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The cerebral cortex exhibits neural activity even in the absence of external stimuli.
This self-sustained activity is characterized by irregular firing of individual neurons and
population oscillations with a broad frequency range. Questions that arise in this context,
are: What are the mechanisms responsible for the existence of neuronal spiking activity
in the cortex without external input? Do these mechanisms depend on the structural
organization of the cortical connections? Do they depend on intrinsic characteristics
of the cortical neurons? To approach the answers to these questions, we have used
computer simulations of cortical network models. Our networks have hierarchical modular
architecture and are composed of combinations of neuron models that reproduce the
firing behavior of the five main cortical electrophysiological cell classes: regular spiking
(RS), chattering (CH), intrinsically bursting (IB), low threshold spiking (LTS), and fast spiking
(FS). The population of excitatory neurons is built of RS cells (always present) and either
CH or IB cells. Inhibitory neurons belong to the same class, either LTS or FS. Long-lived
self-sustained activity states in our network simulations display irregular single neuron
firing and oscillatory activity similar to experimentally measured ones. The duration of
self-sustained activity strongly depends on the initial conditions, suggesting a transient
chaotic regime. Extensive analysis of the self-sustained activity states showed that their
lifetime expectancy increases with the number of network modules and is favored when
the network is composed of excitatory neurons of the RS and CH classes combined
with inhibitory neurons of the LTS class. These results indicate that the existence and
properties of the self-sustained cortical activity states depend on both the topology of the
network and the neuronal mixture that comprises the network.
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1. INTRODUCTION
The resting state of the brain, i.e., its state in the absence of
sensory stimuli or behavioral tasks, shows sustained ongoing
activity characterized by irregular neuronal firing and macro-
scopic ensemble oscillations covering a broad frequency range,
from less than 1 Hz up to more than 100 Hz (Arieli et al., 1995;
Bringuier et al., 1999; Tsodyks et al., 1999; Buzsáki and Draguhn,
2004; Fox and Raichle, 2007; Roopun et al., 2008; Shmuel and
Leopold, 2008; Hahn et al., 2010). Experimental and theoretical
work suggests that this ongoing resting state activity may have an
important role to endow the brain with flexibility in dealing with
diverse cognitive and behavioral situations (Lakatos et al., 2008;
Gong and van Leeuwen, 2009; Lewis et al., 2009; Luczak et al.,
2009; Sadaghiani et al., 2010; Destexhe, 2011; Steinke and Galán,
2011).

Since the cortex during a resting state is essentially dis-
connected from external stimuli, it is in a dynamic regime in
which neural activity is self-sustained (Stratton and Wiles, 2010).
It is important to understand the mechanisms responsible for

self-sustained activity (SSA) in the cortical network: the roles of
the structural organization of cortical connections as well as of the
intrinsic characteristics of neurons that constitute the network.

The architecture of the cortical connections presents differ-
ent features when viewed from different spatial scales. At a
microscopic scale cortical circuitry is highly recurrent with both
excitatory and inhibitory neurons involved in many superposed
positive and negative feedback loops (Binzegger et al., 2004;
Douglas and Martin, 2004; Bastos et al., 2012). At a macroscopic
or systems level scale the organization of cortical connections
seems to be hierarchical and modular, with dense excitatory
and inhibitory connectivity within modules and sparse excitatory
connectivity between modules (Hilgetag et al., 2000; Zhou et al.,
2006; Meunier et al., 2010; Sadovsky and MacLean, 2013).

A number of studies considered effects of the structure of cor-
tical connections on the existence of sustained cortical activity
and on variability of the single-cell and population firing rates in
that regime. Studies with random networks of sparsely connected
excitatory and inhibitory neurons have shown that sustained
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irregular network activity can be produced when the recurrent
inhibitory synapses are relatively stronger than the excitatory
synapses (van Vreeswijk and Sompolinsky, 1996, 1998; Brunel,
2000; Vogels and Abbott, 2005; Kumar et al., 2008). Recently, the
random network assumption has been relaxed and it has been
shown that networks with clustered (Litwin-Kumar and Doiron,
2012), layered (Destexhe, 2009; Potjans and Diesmann, 2014),
hierarchical and modular (Kaiser and Hilgetag, 2010; Wang et al.,
2011; Garcia et al., 2012) connectivity patterns as well as with
local and long-range connections plus excitatory synaptic dynam-
ics (Stratton and Wiles, 2010) can generate cortical-like irregular
activity patterns. Other works have focused on the role of sig-
nal transmission delays and noise in the generation of such states
(Deco et al., 2009, 2010).

