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Motor neuron physiology and development depend on a continuous and tightly regulated
trophic support from a variety of cellular sources. Trophic factors guide the generation
and positioning of motor neurons during every stage of the developmental process.
As well, they are involved in axon guidance and synapse formation. Even in the adult
spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and
protection from noxious stimuli. Among the trophic factors that have been demonstrated
to participate in motor neuron physiology are vascular endothelial growth factor (VEGF),
glial-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and insulin-like
growth factor 1 (IGF-1). Upon binding to membrane receptors expressed in motor neurons
or neighboring glia, these trophic factors activate intracellular signaling pathways that
promote cell survival and have protective action on motor neurons, in both in vivo and
in vitro models of neuronal degeneration. For these reasons these factors have been
considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS) and
other neurodegenerative diseases, although their efficacy in human clinical trials have not
yet shown the expected protection. In this minireview we summarize experimental data
on the role of these trophic factors in motor neuron function and survival, as well as their
mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic
factors and why these therapies may have not been yet successful in the clinical use.
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INTRODUCTION
Neuronal development and survival depend on a balanced and
tightly regulated support from trophic factors. Such factors are
capable of regulating several important physiological processes,
such as neuronal differentiation, maintenance of synapses, neu-
ronal survival through the inhibition of apoptosis, neurogenesis
and axonal outgrowth (Korsching, 1993; Boonman and Isacson,
1999; Hou et al., 2008). In addition, they provide an environ-
mental niche suitable for neuronal survival (Mudò et al., 2009).
Trophic support is essential for neurons in the spinal cord and
is conferred from many different cellular sources including astro-
cytes, microglia, neurons and endothelial cells (Ikeda et al., 2001;
Béchade et al., 2002; Dugas et al., 2008; Su et al., 2009; Hawryluk
et al., 2012). Therefore, trophic support is considered a promising
therapeutic strategy for neurodegenerative diseases (Kotzbauer
and Holtzman, 2006), and it plays an important role in cellu-
lar therapy aimed at the reinnervation of lost neuromuscular
synapses (Casella et al., 2010).

Amyotrophic lateral sclerosis (ALS) is caused by the selective
and progressive loss of spinal, bulbar and cortical motor neurons
that lead to irreversible paralysis, speech, swallowing and respira-
tory malfunctions and eventually death of the affected individuals
in a rapid disease course. ALS is mostly sporadic with 90% of the
cases occurring without a family history of the disease. However,

in the recent years it has become evident that many sporadic
cases carry alterations in proteins that have been found mutated
in familial cases that might, at least, increase the probability for
developing ALS (Deng et al., 2010). Many of these mutations
involve alterations in the TAR DNA-binding protein 43 (TDP43)
and Fused in sarcoma (FUS) genes that bind RNA molecules
(Gordon, 2013; Sreedharan and Brown, 2013), whereas most
familial cases with a dominant autosomal inheritance pattern are
caused by mutations in superoxide dismutase 1 (SOD1; Rosen
et al., 1993). Transgenic mice expressing a mutant form of the
human SOD1 are the most widely used model for in vivo studies
of ALS (Gurney et al., 1994). Trophic factors have been thought as
therapeutic targets for ALS, aiming at restoring lost neuromuscu-
lar synapses and rescuing motor neurons from toxicity.

There is a series of well characterized trophic factors for
the CNS, such as brain-derived neurotrophic factor (BDNF),
insulin-like growth factor 1 (IGF-1), ciliary neurotrophic fac-
tor (CNTF), glial-derived neurotrophic factor (GDNF), nerve
growth factor (NGF), growth hormone and vascular endothe-
lial growth factor (VEGF). Many of these have been tested for
neuroprotective potential in different experimental models of
ALS. In fact, viral vectors encoding growth factors are among
the most effective ways to delay the progression of degenera-
tive processes and prolong survival in ALS mice (Wang et al.,
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2002; Kaspar et al., 2003; Azzouz et al., 2004; Dodge et al.,
2008).

