bars indicate standard
deviation. The solid black line illustrates the criterion for normal hearing, at
25 dB HL.

listener, providing the level necessary for each individual to cor-
rectly repeat 50% of the key words in each sentence. The lower the
SNR score, the greater the level of background noise that could be
tolerated by the listener, and the better the performance.

EEG AUDITORY STIMULI
Participants were presented with a nonsense speech syllable, /ba/,
at a level of at 65 dB HL, via two speakers placed at 45◦ angles
in relation to the subject (Sharma et al., 2005). Stimuli were pre-
sented at a similar intensity level to all subjects consistent with
previous studies examining cortical functioning in HL listeners
(e.g., Harkrider et al., 2009; Bertoli et al., 2011; Peelle et al.,
2011). Subjects were asked to ignore the stimulus while watching a
movie, with the sound off and subtitles on, to ensure that partici-
pants remained awake (Sharma et al., 2005). Each /ba/ stimulus
was 90 ms in duration and was presented at an inter-stimulus
interval of 610 ms. One block of 1200 sweeps was collected per
subject.

EEG RECORDING AND ANALYSES
Participants were fit with a 128-channel electrode net (Electrical
Geodesic, Inc.) and seated in a reclining chair in an electro-
magnetically shielded sound booth. Auditory stimuli were pre-
sented via stimulus software E-Prime 2.0. The recording sampling
rate was 1 kHz, with a band-pass filter of 0.1–200 Hz.

EEG topographic map analysis was completed offline using
Net Station 4 (Electrical Geodesic, Inc.). A two-dimensional volt-
age map was generated for each group grand average waveform
for each of the three obligatory CAEP peak components (P1, N1,
P2). Regions of interest (ROI) were identified based on the great-
est group differences for each CAEP component. Four ROIs were
determined to be present: the frontal region, central region, the
left frontal hemisphere (LH), and the right frontal hemisphere
(RH). Individual EEG data was then exported from Net Station
and imported into the EEGLAB toolbox (Delorme and Makeig,
2004) supported by MatLab (The MathWorks®, Inc., 2010).
Epoched data was baseline corrected to the pre-stimulus interval
of 100 ms and initial artifact rejection performed at ±100 µV. The
sampling rate was down-sampled from 1 kHz to 250 Hz in order
to decrease processing time, resulting in a change of the post-
stimulus time to 592 ms. Concatenated EEG sweeps were then
pruned using an independent component analysis (ICA) statis-
tical procedure (Debener et al., 2006, 2008). Additional artifact
such as ocular and other extraneous muscle movement identi-
fied as separate components were removed from the data. CAEP
waveform peak components were visually identified and aver-
aged after this step. For each subject, three electrodes were then
grand averaged in each ROI, except for the central ROI where
we averaged across four electrodes. Latency and amplitude val-
ues were determined for each participant CAEP waveform. All
peak component amplitudes (P1, N1, P2) were measured from
baseline to peak, or the midpoint of broad peaks. Latencies
were chosen at the highest amplitude of the peak, or the mid-
point of broad, flat peaks. Planned statistical comparisons were
performed on the CAEP latency and amplitude components
averaged within each ROI to determine significant differences
between groups.
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CURRENT DENSITY RECONSTRUCTIONS
ICA on concatenated EEG sweeps was performed to remove
artifact, increase signal to noise ratio, and identify underlying
components to be sourced. ICA results in multiple temporally
independent components that underlie the evoked potential and
are fixed in the spatial domain (Makeig et al., 1997; Delorme et al.,
2012). These components allow for precise generator localization
when used in cortical source modeling (Makeig et al., 2004; Hine
and Debener, 2007; Debener et al., 2008). Concatenated EEG
sweeps were pruned, as previously described, using ICA in order
to remove noise artifact (Debener et al., 2006, 2008). This first
pruning was followed by a second pruning to identify major com-
ponents making up each CAEP peak component. Only indepen-
dent components that accounted for the greatest percent variance
underlying a CAEP peak of interest (P1, N1, P2) were retained
for source localization analysis, or current density reconstruc-
tion (CDR). The individually pruned waveforms were grand-
averaged for the NH and HL groups and exported into CURRY®
Scan 7 Neuroimaging Suite (Compumedics Neuroscan™) for
CDR. In CURRY®, another ICA was performed on each group
average, and only components showing a SNR of at least 2.0
accepted.