Emphasizing the role of the topological structure of the cor-
tical networks, most of these models do not take into account
the possible joint role of the multiple firing patterns of the
different types of neurons that comprise the cortex. For exam-
ple, descriptions in terms of the popular leaky integrate-and-fire
model (see e.g., Vogels and Abbott, 2005; Wang et al., 2011;
Litwin-Kumar and Doiron, 2012; Potjans and Diesmann, 2014),
do not capture the diversity of firing patterns of cortical neu-
rons (Izhikevich, 2004; Yamauchi et al., 2011). The exception is
the model of Destexhe (2009), where complex intrinsic proper-
ties of the employed neurons correspond to electrophysiological
measurements.

Intrinsic properties of cortical neurons like types of ion chan-
nels, and distributions of ionic conductance densities stand
behind a variety of firing patterns. Based on their responses to
intracellular current pulses, neurons with different patterns can
be grouped into five main electrophysiological classes: regular
spiking (RS), intrinsically bursting (IB), chattering (CH, also
called fast repetitive bursting), fast spiking (FS) and neurons
that produce low threshold spikes (LTS) (Connors et al., 1982;
McCormick et al., 1985; Nowak et al., 2003; Contreras, 2004).
Excitatory cells of the RS, IB, and CH classes are mostly pyra-
midal and glutamatergic, and comprise ∼80% of cortical cells;
their majority is of the RS type. On the other hand, inhibitory
cells from the FS and LTS classes are of non-pyramidal shapes and
GABAergic.

Given the variability of cortical firing patterns, the natural
questions are: (i) how does the inclusion of neurons with varying
intrinsic dynamics in a hierarchical and modular cortical net-
work model affect the occurrence of SSA in the network? (ii) how
does a combination of hierarchical and modular network topol-
ogy with individual node dynamics influence the properties of the
SSA patterns in the network?

To address these questions, we use a hierarchical and mod-
ular network model which combines excitatory and inhibitory
neurons from the five cortical cell types. Higher complexity in
comparison to previous models, in particular mixtures of differ-
ent neuronal classes in non-random networks, hampers analytical
studies. However, it is important to push modeling to these
higher complexity situations that are closer to biological reality.
Numerical simulations may give us insights on how to construct
deeper analytical frameworks and shed light on the mechanisms
underlying ongoing cortical activity at rest.

Our simulations show that SSA states with spiking character-
istics similar to the ones observed experimentally can exist for
regions of the parameter space of excitatory-inhibitory synaptic
strengths in which the inhibitory strength exceeds the excita-
tory one. This is in agreement with the simulations of random
networks made of leaky integrate-and-fire neurons mentioned
above. However, our simulations disclose additional mechanisms
that enhance SSA. The SSA lifetime increases with the number
of modules, and when the network is made of LTS inhibitory
neurons and a mixture of RS and CH excitatory neurons. These
new mechanisms point to a synergy between network topol-
ogy and neuronal composition in terms of neurons with specific
intrinsic properties on the generation of SSA cortical states. The
article is structured as follows: the next section specifies our
neuron and network models and the measures used to charac-
terize their properties; then, we describe our search in parameter
space for regions which exhibit SSA and how the properties
of these SSA depend on network characteristics. We end with
a discussion of our main results and the possible mechanisms
behind them.

2. MATERIALS AND METHODS
All functions, simulations, and protocols were implemented in
C++. Ordinary differential equations were integrated by the
fourth order Runge-Kutta method with step size of 0.01 ms.
Processing of the results was performed in Matlab.

2.1. NEURON MODELS
Neurons in our networks were described by the piecewise-
continuous Izhikevich model (Izhikevich, 2003): the dynamics of
the i-th neuron obeys two coupled differential equations,

v̇i = 0.04v2
i + 5vi + 140 − ui + Ii(t)

u̇i = a (b vi − ui), (1)

with a firing condition: whenever the variable v(t) reaches
from below the threshold value vcrit = 30 mV, the state is
instantaneously reset, v(t) �→ c, u(t) �→ u(t) + d. The variable
v represents the membrane potential of the neuron and u is
the membrane recovery variable. Each resetting is interpreted as
firing a single spike.

