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Biological age is not always concordant with chronological age and the departures are of
interest for understanding how diseases and environmental insults affect tissue function,
organismal health, and life expectancy. The best-known biological age biomarker is
telomere length, but there are more accurate biomarkers as the recently developed
based in epigenetic, transcriptomic, or biochemical changes. The most accurate are
the epigenetic biomarkers based on specific changes in DNA methylation referred as
DNA methylation age measures (DmAM). Here, we have developed and validated a
new DmAM that addresses some limitations of the previously available. The new DmAM
includes the study in whole blood (WB) of 8 CpG sites selected as the most informative
on a training set of 390 healthy subjects. The 8 CpG DmAM showed better accuracy
than other DmAM based in few CpG in an independent validation set of 335 subjects.
Results were not significantly influenced by sex, smoking, or variation in blood cell
subpopulations. In addition, the new 8 CpG DmAM was amenable to study in a single
multiplex reaction done with methylation-sensitive single-nucleotide primer extension
(MS-SNuPE), a methodology based on commercially available reagents and run in
capillary electrophoresis sequencers. In this way, the high cost of DNA methylation
microarrays or of a pyrosequencer, which are needed for alternative DmAM, was
avoided. Performance of the DmAM with MS-SNuPE was assessed in a set of 557
donors, showing high call rate (>97%), low CV (<3.3%) and high accuracy (Mean
Absolute Deviation= 6.07 years). Therefore, the 8 CpG DmAM is a feasible and accurate
tool for assessing the epigenetic component of biological age in blood of adults.
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INTRODUCTION

Biomarkers of biological age are very useful for identifying situations of premature aging (Lopez-
Otin et al., 2013). The best-known biomarker of this type is telomere length, which is shortened
during each cell division in cells lacking the telomerase enzyme (Oeseburg et al., 2010; Zhu et al.,
2011). It has been found prematurely shortened in blood cells of patients with a variety of diseases
and in relation with decreased life expectancy. The appeal of this technology is such that several
companies have been created to offer predictions of life expectancy and of health quality based
in telomere length analyses (Leslie, 2011; Wolinsky, 2011). However, biological aging is a complex
process and telomere length is unable to inform of all its aspects, making it an inaccurate biomarker
in many instances. Recently, several new biomarkers of age of increased accuracy and content
have been developed. One of these new biomarkers is made by combining the levels of multiple

Frontiers in Genetics | www.frontiersin.org 1 July 2016 | Volume 7 | Article 126

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82853054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://dx.doi.org/10.3389/fgene.2016.00126
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fgene.2016.00126
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2016.00126&domain=pdf&date_stamp=2016-07-14
http://journal.frontiersin.org/article/10.3389/fgene.2016.00126/abstract
http://loop.frontiersin.org/people/347988/overview
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00126 July 12, 2016 Time: 16:48 # 2