CDR was performed separately for each CAEP peak compo-
nent using sLORETA. Standardized low-resolution brain electro-
magnetic tomography (sLORETA) is a statistical procedure that
estimates a focal CDR with zero localization error using actual
source and measurement variance (Pascual-Marqui, 2002; Grech
et al., 2008). The selected head model utilized for source modeling
consisted of the standardized boundary element method (BEM)
(Fuchs et al., 2002). A color scale corresponding to the intensity of
cortical activation, as estimated by sLORETA, illustrates the CDR
on an average magnetic resonance image (MRI) consisting of 100
people.

RESULTS
AUDITORY EVOKED POTENTIALS
Based on the two-dimensional voltage maps for both groups and
group differences between the waveforms, four ROIs were deter-
mined in the frontal, central, left frontal hemispheric (LH), and
right frontal hemispheric regions (RH). Three obligatory CAEP
components elicited by the speech sound were evaluated: the
P1 (occurring at approximately 70 ms), N1 (at approximately
100 ms), and P2 (at approximately 180 ms). Group differences
for the amplitude and latency of each component were analyzed
using a One-Way ANOVA, and planned post-hoc comparisons
were made between the groups at each ROI.

P2 amplitude was found to be significantly larger in the HL
group (relative to the NH group) for the frontal ROI [F(1, 60) =
8.7, p = 0.005], the central ROI [F(1, 60) = 14.97, p = 0.000],
and the LH ROI [F(1, 60) = 8.856, p = 0.004], but not at the
RH ROI [F(1, 60) = 3.621, p = 0.062]. P2 latency was found to
be significantly longer for the HL group in the frontal ROI
[F(1, 60) = 5.34, p = 0.024], but not the central [F(1, 60) = 0.783,
p = 0.380], LH [F(1, 60) = 1.054, p = 0.309], or RH [F(1, 60) =
3.832, p = 0.055] ROIs. P1 amplitude did not differ signifi-
cantly between groups in any ROI [frontal: F(1, 60) = 2.149, p =
0.148; central: F(1, 60) = 3.715, p = 0.059; LH: F(1, 60) = 2.446,

p = 0.123; RH: F(1, 60) = 1.661, p = 0.202]. P1 latency showed
no significant difference [frontal: F(1, 60) = 1.163, p = 0.285;
central: F(1, 60) = 0.234, p = 0.630; LH: F(1, 60) = 0.295, p =
0.589; RH: F(1, 60) = 0.251, p = 0.618]. Similarly, the N1 com-
ponent did not differ significantly between groups in amplitude
[frontal: F(1, 60) = 3.685, p = 0.060; central: F(1, 60) = 0.362, p =
0.549; LH: F(1, 60) = 3.322, p = 0.073; RH: F(1, 60) = 0.042, p =
0.838], or latency [frontal: F(1, 60) = 2.409, p = 0.126; central:
F(1, 60) = 0.020, p = 0.887; LH: F(1, 60) = 1.625, p = 0.207; RH:
F(1, 60) = 0.851, p = 0.360]. Figure 2 shows the grand aver-
age waveforms from the frontal ROI, with mean amplitude
bar graphs depicting the significantly larger P2 amplitude and
longer P2 latency for the HL group compared to the NH
group.