Appropriate combinations of the four parameters (a, b, c, d)
generate the firing patterns of the five main electrophysiological
cortical cell classes listed in the Introduction. We use the following
sets of values (Izhikevich, 2003):

(i) for RS neurons: a = 0.02, b = 0.2, c = −65, d = 8
(Figure 1A);

(ii) for IB neurons: a = 0.02, b = 0.2, c = −55, d = 4
(Figure 1B);

(iii) for CH neurons: a = 0.02, b = 0.2, c = −50, d = 2
(Figure 1C);

(iv) for FS neurons: a = 0.1, b = 0.2, c = −65, d = 2
(Figure 1D);

(v) for LTS neurons: a = 0.02, b = 0.25, c = −65, d = 2
(Figure 1E).
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FIGURE 1 | Electrophysiological cell classes as modeled by Equation (1). Parameter values are given in the text. (A) Regular spiking (RS) neuron.
(B) Intrinsically bursting (IB) neuron. (C) Chattering (CH) neuron. (D) Fast spiking (FS) neuron. (E) Low threshold spiking (LTS) neuron.

The term Ii(t) in Equation (1) denotes the input received by neu-
ron i. It can be of two types: external input and synaptic input
from other neurons in the network. We modeled the latter as

Isyn,i =
∑

j ∈ presyn
Gex/in

ij (t)
(
Eex/in − vi

)
, (2)

where the sum extends over all neurons, presynaptic to neuron

i, and Gex/in
ij is the conductance of the synapse from neuron j

to neuron i, which can be either excitatory or inhibitory. The
reversal potentials of the excitatory and inhibitory synapses are
Eex = 0 mV and Ein = −80 mV, respectively. We assume that
the synaptic dynamics is event-driven without delays: when a
presynaptic neuron fires, the corresponding synaptic conductance

Gex/in
ij is instantaneously increased by a constant amount gex/in.

Otherwise, conductances obey the equation

d

dt
Gex/in

ij (t) = −
Gex/in

ij (t)

τex/in
, (3)

with synaptic time constants τex = 5 ms and τin = 6 ms (Dayan
and Abbott, 2001; Izhikevich and Edelman, 2008).

2.2. NETWORK MODELS
The hierarchical and modular architecture of our networks was
constructed by a top-down method (Wang et al., 2011). In this
approach, we started with a random network of N neurons
connected with probability p and rewired it to obtain hierarchi-
cal and modular networks. Here we used two combinations of
N and p: N = 512 with p = 0.02, and N = 1024 with p =
0.01. In both cases the ratio of excitatory to inhibitory neu-
rons was 4:1. Excitatory neurons were purely of the RS type
or a mixture of two types: RS (always present) with either
CH or IB cells. Inhibitory cells were all of either FS or LTS
type. A random network as the one described above constitutes

one module and will be called here a network of hierarchical
level H = 0. A network of hierarchical level H has 2H mod-
ules (Wang et al., 2011), hence a network of hierarchical level
H = 1 has 2 modules, a network with H = 2 has 4 modules,
and so on.

Networks with H > 0 were generated by the following
algorithm:

1. Randomly divide each module of the network into two mod-
ules of same size;

2. Each intermodular connection (i → j) is, with probability
R, replaced by a new connection between i and k where
k is a randomly chosen neuron from the same module as
i. For inhibitory synapses we took R = 1: all intermodu-
lar inhibitory connections were deleted and only the local
ones (intramodular) remained. In contrast, for excitatory con-
nections, we took R = 0.9 which resulted in survival of a
portion of those connections, and, thereby, in presence of both
local and long-distance (i.e., intramodular and intermodular)
excitatory links.

3. Recursively apply steps 1 and 2 to build networks of higher
hierarchical levels.

Figure 2 shows examples of hierarchical and modular networks
constructed by the above procedure.

2.3. NETWORK SPIKING CHARACTERISTICS
Here, we define the quantities and measures that characterize the
spiking properties of single neurons and of the entire network.