Vidal-Bralo et al. Simple Assay for Epigenetic Age

biochemical routine blood tests (Putin et al., 2016), others include
information on the expression of hundreds of genes (Peters
et al., 2015). The most accurate of all them are the epigenetic
biomarkers (Weidner et al., 2014; Peters et al., 2015; Putin
et al., 2016), which have become possible after the identification
of age associated changes in DNA methylation at specific
CpG sites (Fraga et al., 2005). The mechanism of these age-
related changes is incompletely understood. Most experiments
suggest that it involves perturbations of the DNA methylation
maintenance system that lead to slowly accumulating failures
along time (epigenetic drift; Hannum et al., 2013; Horvath, 2013;
Teschendorff et al., 2013). The same experiments also indicate
that epigenetic drift can be accelerated by somatic mutations,
cell divisions, and environmental stress. The biomarkers based
on these changes are referred as DNA methylation age measures
(DmAM) or epigenetic clocks (Bocklandt et al., 2011; Hannum
et al., 2013; Horvath, 2013; Florath et al., 2014; Weidner et al.,
2014; Huang et al., 2015; Zbiec-Piekarska et al., 2015). These
biomarkers combine information from several CpG sites that
experience either increased or decreased methylation with age.
Some of them were developed for a single tissue (Bocklandt
et al., 2011; Florath et al., 2014; Weidner et al., 2014; Huang
et al., 2015; Zbiec-Piekarska et al., 2015), most often blood,
and others were developed and validated for multiple tissues
(Hannum et al., 2013; Horvath, 2013). The DmAM in blood show
good correlation with chronological age (Hannum et al., 2013;
Horvath, 2013; Florath et al., 2014; Weidner et al., 2014; Huang
et al., 2015; Zbiec-Piekarska et al., 2015), which is better than
the obtained with telomere length (Weidner et al., 2014) and
with other biological age biomarkers (Peters et al., 2015; Putin
et al., 2016). In addition, the DmAM in blood show accelerated
aging in progressive bone marrow failure syndromes (Weidner
et al., 2014) and in Down syndrome (Horvath et al., 2015a),
as well as, correlation with cognitive and physical fitness in the
elderly (Marioni et al., 2015b), and with all-cause mortality in
aged subjects (Marioni et al., 2015a; Christiansen et al., 2016), or
the opposed association with familiar longevity (Horvath et al.,
2015b). Fulfilling, therefore, all the characteristics of an accurate
biomarker of biological age, useful to study how its departures
from chronological age affect tissue function, organismal health
and life expectancy.

Some DmAM use methylation at a large number of CpG
sites (Hannum et al., 2013; Horvath, 2013), requiring whole
genome methylation arrays. However, this is a too expensive
technology for studies aiming to analyze biological age in a
large number of samples. Alternatives with fewer CpG sites are
already available for studies of saliva, 2 or 3 sites (Bocklandt
et al., 2011), and WB, from 3 to 17 sites (Florath et al., 2014;
Weidner et al., 2014; Huang et al., 2015; Zbiec-Piekarska et al.,
2015). They still could be problematic in some settings because
they require a pyrosequencer and this equipment is not available
in many laboratories. In addition, the available DmAM were
developed including the whole range of ages, from birth to
very old age, and this is not possible without losing accuracy
because the rate of changes is faster in pre-adolescents than
in adults and follows different dynamics, exponential vs. lineal
(Alisch et al., 2012; Horvath, 2013). Therefore, we aimed to

develop and validate a simplified DmAM with the following
characteristics: using WB, requiring a single reaction per patient,
calibrated for adults, and amenable to focused analysis of a
few CpG sites in laboratories lacking a pyrosequencer. The
technology used involves methylation-sensitive single-nucleotide
primer extension (MS-SNuPE; Kaminsky et al., 2005), which is
based in commercially available reagents and requires a capillary
sequencer.

MATERIALS AND METHODS

DNA Methylation Data Sets
We used four sets of blood cell DNA methylation data
(Table 1). One was used for development of the DmAM
and was named training set. This training set included data
from the 390 donors older than 20 years from Weidner
et al. (2014), which were obtained with the Illumina Human
Methylation 27K BeadChip platform and are available under
GSE19711, GSE20242, GSE20236, GSE23638 GEO accession
numbers. The next three data collections (Table 1) were
validation sets used to assess different aspects of the new
DmAM. The first was from Liu et al. (2013). It was used
to compare the accuracy of the new DmAM with previous
DmAM. This data set includes Illumina HumanMethylation
450K BeadChip information obtained from 335 donors recruited
randomly from the Swedish national population registry and
publicly available with GSE42861 accession number. The
second validation data set was used to evaluate the effect of
heterogeneity in blood cell composition on the new DmAM.
It included DNA methylation and blood cell composition from
92 individuals in the Vancouver lower mainland area, who
were studied by Lam et al. (2012). Methylation data were
obtained with the Illumina Human Methylation 27K BeadChip
and they are available under the GSE37008 accession number.
Blood cell composition included the number of monocytes,
lymphocytes, neutrophils, basophils, and eosinophils assessed
with an Advia 70 (Siemens Medical) system. Samples from
these previous studies were according with ethical requirements
as reported in the primary publications (Lam et al., 2012;
Liu et al., 2013; Weidner et al., 2014). The third validation
data set was obtained for this study. It was used to test
the performance of the new DmAM on DNA methylation
data obtained with MS-SNuPE. It included methylation data
from DNA samples of 557 donors of European Spanish
ancestry. These subjects were recruited as controls for studies
of rheumatic diseases during ambulatory explorations. Most
of them, 375, were recruited during preoperative work-up for
elective minor surgeries other than joint surgery. The remaining
182 subjects were recruited during intravenous urography.
Patients with bad health status (physical or mental) or with
symptoms or signs of OA and patients with inflammatory
or autoimmune diseases, as well as those reporting foreign
ancestors were excluded. The Ethics Committee for Clinical
Research of Galicia approved study of this third validation
set for which all participants have given written informed
consent.
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TABLE 1 | Detailed description of the sample collections used in this study.