It should be noted that we presented the auditory stimuli
at a comfortably loud conversational level for our participants.
The /ba/ stimulus is comprised of spectral energy occurring
mainly in the low-mid frequency region (0.5–2 kHz) (Sharma
et al., 2002), and the HL listeners demonstrated average thresh-
olds that were within the normal range at these frequencies.
There was an average difference of approximately 10 dB HL
between thresholds for the HL and NH group in the 0.5–2 kHz
range, therefore, some HL listeners may have heard the stim-
uli at a sensation level (SL) that was, on average, 10 dB lower
than for NH subjects. However, it is important to note that
it is a well-established finding that CAEP amplitude decreases
with lower intensity level for both NH and HL listeners (Bertoli
et al., 2011), while the results of this study show increased P2
amplitude for the HL listeners. That is, if results were influ-
enced by the decreased SL for HL listeners, we would have
expected to observe a corresponding decrease in P2 ampli-
tude for HL compared with NH listeners rather than a larger
P2 amplitude for HL listeners (Figure 2). Furthermore, our
results are consistent with those of Bertoli et al. (2011) and
Harkrider et al. (2009), who reported larger P2 amplitudes for
adults with mild-moderate HL compared with those for control
subjects.

FIGURE 2 | Grand averaged cortical auditory evoked potentials

(CAEPs) from the frontal region of interest (ROI) for the normal

hearing (NH, in black) and hearing loss (HL, in red) groups. P2
amplitude is significantly higher and P2 latency is significantly longer
in the HL group as shown in the waveform and mean amplitude bar
graphs. Two asterisks indicate significance at p < 0.01, one asterisk
indicates significance at p < 0.05. Vertical bars on the graph show
standard deviation.
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CURRENT DENSITY RECONSTRUCTIONS
Cortical source localization, or CDR, was conducted using the
sLORETA algorithm provided by CURRY Scan 7 Neuroimaging
Suite for the three CAEP peak components (Figure 3A). The acti-
vations were superimposed on an average MRI (axial slice view)
and the MNI co-ordinates are shown beneath each slice. The
scale of the F distribution, indicating the strength of the activa-
tions, is also shown. Figure 3A shows axial views of the CDR.
For NH listeners, as seen in Figure 3A, the P1, N1, and P2 CAEP
components activated temporal cortical regions including supe-
rior temporal gyrus (STG) and inferior temporal gyrus (ITG).
Responses for the P1 and P2 components were relegated to the
left hemisphere (LH), likely due to our use of a speech syllable
(Stefanatos et al., 2008). See Figure 3B for a table describing the
main activated regions. Cortical activation by speech stimuli in
regions of temporal cortex is consistent with fMRI neuroimag-
ing and intracranial electrocorticographic studies using speech
stimuli (Stefanatos et al., 2008; Pasley et al., 2012). In contrast,
for the HL group, clearly decreased activation of auditory areas

such as STG and MTG within temporal cortex was apparent (see
Figure 3A).

Figure 4 shows sagittal views for the CDR. Consistent with the
axial views shown in Figure 3A, as seen in Figure 4A, NH listen-
ers showed activation of temporal cortical areas including STG
and ITG. Conversely, for HL listeners, cortical responses to speech
stimuli were localized to frontal cortex, in medial frontal gyrus
(MFG), inferior frontal gyrus (IFG), and Brodmann Area 11 (BA
11). See Figure 4B for a table describing the main areas of activa-
tion. Frontal cortical activation was clearly the largest for the P1
and P2 CAEP components (Figure 4A).

SPEECH PERCEPTION IN NOISE
Behavioral testing of speech perception in noise acuity was mea-
sured for both groups using the QuickSIN™ clinical test (Killion
et al., 2004). The higher the SNR score, the louder the signal has
to be in order for the listener to perceive speech. As shown in
Figure 5A, the HL group required the signal to be, on average,
almost four decibels higher than the background noise for correct

FIGURE 3 | (A) Current density reconstructions (CDR) showing cortical
activation at the P1, N1, and P2 CAEP peak components on axial MRI slices
for the normal hearing (NH) and hearing loss (HL) groups. The scale of the F
Distribution is shown in the upper right corner ranging from red to yellow

(yellow is highest level of activation), and the Montreal Neurological Institute
(MNI) coordinates are listed below each MRI slice. (B) A table describing
activated anatomical cortical areas for the CAEP components for each group,
listed in approximate order of highest level of activation.
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FIGURE 4 | (A) Current density reconstructions (CDR) showing cortical
activation at the P1, N1, and P2 CAEP peak components on sagittal MRI
slices for the normal hearing (NH) and hearing loss (HL) groups. The scale of
the F Distribution is shown in the upper right corner ranging from red to

yellow (yellow is highest level of activation), and the Montreal Neurological
Institute (MNI) coordinates are listed below each MRI slice. (B) A table
describing activated anatomical cortical areas for the CAEP components for
each group, listed in approximate order of highest level of activation.