TROPHIC FACTORS DURING MOTOR NEURON DEVELOPMENT
Motor neuron development is differentially affected by specific
trophic factor shortage, and loss of particular trophic signaling
alters the development of different subpopulations of motor
neurons in heterogeneous ways. The absence of GDNF alters the
location of developing motor neurons that innervate the limbs
in the spinal cord (Haase et al., 2002; Kramer et al., 2006) and
selectively affects the innervation of intrafusal muscle spindles
(Gould et al., 2008). Interestingly, the overexpression of this
factor in muscle during development causes a hyperinnervation
of neuromuscular junctions (Nguyen et al., 1998). In contrast,
BDNF may not be as important for motor neurons, because
although the lack of this trophic factor severely affects the normal
development of sensory neurons, motor neurons are able to
develop without major alterations (Ernfors et al., 1994a; Jones
et al., 1994). Furthermore, distinct motor neuron subpopulations
show different sensitivities to the lack of neurotrophins. For
example, the absence of neurotrophin-3 produces a complete loss
of spinal motor neurons while facial motor neurons are spared
(Ernfors et al., 1994b; Gould et al., 2008), and the absence of
CNTF produces no alterations for motor neuron development
at the spinal or cranial levels (DeChiara et al., 1995), although
the loss of its receptor CNTFRα generates severe motor neuron
deficits and mice lacking this receptor die perinatally (DeChiara
et al., 1995). A possible alternate ligand for this receptor is
the dimer formed by cardiotrophin-like cytokine/cytokine-like
factor 1, whose deletions have been shown to cause a significant
reduction in the number of motor neurons (Forger et al., 2003).
The absence of other factors such as cardiotrophin-1 has also
been reported to produce a significant loss of motor neurons
(Oppenheim et al., 2001; Forger et al., 2003), and the loss of
IGF-1 causes significant reduction in the number of trigeminal
and facial motor neurons (Vicario-Abejón et al., 2004). Finally,
while the lack of VEGF is lethal, a deletion of the hypoxia
response element in the promoter region of the VEGF gene
causes a decrease in the expression of this factor that leads
to an adult-onset progressive loss of motor neurons in mice
(Oosthuyse et al., 2001). After this fortuitous discovery, it was
reported that certain VEGF haploytpes (-2578C/A, -1154G/A and
-634G/C) conferred an increased susceptibility to ALS in humans,
but later on in a meta-analysis conducted with more than 7000
subjects from at least eight different populations no association
between these haplotypes and ALS was found (Lambrechts et al.,
2009). Moreover, no mutations in the hypoxia response element
of the VEGF promoter (Gros-Louis et al., 2003), or in the
VEGF receptor 2 (Brockington et al., 2007) were found in ALS
patients.

Neurotrophic factors are not only important during devel-
opment, but they also regulate motor neuron maintenance and
survival even long after neurons have become fully differentiated.
As well, they might be able to trigger the activation of endogenous
regenerative processes. Aside from the synthesis of trophic factors
in the local spinal microenvironment, synaptic targets of motor
neurons also play important roles in the trophic feedback. As a

matter of fact, this is an essential event for the development of the
CNS during which originating neurons receive trophic input from
their target tissues that enables them to surpass an endogenous-
codified programmed cell death (Oppenheim, 1991). In the case
of motor neurons these effects are mostly mediated by skeletal
muscle-derived factors (Oppenheim et al., 1988; Grieshammer
et al., 1998; Kablar and Rudnicki, 1999).

TROPHIC FACTOR EFFECTS ON MOTOR NEURON SURVIVAL
Among all the trophic factors tested in experimental ALS models,
VEGF has been shown to be one of the most potent motor
neuron protectors. VEGF remarkably retards the progression of
the disease and the loss of motor neurons in familial (Azzouz et al.,
2004; Zheng et al., 2004; Storkebaum et al., 2005; Wang et al.,
2007), as well as in sporadic (Tovar-Y-Romo et al., 2007; Tovar-
Y-Romo and Tapia, 2010, 2012) experimental models of motor
neurodegeneration.