Application Study N Age (SD) Age range Woman%

Training Weidner et al., 2014 390 61.2 (11.6) 20–78 96.7

DNA methylation age measures (DmAM) comparison Liu et al., 2013 335 52.8 (11.5) 20–70 71.3

Blood composition Lam et al., 2012 92 52.8 (11.5) 25–45 71.3

MS-SNuPE validation Current study 557 65.9 (10.0) 45–89 51.4

N = Sample size; Age = mean age in years; SD = Standard deviation.

Definition of DmAM Based on 8 CpGs
We used the 390 healthy Caucasian donors older than 20 years
from Weidner et al. (2014), to define a DmAM optimized to
estimate age from blood DNA in adult subjects and allowing
assays with MS-SNuPE. The dataset contains DNA methylation
profiles of 102 CpGs strongly correlated with age (Pearson
correlation coefficient r > 0.85 or r < –0.85). We selected the
most informative by forward stepwise linear regression. At each
step, feasibility of assay by MS-SNuPE of the CpG entering
the model was checked. If the assay was possible, the CpG
was incorporated to the regression model, on the contrary, it
was discarded and the linear regression restarted without it.
A total of 8 CpGs were incorporated to the model with a 0.05
P threshold to enter. The 8 CpGs and the B coefficient values
obtained with multiple linear regression on the training set are
detailed in Table 2. The 8 CpG DmAM was further evaluated
for accuracy with the training set and the three validation data
sets. The first validation set was specifically used for comparing
the 8 CpG DmAM obtained with three other DmAM (Hannum
et al., 2013; Horvath, 2013; Weidner et al., 2014), because this
data set included blood DNA methylation data that have not
been used to calibrate any of the DmAM. The role of gender
and smoking was analyzed by multiple regression against the
difference between age and the DmAM estimation. The DmAM
used for comparison were selected because the availability of
the model parameters and of the methylation information at
the required CpG sites. It should be noted that the Hannum
DmAM was used without clinical variables because of lack of
the necessary information (Hannum et al., 2013). Accuracy of
DmAM was assessed as correlation with chronological age, and
as mean difference and mean absolute deviation (MAD) between
predicted age and chronological age. In the analysis of blood cell

TABLE 2 | Multiple linear regression parameters of the 8 CpG DmAM.

Term B SE t-value p-level

Intercept 84.7 4.3 19.5 <1.0 × 10−16

cg16386080 59.5 4.9 12.3 2.4 × 10−29

cg24768561 33.9 5.9 5.8 1.5 × 10−08

cg19761273 –44.0 9.8 4.48 1.0 × 10−05

cg25809905 –19.7 5.4 3.7 2.9 × 10−04

cg09809672 –22.8 6.5 3.5 5.0 × 10−04

cg02228185 –16.8 4.8 3.5 5.5 × 10−04

cg17471102 –17.7 6.5 2.7 0.006

cg10917602 –11.4 5.1 2.2 0.026

This model was calibrated with the training data set. SE = Standard Error.

FIGURE 1 | Results of the 8 CpG DNA methylation age measures
(DmAM) in the training set. The scatterplot represents age in the horizontal
axis, against the 8 CpG DmAM in the vertical axis from the healthy donors of
the training set (n = 390). Straight lines represent least squares regression fit
to the data.

subpopulation, cell counts were Z transformed for representation
(except for basophils, which only showed 0 or 1 counts per 10 µl).
These analyses were done with Statistica 7.0 (Stat Soft, Inc.).