FIGURE 5 | (A) Mean QuickSIN™ scores for normal hearing (NH, in
black) and hearing loss (HL, in red) groups. Standard deviations are
shown as vertical bars. One asterisk reflects a significant difference at
p < 0.05. (B) The correlation of the CAEP P2 component latency as a
function of QuickSIN™ scores. The Spearman’s rank order correlation
coefficient value and significance level are indicated in the right upper
corner.

perception. Due to the non-parametric distribution of individ-
ual QuickSIN™ scores, a Mann-Whitney U Test was calculated to
determine statistical significance between the groups (U = 10.5,
Z = −2.46, p = 0.014). This difference in performance has been
found in similar studies with NH listeners and listeners with HL
(Killion et al., 2004; Wilson et al., 2007).

QuickSIN scores were correlated with P2 latency and ampli-
tude. All participants were included in the correlation, as HL can
be considered a gradual decrease in threshold starting at 0 dB
HL. Frontal ROI P2 latency showed a significant positive corre-
lation with speech performance in background noise (r = 0.494,
p = 0.022), suggesting that increases in P2 latency were associ-
ated with greater difficulty in perceiving speech in noise. We did
not see a significant correlation between QuickSIN™ scores and
P2 amplitude.

DEGREE OF HEARING LOSS AND CAEP P2 AMPLITUDE
Frontal P2 amplitude showed a significant positive correlation
with high frequency Pure Tone Average (PTA), i.e., the degree
of hearing impairment at 2–8 kHz for both ears (right ear: r =
0.538, p = 0.013, left ear: r = 0.474, p = 0.027). Thus, as HL
increased across participants, there was a corresponding increase
in P2 amplitude. No significant correlation was observed between
P2 latency and high-frequency PTA.

DISCUSSION
We examined cortical changes secondary to mild-moderate HL
in post-lingually hearing-impaired adults. When tested using
speech-evoked EEG in a passive stimulation paradigm, adults
with mild to moderate sensorineural HL showed the following
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distinct cortical changes relative to age-matched NH controls:
(1) increased P2 CAEP amplitude and latency, (2) reduced acti-
vation in temporal auditory cortical regions, (3) activation of
frontal cortical regions in response to auditory stimulation, (4)
significantly poorer speech perception in background noise that
correlated with increased P2 latency and (5) a significant corre-
lation between increased P2 amplitude and hearing thresholds at
high frequencies (2, 4, and 8 kHz). Thus, even in relatively early
stages of HL and early stages of auditory processing, adult subjects
appear to show significant alterations in cortical activation.

Our finding of increased P2 amplitude for HL listeners is
consistent with previous studies, which documented increased
P2 CAEP amplitude in older adults who were long-time hear-
ing aid users (Bertoli et al., 2011), and in young adults with
mild-moderate HL (Harkrider et al., 2009). Bertoli et al. (2011)
reported larger P2 amplitudes for adults with mild-moderate HL
who were long-term hearing aid users, and attributed the larger
auditory cortical responses in HL adults to an increase in “effort-
ful listening.” It is of further interest to note that larger P2 CAEP
amplitudes have been reported after auditory training, possibly
indicating increased utilization of auditory memory and percep-
tual resources (Naatanen and Picton, 1987; Shahin et al., 2003;
Ross and Tremblay, 2009; Tong et al., 2009). Along these lines, our
finding of an increase in P2 latency is also consistent with previ-
ous studies in adults with HL, which suggest that the increased
latency reflects inefficient cortical processing as the central audi-
tory system is required to process a degraded and/or challenging
signal (Harkrider et al., 2005, 2009; Ross et al., 2007).