The spike train of a neuron i is represented as (Gabbiani and
Koch, 1998; Dayan and Abbott, 2001),

xi(t) =
∑

t
f

i

δ(t − t
f

i ), (4)
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FIGURE 2 | Examples of connection matrices for hierarchical and modular networks at H = 0, . . . , 3 constructed with rebating probabilities given in

text. Each dot represents a connection from a presynaptic neuron to a postsynaptic one.

where {t f
i } is the set of times at which a neuron i fires. The firing

rate of this neuron over a time interval T is the number ni of spikes
which it fires during the interval, divided by T:

fi = ni

T
= 1

T

∫
T

xi(t′)dt′. (5)

Similarly, the mean firing rate of N neurons in the network over a
time interval T is:

〈f 〉 = 1

N

N∑
i = 1

1

T

∫
T

xi(t′)dt′. (6)

The time-dependent activity of the network A(t;�t) was defined
as the total number of spikes fired by its neurons within a time
interval �t around t:

A(t;�t) =
N∑

i = 1

∫ t + �t

t
xi(t′)dt′. (7)

Dividing it by the number of neurons, we obtain the time-
dependent firing rate of the network:

f (t;�t) = 1

N

N∑
i = 1

∫ t + �t

t
xi(t′)dt′. (8)

Equation (7) provides the variation of the number of active neu-
rons in the network within the interval �t while Equation (8)
gives the variation of the proportion of active neurons within �t.
Since �t in both expressions will be fixed at 1 ms throughout this
study, below we denote the time-dependent activity and firing
rate of the network simply by A(t) and f (t).

Irregularity of network firing was characterized by two dis-
tributions: the distribution of interspike intervals (ISI) of all
neurons in the network, and the distribution of the coefficients of
variation (CV) of the ISIs of each neuron. The ISI distribution was
formed by the set {ISIi}, i = 1, . . . , N for all neurons. To obtain
the distribution of the CVs, we calculated for every neuron i the
standard deviation σISIi of its ISIi distribution normalized by the
mean ISIi for this neuron (Gabbiani and Koch, 1998):

CVi = σISIi

ISIi
, (9)

and took the set of CVi for all network neurons.
Basing on the values of these activity measures extracted from

the raster plots of the simulations, we delineated the regions
where SSA was observed on the plane of excitatory and inhibitory
conductances

(
gex, gin

)
.

3. RESULTS
3.1. PARAMETER DEPENDENCE OF SSA
Below, “architecture of the network” denotes the topology of the
network, i.e., hierarchical level H, plus its composition, i.e., the
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types and proportions of participating neurons. A given network
realization is then a network with fixed architecture, produced
randomly by the algorithm from the preceding section.

We activated the network by injecting external current of
amplitude Istim into a proportion Pstim of the neurons for the
time interval Tstim. After stimulus termination, the network was
left to evolve freely until the end of simulation time Tsim. While
this activation may look adequate enough from a physiological
point of view, in the dynamical sense it plays only the role of
setting initial conditions. In the course of stimulation, the sys-
tem is driven to some position in the phase space, from where
it is left to evolve on its own. The effect, of course, would be
the same if the same starting state for free evolution was explic-
itly imposed from the beginning. However, external stimulation
ensures that initial conditions are not just randomly chosen
somewhere in the high-dimensional phase space, but lie close
to typical pathways in its “physiologically reasonable” part. In
the case of multistability (i.e., quiescent state and one or sev-
eral kinds of SSA), variation of initial conditions can place the
starting points in the attraction domains of different coexisting
attractors.

3.1.1. Parameter search
To gain insight into the properties of the system, we performed
a preliminary study with small networks of 512 neurons and
short simulation times Tsim = 350 ms in the parameter region
of synaptic strengths gex ∈ [0, 1], gin ∈ [0, 5], discretizing it with
�gex = 0.1 and �gin = 0.5. For each network realization and each
parameter pair

(
gex, gin

)
in this range, we took eight initial con-

ditions in different regions of phase space. This was achieved
by changing the proportion of stimulated neurons (either half
of the neurons or all of them: Pstim = 1/2, 1), the amplitude
of external current (Istim = 20, 30) and the stimulation interval
(Tstim = 80 ms, 120 ms).

Figure 3 presents a typical map of states under these con-
ditions: the (gex, gin)-diagram for a network of two modules
(hierarchical level H = 1) where 20% of the excitatory neurons
were of the CH class, all inhibitory neurons were of the LTS class,
and the activation parameters were Pstim = 1, Istim = 20, and
Tstim = 80 ms.