Assays of DNA Methylation with
MS-SNuPE
Genomic DNA, 1 µg, was bisulfite-converted in 96 deep-well
Methylation-Gold kit plates (Zymo Research, USA) following
the manufacturer specifications. Oligonucleotide primers and
probes for multiplex Ms-SNuPE reactions assaying the 8
selected CpGs were designed with MethPrimer (Li and Dahiya,
2002) and are provided in Supplementary Table S1. Multiplex
Ms-SNuPE reactions were performed as previously described
(Kaminsky et al., 2005). Optimal amounts of primers and probes
were determined to avoid saturation or inefficient reaction.
Reactions without bisulfite-converted DNA were included to
assess specificity. All samples were assayed in duplicate and those
with CV higher than 10% were repeated. A control sample was
run in all plates.
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RESULTS

New DmAM Amenable for MS-SNuPE
and Calibrated for Adults
We selected CpG sites for the new DmAM among the 120 CpGs
with stronger correlation by forward stepwise linear regression
with age in Weidner et al. (2014). For this process, we used the
training set of 390 healthy subjects older than 20 years of age. At
each step, we checked the CpGs for their compatibility with MS-
SNuPE assays (Supplementary Table S1). The process finished
with 8 CpGs, each of them showing significant contribution in
multiple regression (Table 2), with 2 showing an increase in
methylation with age and 6 showing a decrease. The new 8 CpG
DmAM provided an accurate estimation of age in the training
set (R2

= 0.68, P < 10−16; MAD = 5.07 years; Figure 1). In
addition, accuracy was similar in different age categories from 30
to 80 years of age (Table 3). The lower age group, below 30 years
of age, showed a larger MAD and larger difference in mean than
the other strata (Table 3). It is worth to note that the highest
accuracy is observed near the mean age of the training set. This is
common to all predictions based on regression.

Relative Accuracy of the New DmAM
We used the first validation set to assess the relative accuracy of
the 8 CpG DmAM in relation with three other DmAMs (Hannum
et al., 2013; Horvath, 2013; Weidner et al., 2014). This validation
set includes blood DNA methylation data from 335 healthy adults
(Liu et al., 2013). The best models were the two based in a large
number of CpG and a sophisticated prediction model (Table 4).
They showed the lowest MAD and the strongest correlation with
chronological age. The DmAM of Horvath excelled in MAD and
mean difference, whereas the DmAM of Hannum showed the
strongest correlation with chronological age. It is important to
note that the Hannum DmAM was used only with methylation
data, without the clinical data included in its original description
(Hannum et al., 2013).

The new 8 CpG DmAM showed an accuracy that was
intermediate between the DmAM based in many CpGs and the
based in few. It was nearer to any of the two best DmAM
than to the Weidner DmAM in the correlation coefficients. In
addition, it showed a lower mean difference between age and the
DmAM estimation than the Hannum DmAM and a comparable
MAD. Therefore, the 8 CpG DmAM was more accurate than the
Weidner DmAM, but less accurate than the methods requiring
microarray analysis of DNA methylation. These results indicate
that the 8 CpG DmAM provides an improved compromise
between feasibility and accuracy.

The New 8 CpGs DmAM Was
Independent of Heterogeneity in Blood
Cell Counts and Other Confounding
Factors
The complexity of blood composition and its variability has
been mentioned as a possible confounding factor for DmAM.
Therefore, we checked the influence of changes in blood cell

counts on the new 8 CpG DmAM using the second validation
set (Lam et al., 2012). No association was found with cell counts
of any of the major subpopulation or with variation in WB
cell numbers (Figure 2). All the β coefficients were <0.03 with
P-values >0.6 (Supplementary Table S2). In contrast, association
with age showed a β coefficient of 0.77 with P < 10−17.