Activation of VEGF receptor 2 triggers the phosphorylation of
intracellular pathways driven by phosphatidyl-inositol-3-kinase
(PI3-K), phospholipase C-γ, and mitogen-activated protein
kinase (MEK) that promote the inhibition of pro-apoptotic fac-
tors like Bad (Yu et al., 2005) and caspases 9 (Cardone et al.,
1998) and 3 (Góra-Kupilas and Joško, 2005; Kilic et al., 2006).
The activation of these intracellular signaling pathways has been
extensively studied in the CNS (Zachary, 2005). VEGF-dependent
activation of PI3-K/Akt is sufficient to prevent motor neuronal
death in familial models of ALS in vitro (Li et al., 2003; Koh et al.,
2005; Tolosa et al., 2008) and in experimental in vitro models of
excitotoxic neuronal death (Matsuzaki et al., 2001). Furthermore,
the activation of PI3-K/Akt is required for motor neuron sur-
vival and axonal regeneration after spinal cord injury (Namikawa
et al., 2000). We have demonstrated that the signaling mediated
by PI3-K is critically involved in the protective effect of VEGF
against AMPA-induced excitotoxic spinal neurodegeneration in
vivo (Tovar-Y-Romo and Tapia, 2010).

VEGF also mediates neuroprotection through the inhibition of
stress activated protein kinases like p38 mitogen-activated protein
kinase. Increased levels of phosphorylated p38 have been found
in motor neurons and glia in the familial mouse model of ALS
(Tortarolo et al., 2003; Holasek et al., 2005; Veglianese et al.,
2006; Dewil et al., 2007), even at the pre-symptomatic stage
(Tortarolo et al., 2003), and p38 is also an important factor in a
cell death pathway specific for motor neurons (Raoul et al., 2006).
Interestingly, the inhibition of p38 prevents motor neuron death
in an in vitro familial model of ALS (Dewil et al., 2007), and we
and others have proven that VEGF can suppress p38 activation in
both familial (Tolosa et al., 2009) and excitotoxic (Tovar-Y-Romo
and Tapia, 2010) models of spinal cord neurodegeneration.

An increased expression of the VEGF-inducing factor Hypoxia
induced factor 1 (HIF-1α) in the spinal cord may occur due to
relative hypoxic conditions that exist in the spinal microenvi-
ronment, although motor neurons seem to be unable to fully
respond to increased downstream effectors such as VEGF (Sato
et al., 2012). One possible explanation for this and for the decrease
of VEGF levels found in human patients (Devos et al., 2004)
might be that inducing factors such as HIF-1α are prevented from
translocating to the nucleus even though their concentrations are
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increased in the cytoplasm (Nagara et al., 2013). This failure to
mount the complete response of VEGF synthesis during hypoxia
is not cell type specific and it has been demonstrated to occur in
monocytes from ALS patients (Moreau et al., 2011).

In contrast to the good protection potential of VEGF, other
factors like BDNF failed to protect in different experimental
paradigms. BDNF is synthesized by activated microglia in the first
stages of the disease when the glial response mainly exerts anti-
inflammatory and protective effects, but its production is lost
when microglia turns toxic at later stages (Liao et al., 2012). In
addition, BDNF does not protect motor neurons from excitotoxi-
city in experimental models in vitro (Fryer et al., 2000) and in vivo
(Tovar-Y-Romo and Tapia, 2012). This could be possibly due to
the sequestration of the ligand by a truncated isoform of the high
affinity receptor that is known to be expressed in motor neurons,
because removing this truncated receptor significantly delays the
disease onset in the mouse familial model (Yanpallewar et al.,
2012). In spite of this, BDNF may be a risk factor for neurons
by increasing their sensitivity to excitotoxicity (Fryer et al., 2000),
or through the activation of NADPH oxidase (Kim et al., 2002),
an enzyme involved in motor neuron pathology by damaging
the survival pathways activated by trophic factors (Wu et al.,
2006). Other growth factors have also been shown to be beneficial
although to a lesser extent.