The top panel of Figure 3 shows the duration and type of net-
work activity. The blue region corresponds to fast decay of activity
after termination of the external input with network activity last-
ing not longer than 50 ms. We call this type of behavior “rapid
decay.” The yellow region indicates large-scale network activity
oscillations, when, for a certain time after activation, different
groups of neurons fire synchronously, and decay afterwards. We
call this behavior “temporary oscillatory activity.” The red region
corresponds to the same type of network behavior as in the yel-
low one, but lasting until the end of the simulation, and we call
it “persistent oscillatory SSA.” The green region indicates SSA
with strongly irregular individual neuronal firing and more or
less constant overall network activity; this behavior is referred to
as “constant SSA.” Examples of these four behavioral patterns are
visualized in Figure 4.

The bottom panel of Figure 3 represents the mean firing rate
〈f 〉 of the neurons in the active period. The latter was defined

FIGURE 3 | Types of activity for a network of 512 neurons in 2 modules.

Neuronal types: 64% RS, 16%CH, 20% LTS. Activation parameters:
Pstim = 1, Istim = 20, Tstim = 80 ms. Top: duration of network activity.
Green, constant SSA, red, persistent oscillatory SSA, yellow, temporary
oscillatory SSA, blue, rapid decay. Bottom: Mean firing rate of the network
during the active period. Firing rate ranges in Hz: see colorbox on the right.

as the time interval between the end of external stimulation and
the time of the last spike in the network. If by the end of sim-
ulation neurons were still spiking, the whole duration of free
evolution was taken as the length of active period. The regions
corresponding to SSA yield somewhat unrealistic mean firing
rates above 70 Hz in comparison with lower values found in cor-
tex (Softky and Koch, 1993; Vogels and Abbott, 2005; Hromádka
et al., 2008; Destexhe, 2009; Maimon and Assad, 2009; Haider
et al., 2013). These high mean frequencies owe to CH and LTS
neurons, which, in the green region of the diagram, can display
firing rates as high as 600 Hz. In these regions, even the RS neu-
rons can possess very high firing rates, in some cases as high as
200 Hz.

Regardless of those high firing rates, we studied the effects
of changes in the network architecture, its realizations and ini-
tial conditions on the SSA. As a rough measure of the latter, we
regarded the area occupied by the SSA regions on the parameter
plane of (gex, gin). For this small network, we summarize our
observations as follows:
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FIGURE 4 | Four types of network activity patterns. Each panel shows the
raster plot of the spiking activity for a sample of 100 network neurons (Top),
and the firing rate f (t) of all neurons (Bottom). Constant SSA: point A in

Figure 3 (gex = 0.6, gin = 1). Persistent oscillatory SSA: point B in Figure 5

(gex = 0.12, gin = 0.6). Temporary oscillations: point C in Figure 5 (gex = 0.09,
gin = 0.5). Decay: point D in Figure 5 (gex = 0.06, gin = 0.2).

• Increase of the hierarchical level H (i.e., the number of network
modules) under fixed other conditions led to growth of the SSA
area;

• If the second excitatory neuron type (besides the RS neurons)
was CH, increase of its proportion led to growth of the SSA
area;

• If the second excitatory neuron type was IB, variation of its
proportion displayed no clear influence on the SSA area;

• Under fixed other characteristics, replacement of FS inhibitory
neurons by LTS inhibitory neurons increased the SSA area.

We did not observe noticeable changes in the SSA area for differ-
ent network realizations and/or activation parameters. The few
observed changes were mostly seen as small displacements along
the border between the red and yellow regions in the top diagram
of Figure 3 (data not shown). These changes became significant
in the lower left part of the diagram (data also not shown), where
the mean firing rates were closer to biological values. Therefore,
below we concentrate on this parameter region, which we call the
region of low synaptic strengths.

3.2. SSA FOR LOW SYNAPTIC STRENGTHS
From now on we consider a larger network consisting of 1024
neurons within the parameter range of weaker synaptic strengths:
gex ∈ [0.05, 0.15], gin ∈ [0, 1].