Other possible confounding factors, sex and smoking were
available in the first validation set. They were analyzed in this set
because of the higher power of analysis in the 335 subjects on it
(Liu et al., 2013). The 8 CpG DmAM was neither associated with
smoking (β= –0.020, P= 0.6), nor with sex (β= –0.005, P= 0.9).

Validation of the 8 CpG DmAM with
MS-SNuPE
We tested accuracy of the new 8 CpG DmAM in the third set of
samples, in which the 8 CpG methylation levels were determined
by MS-SNuPE for the current study. The MS-SNuPE assay
showed a 97.6% call rate, and a between plates reproducibility
of 3.3% CV. The 8 CpG DmAM showed good accuracy in
relation with the observed in other sample sets with this same
DmAM and observed with other DmAM in the first validation
set. The MAD and the mean difference (MAD = 6.07 years,
mean difference = –2.1 years) were better than the observed
in the first validation set with the same DmAM (Table 4).
These differences were only slightly larger than the observed
in the training set used to define the model parameters. Linear
correlation with chronological age, in contrast, was weaker than
the observed in the first validation set (adjusted R2

= 0.45,
P < 10−16; Spearman R = 0.67). However, the distribution of
values was concentrated around the regression line with only
some subjects showing wide differences between chronological
age and the age estimated with the DmAM (Figure 3). This
indicates that the decrease in correlation coefficient was related
with the smaller range of ages in the third validation set (age
range = 35 years, vs. 50 years in the first validation set)
for an even smaller residual standard deviation (7.4 years vs.
8.2 years).

DISCUSSION

We have developed a new DmAM that is appropriate for
large studies done with blood samples of adult subjects in
laboratories counting with a capillary sequencer. This DmAM
has reached an improved compromise between feasibility and

TABLE 3 | Accuracy of 8 CpG DmAM in different age intervals.

Age interval Mean age N MAD Mean difference

20–29 25.4 17 9.2 9.0

30–49 39.5 23 6.6 3.1

50–59 56.3 93 4.9 3.6

60–69 64.0 158 4.1 –0.3

70–78 72.8 99 5.7 –5.2

All 61.2 390 5.1 0.00

N = Sample size, MAD = Mean absolute deviation.
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TABLE 4 | Comparative performance of the 8 CpG DmAM with other DmAM in the 335 blood samples from the first validation set.

DmAM N◦ CpGs MAD Adjusted R2 Spearman rho Mean difference

Horvath, 2013 353 4.4 0.77 0.87 –1.0

Hannum et al., 2013 71 7.1 0.84 0.90 –6.7

8 CpGs 8 7.3 0.60 0.75 –4.8

Weidner et al., 2014 3 8.5 0.33 0.57 3.8

MAD = Mean absolute deviation.

FIGURE 2 | Lack of variation of the 8 CpG DmAM with changes in blood cell composition from the second validation set. Each rectangle represent the
linear regression of (8 CpGs DmAM – age) against the Z transformed cell counts of whole blood (WB) cells, neutrophils, lymphocytes, monocytes, and eosinophils,
respectively. Basophil counts were not transformed due to their dichotomous distribution.

accuracy. It allows detection of changes in epigenetic aging
with accuracy slightly lower than DmAM that are much more
costly per sample because they require whole genome DNA
methylation microarrays (Hannum et al., 2013; Horvath, 2013).
In addition, it provides results that are independent of important
confounders and easily comparable with the obtained with other
technologies.

The DNA methylation microarrays provide a large wealth of
information that could be of interest for other analyses, but their
cost is excessive if the objective is only to assess epigenetic age.
This consideration has led to the development of DmAM with
few CpG sites for large epidemiological studies, and forensic
applications (Bocklandt et al., 2011; Florath et al., 2014; Weidner
et al., 2014; Huang et al., 2015; Zbiec-Piekarska et al., 2015).
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FIGURE 3 | Scatterplot of age against the 8 CpG DmAM from the
healthy donors of the third validation set analyzed with MS-SNuPE
(n = 557). Straight lines represent least squares regression fit to the data.