The expression of GDNF by astrocytes is up-regulated after
spinal cord ischemia and this might be a mechanism of protection
for motor neurons against excitotoxic death (Tokumine et al.,
2003). GDNF exerts its neuroprotective effects preferentially on
neuronal somas rather than on nerve endings at the neuro-
muscular synapse when it is administered directly in the spinal
cord (Suzuki et al., 2007). Conversely, when it is administered
directly in the muscle, GDNF preserves the muscle-nerve synapse
and promotes motor neuron function and survival in a familial
model of ALS (Suzuki et al., 2008), implying that the protective
effects exerted by GDNF are rather limited by the proximity
to the trophic source. Nonetheless, GDNF can be retrogradely
transported along motor neuronal axons (Leitner et al., 1999),
which allows the opportunity to explore a delivery route that will
impact both somas and nerve endings. Interestingly, human ALS
patients show an up-regulation of GDNF in muscle (Grundström
et al., 1999), and the overexpression of GDNF in muscle but
not in astrocytes extends lifespan in ALS mice (Mohajeri et al.,
1999). Combined growth factor therapy might be an alternative
that is worth exploring, as suggested by a recent report in the rat
transgenic ALS model showing that VEGF and GDNF adminis-
tered through an implant of human mesenchymal stem cells exert
a synergistic protection in preserving nerve muscular synapses
(Krakora et al., 2013).

In the case of CNTF, although the blockade of its expression
has been reported to result in the loss of motor neurons and the
development of motor symptoms (Masu et al., 1993), these effects
are relatively mild when compared to those induced by the loss of
other factors like VEGF. Interestingly, ALS patients have a selective
decrease of CNTF expression in the CNS regions affected by the
disease (Anand et al., 1995). Conversely, serum levels of CNTF are
generally elevated in ALS patients, especially among those with
the lumbar-onset form of the disease (Laaksovirta et al., 2008).

TROPHIC FACTORS AS THERAPY FOR AMYOTROPHIC LATERAL
SCLEROSIS (ALS)
Clinical trials administering trophic factors to ALS patients have
not been successful yet. Subcutaneous injections of CNTF, which
was effective in the mutant mice models of motor neuron disease
pmn/pmn (Sendtner et al., 1992) and wobbler (Mitsumoto et al.,
1994), did not affect the progression of disease in humans, but
caused minor adverse side effects (ALS CNTF Treatment Study
Group, 1996). Similarly, disease progression was not modified
in ALS patients treated with subcutaneous administration of
BDNF (The BDNF Study Group, 1999). Two randomized double-
blind placebo-controlled clinical trials administering recombi-
nant human IGF showed little (Lai et al., 1997) or no effect
(Borasio et al., 1998) on disease progression, even when IGF-1
was found to be protective in the transgenic rodent model of
ALS (Kaspar et al., 2003; Dodge et al., 2008). A combined meta-
analysis of both trials showed slight retardation in the disease
progression in the group treated with IGF-1, although the results
are not conclusive (Beauverd et al., 2012). Interestingly, it has
been recently reported that skeletal muscle fiber production of
IGF-1 is impaired in ALS patients (Lunetta et al., 2012), so that
the modest effects found in some of the patients enrolled in the
clinical trials might have been due to a compensation of impaired
IGF-1 production by the exogenous administration of the fac-
tor. Finally, even when according to one report (Morselli et al.,
2006) the majority of ALS patients showed deficiencies in growth
hormone secretion, in a recent clinical trial the administration
of this hormone to ALS patients did not produce any benefit as
compared to patients that received placebo (Saccà et al., 2012).