Figure 5 gives an example of the
(
gex, gin

)
diagram for low

synaptic strengths (discretized on a 50 × 50 grid with �gex =
0.002 and �gin = 0.02). It corresponds to a network with hierar-
chical level H = 1, 20% of its excitatory neurons of the CH type,

FIGURE 5 | Network activity on the parameter plane of low synaptic

strengths: a typical distribution of network activity patterns for 210

neurons. Network parameters and the coloring scheme as in the top panel
of Figure 3.

inhibitory neurons of the LTS type, and the following activation
parameters: Pstim = 1/2, 10 ≤ Istim < 20 and Tstim = 100 ms.
The simulation was prolonged up to 1000 ms. The lifetime of
activity strongly depends on the initial conditions: for a given
network realization, some initial conditions would result in SSA
while others would not. Therefore, only a statistical characteriza-
tion of activity makes sense. In each point of the parameter grid
we chose 10 different initial conditions, followed the evolution
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and plotted the maximal lifetime. The resulting diagram captures
the generic properties of all studied network architectures in the
region of low synaptic strengths: in all cases no constant SSA was
detected, and self-sustained activity, if present, was oscillatory.
The striking feature is the highly fragmented shape of the SSA
region which is located in the upper right corner of the diagram.
Changing the activation protocol, under the fixed network archi-
tecture, we observed similar fragmented structures with slightly
different configurations (not shown). For neighboring initial con-
ditions, prepared by varying the stimulation time within several
integration steps, the lifetime of network activity varied over the
range from few milliseconds up to 104 ms. Notably, even at low
values gex (the bottom part of the diagram) there is some proba-
bility to observe SSA with three or four subsequent epochs of high
synchronous activity.

High sensitivity with respect to initial conditions is a hallmark
of dynamical chaos. On the other hand, at least within the range
of low synaptic strengths, the chaotic regime is hardly an attrac-
tor, since activity typically dies out after a long or short transient:
trajectories end up at the trivial stable state where all neurons are
at their resting potential. Systems which, for typical initial condi-
tions, exhibit chaos up to a certain time and then, often abruptly,
switch to non-chaotic dynamics, are known as transiently chaotic
(Lai and Tél, 2011). Detailed investigation of chaotic sets in this
high-dimensional system is out of the scope of our present study
and will be reported elsewhere.

Based on our observations, we may say with a high certainty
that the SSA states in the domain of low synaptic strengths are due
to transient chaos and therefore have finite lifetimes. Increasing
the synaptic strengths to higher parameter values, e.g., (gex ∼ 1,
gin � 2) may lead to a situation where the transient chaotic set
turns into an attractor and the SSA becomes incessant. However,
as remarked above, this would result in very high firing frequen-
cies and, hence, would hardly correspond to biologically realistic
cases.

The fact that we are dealing with transient SSA makes the
analysis somewhat ambiguous: there seems to be no definite way
to draw a sharp boundary in the parameter space, between the
domains with SSA and those without it. However, under each
fixed set of parameters, we can evaluate the probability of hav-
ing SSA with a given duration. This, of course, requires statistics
for a sufficient number of initial conditions.

First, we partitioned the (gex, gin) diagram of low synaptic
strengths into sixteen distinct domains. For all network archi-
tectures and each of the domains we tested 120 different ini-
tial conditions, prepared by external stimulation: we varied the
proportion of stimulated neurons Pstim = 1, 1/2, 1/8, 1/16, the
input current Istim = 10, 20 and the stimulation time Tstim =
50, 52, . . . , 78 ms. In this way we intended to lead the system to
distinct regions of the phase space (presumably governed by the
number of stimulated neurons), and then, by varying Tstim, to
gather statistics within these regions. Each run ended when the
activity died out completely, or else at 104 ms.

We observed that regardless of the network architecture in the
absence of inhibition (gin = 0) or at very low excitatory synaptic
strength (gex = 0.05) no cases of SSA occurred and the system
relaxed toward the fixed point in a non-chaotic way for all 120

tested initial conditions. Figure 6 displays extended statistics for
a network with four modules (H = 2) where 20% of the exci-
tatory neurons are CH, and the inhibitory neurons are LTS. For
each of the sixteen

(
gex, gin

)
pairs, over a thousand different ini-

tial conditions were used. The top panel shows the corresponding
lifetime distributions. At sufficiently high inhibition and excita-
tion, for most of the network architectures these distributions
display exponential decay. Replotting on the logarithmic scale the
ordinate for the nine cases in the upper right corner of the top
panel (the bottom panel of Figure 6) confirms this observation:
the probability of finding a chaotic transient SSA with lifetime τ

decays exponentially in τ , at a rate which depends on the net-
work parameters. Such exponential distributions of the lifetime
of chaotic transients are typical for systems with transient chaotic
behavior (Lai and Tél, 2011).