Aging has also been reported as a factor in increased P2
amplitude and latency, possibly due to decreased central inhibi-
tion. However, we included age-matched, NH listeners, making it
unlikely that aging solely accounts for the differences in P2 ampli-
tude and latency seen for the HL group (Harkrider et al., 2006;
Ceponiene et al., 2008). Furthermore, Harkrider et al. (2009)
observed increased P2 amplitude and latency in young adults
with mild-moderate HL in response to nonsense speech sylla-
bles, suggesting that higher-order auditory processing is affected
by auditory deprivation and not age alone, though an interaction
between age and HL is likely. In the case of older listeners with
HL, reduced central inhibition via an interaction between aging
and HL may result in increased P2 amplitude (Dustman et al.,
1996; Syka, 2002). Our results also showed a significant increase
in P2 amplitude for the HL group relative to the NH groups over
the LH but not the right hemisphere (RH). Given our use of a
speech stimulus, the larger P2 amplitude in the HL group over
the LH may be due to more active role of the LH in processing of
speech information combined with a lack of inhibition due to HL
(Syka, 2002; Stefanatos et al., 2008).

A major finding in our study was that listeners with
mild-moderate sensorineural HL showed significant cortical
re-organization. Current density reconstructions via sLORETA
revealed that HL listeners showed decreased activation of audi-
tory cortical areas (STG and MTG) relative to NH listeners
(Figure 3A) and showed activation of frontal cortical regions
(e.g., IFG, MFG, SFG) in response to passive auditory stimulation
(Figure 4A). This change in cortical activation from temporal
regions to frontal regions indicates a possible re-allocation of

cortical processing in response to auditory stimuli, likely as a
compensatory effect of HL. The finding of a shift of the auditory
response to frontal areas is consistent with the fMRI studies of
Peelle et al. (2010a, 2011) and Wingfield and Grossman (2006),
who showed lower amounts of gray matter volume in tempo-
ral cortices in adults with HL, as well as greater activation in
frontal cortices in response to challenging listening conditions for
older adults. This frontal and pre-frontal activation was associ-
ated with increased listening effort, as these regions have been
traditionally associated with tasks involving working memory
and executive function (Collette et al., 2006; Eckert et al., 2008;
Liakakis et al., 2011). Overall, our results are consistent with neu-
roimaging research, which has demonstrated a reliance on frontal
regions involved in the cognition and the processing of complex
auditory stimuli in older adults (Sharp et al., 2006; Eckert et al.,
2008; Tyler et al., 2010; Obleser et al., 2011). Thus, the present
results of cortical re-organization in HL adults support recent
hypotheses suggestive of an increased cognitive load in hearing
impaired listeners, and may provide evidence for the taxation of
the reserve of cognitive processes (Pichora-Fuller and Singh, 2006;
Lin, 2011, 2012; Lin et al., 2011a,b).

It is surprising, however, that we observed that frontal corti-
cal regions, typically associated with cognitive processing, were
engaged in response to a passive auditory task that did not require
the participants’ attention. This finding suggests that compen-
satory processing may begin at early stages of central auditory
processing in adult-onset HL (Harris et al., 2009; Anderson and
Kraus, 2010). Indeed, another form of compensatory plasticity
(i.e., recruitment of auditory cortical regions for visual process-
ing) has been observed in adults with mild-moderate HL in
whom passively viewed visual stimuli activated temporal corti-
cal regions (Campbell and Sharma, in review). Recent studies
have shown similar temporal cortical activation by visual stim-
uli in deaf adults fitted with cochlear implants (Doucet et al.,
2006; Buckley and Tobey, 2011; Sandmann et al., 2012). Visual
information becomes of greater importance in HL, especially in
watching a speaker’s face and lip movements for contextual cues
(McCullough et al., 2005; Letourneau and Mitchell, 2011). These
findings, taken together with the present results, suggest that
increased frontal activation and reduced temporal activation to
speech may occur in parallel with increased temporal activation
to visual stimuli (likely due to reliance on faces and lipreading in
everyday communication), even as early as in mild-moderate HL.
Thus, cortical re-allocation during processing of auditory stim-
uli may result in increased cognitive load that usually occurs in
higher-order processing, but that is now occurring for lower-level
passive processing, resulting in degraded behavioral outcomes
for challenging listening environments (Pichora-Fuller and Singh,
2006; Larsby et al., 2008). It is possible that various training
paradigms using speech and music (possibly in conjunction with
hearing aid rehabilitation) may allow for re-training of auditory
cortices in HL listeners to re-activate normal neural networks
during auditory processing (Petersen et al., 2009; Shahin, 2011;
Turner et al., 2013).