The time of administration after symptom onset in a trophic
factor-based therapy is critical. Trophic factors have a short time
frame for protection of motor neurons once the noxious process
is triggered and this is probably due to the rate at which motor
neurons die during the time course of the disease. Histological
studies of human spinal cord showed a large variability between
the degree of motor neuron loss and muscle weakness (Stephens
et al., 2006), and transgenic familial amyotrophic lateral sclerosis
(FALS) mice bearing human (Dal Canto and Gurney, 1995; Bruijn
et al., 1997) or murine (Morrison et al., 1998) mutant SOD1 do
not present a significant loss of motor neurons prior to the onset
of symptoms, and the neuronal loss occurs at a very fast rate over
a period of 10 days. In our model of chronic spinal cord excito-
toxicity we found that the onset of motor deficits, characterized by
limping of the rear limbs, occurs before the loss of motor neurons,
suggesting that the time at which the cellular death process starts
but prior to clear neuronal degeneration constitutes a therapeutic
frame within which growth factor administration could result
effective (Tovar-Y-Romo et al., 2007; Tovar-Y-Romo and Tapia,
2012). In fact, in the FALS murine models the administration of
VEGF (Azzouz et al., 2004; Storkebaum et al., 2005) or IGF-1
(Kaspar et al., 2003; Dodge et al., 2008) well before the beginning
of symptoms confers a significantly better protection, observed by
a delay in the progression of symptoms and increased lifespan, as
compared to that produced when administered at the symptoms
onset. A similar result was obtained in rats subjected to spinal
AMPA-induced excitotoxicity, in which a delayed administration
of VEGF clearly protected but only when administered before
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the beginning of motor deficit symptoms (Tovar-Y-Romo and
Tapia, 2012). This difference possibly means that growth factors
are helpful at preventing the accumulating toxicity that arises
from neurodegenerative processes that begin before motor neu-
ron death or symptoms onset (Dal Canto and Gurney, 1995;
Bendotti et al., 2001). Unfortunately, obtaining a correct diagnosis
of ALS is a complicated and slow process due to the many
parameters needed to meet diagnosis criteria (Shook and Pioro,
2009; Bedlack, 2010), so that the earliest intervention with trophic
factors once a patient is diagnosed may be already too late.

Administration routes for trophic factor therapy are also
important. This is of special interest when considering that in
the actual human disease cellular alterations take place along the
entire spinal cord, which might be a target particularly difficult
to reach. Therefore, assessing different ways to deliver trophic
factors is worth trying. Intracerebroventricular (ICV) adminis-
tration of VEGF has been proven efficient in the rat transgenic
model of FALS (Storkebaum et al., 2005) and in our acute model
of spinal cord excitotoxicity (Tovar-Y-Romo and Tapia, 2012).
ICV administration has the capability to cover the entire spinal
cord although it most probably creates a concentration gradient
(Storkebaum et al., 2005). The continuous perfusion of trophic
factors in the spinal cord by intrathecal infusions or into the
brain by ICV injections overcome the blockade that the blood
brain barrier represents for the delivery of these molecules. In
fact, intrathecal injections have been tried in ALS patients for
the delivery of IGF-1, with modest results (Nagano et al., 2005).
Clinical trials for VEGF are now underway to assess the safety and
tolerability of VEGF (Siciliano et al., 2010).

Other important aspects to consider in growth factor therapies
are the stability of the molecule, the half-life of the proteins, the
need for sustained delivery and exposure, the dose, their ability
to cross the blood brain barrier, and the unwanted side effects on
non-targeted cells (Suzuki and Svendsen, 2008). Nonetheless, the
neuroprotective potential that growth factor represent overweighs
the obstacles that need to be overcome in order to achieve a
successful therapy.

CONCLUSIONS
Because trophic support is an essential component for neuronal
maintenance and survival, supplying motor neurons subjected
to stressful or noxious stimuli with molecular factors that help
them counteract cellular death processes, growth factors represent
a therapeutic tool that is undoubtedly worth exploring for ALS.
However, we still need to understand a great deal of the molecular
pathways that cause growth factor shortage during the course
of disease and the cellular and molecular mechanisms that limit
the responses elicited by these factors when they are supplied
exogenously. As well, we still need to identify proper therapeutic
regimens and treatment approaches to be able to translate the
findings we have made in experimental models into useful ther-
apeutic procedures.
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