Among the DmAM requiring few CpG sites, the new 8 CpG
DmAM showed better accuracy in our analyses than other
DmAM developed also for blood samples (Weidner et al., 2014).
Unfortunately, a direct comparison with the other DmAM in
this category was impossible because of lack of the necessary
information, either because the CpG sites are not in DNA
microarrays or because the model parameters were not reported
(Florath et al., 2014; Huang et al., 2015; Zbiec-Piekarska et al.,
2015). Independently of their accuracy, which we will further
consider below, all the other DmAM based on few CpG are
designed for assay by pyrosequencing, which is not available in
many laboratories. The accuracy of this type of DmAM increases
with the inclusion of additional CpGs (Bocklandt et al., 2011;
Weidner et al., 2014), but each new CpG requires a new reaction
with its associated cost and time. In contrast, the MS-SNuPE
technology has the advantage of its multiplexing nature allowing
the analysis of the 8 CpG DmAM in a single reaction reducing
the expenses and the time needed (Kaminsky et al., 2005). We
have estimated that the 8 CpG DmAM will require about 32 h
after bisulfite modification whereas the MS-SNuPE needs 8 h in
equipment that is widely available: a PCR thermocycler and a
capillary sequencer.

It is important to note that accuracy of any of the DmAM is
partly age dependent, and this dependence has two components.
The first is due to the difference between the training set mean
age and the age to be estimated. The best age estimations
are obtained near the mean value of the training set, because
the regression parameters are estimated with this set. This
dependence means that regression parameters show bias in other
sample collections different from the training set. The second
component is due to the range of ages considered. This range

affects correlation coefficients as measures of accuracy. Because
of the correlation coefficient formula, a wide range of ages
leads to higher correlation coefficients than a narrow range
for the same dispersion of data around the regression line. In
addition, the range of ages affects accuracy of the estimation
due to the different dynamics of DNA methylation changes with
age in children and in adults, as already mentioned (Alisch
et al., 2012; Horvath, 2013). This variation means that accurate
results are difficult with DmAM aiming to cover all age ranges
(Horvath, 2013; Zbiec-Piekarska et al., 2015). Therefore, we
choose restricting development of a new DmAM to adults. This
approach is safer than assuming a constant rate of change of the
DmAM for all ages from birth to very old, as has been done by
some previous DmAM (Bocklandt et al., 2011; Hannum et al.,
2013; Weidner et al., 2014; Huang et al., 2015; Zbiec-Piekarska
et al., 2015). An alternative and accurate approach has been
followed by the Horvath DmAM, which achieved good accuracy
along all age ranges thanks to an elastic net regression model that
accounted for a variable rate of change (Horvath, 2013). All the
mentioned sources of experiment-specific effects on accuracy of
DmAM indicate the need to compare DmAM in the same set of
samples, as we have done here.

The previous consideration leads to highlight another good
property of the 8 CpGs DmAM. The 8 CpG sites included in the
new DmAM are amenable to analysis with any of the common
technologies for DNA methylation analysis. They were selected
as amenable to MS-SNuPE, among CpG sites available in both
Illumina 27K and 450K Bead Chip methylation arrays, and they
are amenable to study with pyrosequencing. This characteristic
allows a wide comparability with other DmAM in the same data
set.

An important consideration for the interpretation of DmAM
is their degree of dependence of blood cell composition (Jaffe
and Irizarry, 2014). Ideally, the DmAM should be independent
of commonly observed changes in blood cell composition. Our
analysis showed this independence for the new 8 CpG DmAM
in the 92 samples from our second validation sample set (Lam
et al., 2012). Some previous DmAM have also demonstrated this
property (Horvath, 2013; Weidner et al., 2014). In addition, the 8
CpG DmAM was independent of sex, and smoking habit. This
independence could be an advantage over other DmAM that
should be adjusted for these confounders (Hannum et al., 2013;
Florath et al., 2014).

CONCLUSION

We propose a new DmAM for large studies of biological age in
blood samples of adults that is amenable to analysis in a single
reaction with MS-SNuPE. This DmAM involving 8 CpG sites
represents an improvement either in feasibility or in accuracy
over previous DmAM.
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