Hearing loss is most consistently associated with poor out-
comes in recognizing speech in background noise, a skill essen-
tial for everyday listening (Souza et al., 2007). Consistent with
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previous research in hearing-impaired adults, our results show
that listeners with even mild-to-moderate HL demonstrate a sig-
nificant deficit when listening to speech in background noise
(Dubno, 1984; Vermiglio et al., 2012). HL listeners required
a much larger SNR to accurately perceive sentences in noise
(Figure 5A). Audibility does not appear to fully account for this
decrease in performance (Hällgren et al., 2005; Souza et al., 2007;
Léger et al., 2012; Vermiglio et al., 2012). In this study, speech
perception in background noise was significantly correlated with
increased P2 latency (Figure 5B). This increase in latency is con-
sistent with previous studies suggesting that the increase in audi-
tory processing time (as reflected by the P2 latency increase in the
HL group) may be reflective of additional activated cognitive cor-
tical regions, or compensatory cortical circuitry (Ross et al., 2007;
Harkrider et al., 2009). In addition, larger P2 CAEP amplitudes
were correlated with worse auditory pure tone thresholds at high
frequencies (2, 4, and 8 kHz). Given that P2 amplitude has been
associated with re-allocation of cognitive resources, (Tremblay
et al., 2003; Harkrider et al., 2005, 2009; Tong et al., 2009), it
would appear that the degree of cortical re-organization increases
with the severity of the HL.

Taken together, the observed increase in P2 CAEP amplitude
and latency, decreased activation in temporal areas with increased
activation of frontal cortical regions during passive listening, and
poorer behavioral outcomes in the HL group, provide evidence
of compensatory cortical plasticity occurring in mild-moderate
HL (i.e., in early stages of hearing decline). The nature of this
plasticity is observed as a re-allocation of cortical resources from
temporal auditory areas to frontal cognitive areas, which appear
to be recruited to assist with processing of auditory stimuli even
at the level of passive listening. Overall, our results are consis-
tent with the hypothesis that HL appears to initiate a process of
resource re-allocation, which results in increased cognitive load

(Pichora-Fuller et al., 1995; Pichora-Fuller and Singh, 2006; Peelle
et al., 2010a,b, 2011; Lin, 2011, 2012, 2013; Lin et al., 2011a,b).
Finally, measures of cognitive resource re-allocation in HL, both
objective and behavioral, may become increasingly relevant in the
clinical setting in order to determine patients at risk for cognitive
decline. It would be of interest to determine whether hearing aids,
auditory training, or a combination might possibly alleviate this
cognitive resource re-allocation as reflected by a possible decrease
in frontal activation and return to normal levels of temporal cor-
tical activation (Lunner et al., 2009; Parbery-Clark et al., 2011;
Rudner et al., 2012).

SUMMARY
Our results demonstrate auditory cortical re-organization in the
form of decreased temporal activation and increased frontal
activation in early stage HL of mild-moderate severity using
passively elicited EEG responses. Furthermore, increased latency
and amplitude of the P2 component were associated with
decreases in speech perception performance and increase in
hearing threshold, respectively. Due to the strong relation-
ship between HL and cognitive deficits, such as dementia,
that arise later in life, it is important that clinical eval-
uation of cognitive reserve in HL be included as part of
intervention services. Future research should focus on better
understanding the relationship between the severity of cog-
nitive re-allocation in relation to severity of HL as well as
reversibility of re-organization as a result of intervention with
amplification.
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