Concentrating on the four pairs (gex, gin) from the far upper
right corner in Figure 6 (gex = 0.12, 0.15, and gin = 0.7, 1)
which showed most cases of transient SSA, we performed addi-
tional simulations for all architectures, creating in each case a few
thousands initial conditions by varying the stimulation time in
the range of 50 ms to 175 ms and/or the amplitude of the stim-
ulus in the range of 10–30 and/or the proportion of stimulated
neurons Pstim = 1, 1/2, 1/8, 1/16.

In the next subsection we present the obtained results and
demonstrate that dependence of SSA on the values of gex and gin

varies strongly in response to changes in the network architecture.

3.3. CHANGES WITH RESPECT TO NETWORK ARCHITECTURE
Here, we describe the changes in the SSA states caused by vari-
ation of the network architecture in the region of low synap-
tic strengths. Below, we basically refer to the four investigated
pairs (gex, gin) corresponding to the most active domain of the
parameter plane, since there the changes are better visible, and
the tendencies can be better inferred from the statistics based
on few thousands initial conditions for each of the parame-
ter pairs and each of the network architectures. Results based
on the statistics gathered for the 120 initial conditions for
the neighboring regions display similar tendencies but are less
distinct.

The findings are summarized in Table 1. There, we used as
observable the value of the median for the distribution of the life-
times of SSA. Being interested only in SSA cases, we excluded all
trials which resulted in rapid decay or very short oscillatory activ-
ity: only the datasets for which, after the end of the stimulation,
the lifetime exceeded 300 ms, were processed. From a dynamical
point of view this corresponded to a choice of trajectories that
for a certain time lived on the chaotic set. Remarkably, this cut
off of the short-lived trajectories led to a drastic reduction of the
number of trials in the analyzed distributions. Especially in the
case of architectures and synaptic parameters under which the
probability of long-lived SSA was low, this increased the influ-
ence of statistical outliers on the calculated values. Therefore,
in the following we can only speak about tendencies. A sys-
tematic quantitative research would require a huge amount of
trials, beyond our current computational capabilities. We point
out that altogether over 106 initial conditions were simulated and
analyzed.
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FIGURE 6 | Lifetime distributions for a network of 210 neurons with four

modules (H = 2); 20% of the excitatory neurons are CH; the inhibitory

neurons are LTS. Top: Histograms of lifetimes, with medians and variances,

for 104 different initial conditions at sixteen pairs (gex, gin). Bottom: ordinate
values on the logarithmic scale for 9 upper right (“black”) histograms from
the top panel. Straight lines: fitted exponential dependencies.
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Table 1 | Effect of the network architecture on SSA for four different pairs of synaptic strengths gex and gin.

Medians [ms]

Excitatory Inhibitory neurons: LTS Excitatory Inhibitory neurons: FS

neurons neurons
(gex, gin) (gex, gin)

H (0.12, 0.7) (0.15, 0.7) (0.12, 1) (0.15, 1) H (0.12, 0.7) (0.15, 0.7) (0.12, 1) (0.15, 1)

RS 0 408 365 544 431 RS 0 xxx xxx xxx xxx

1 506 428 707 535 1 346 329 372 357

2 603 674 850 834 2 423 519 490 554

20%CH 0 372 500 421 573 20%CH 0 xxx 375 355 368

1 449 583 519 653 1 343 363 356 370

2 618 1011 756 1209 2 441 521 475 555

40%CH 0 729 2343 759 2258 40%CH 0 397 663 396 565

1 1027 3821 1086 3566 1 379 434 379 439

2 2866 9907 4344 9907 2 1036 1735 1210 1734

20%IB 0 339 359 368 374 20%IB 0 xxx xxx xxx xxx

1 385 360 435 385 1 xxx xxx 337 333

2 474 527 582 607 2 403 457 430 490

40%IB 0 317 379 330 380 40%IB 0 xxx xxx xxx xxx

1 360 360 376 364 1 xxx xxx 335 327

2 417 557 484 632 2 370 442 409 471

Medians of activity lifetimes are restricted to cases of SSA exceeding 300 ms after the end of stimulation. “xxx” denotes networks for which such cases did not

occur or were very seldom.

We start the analysis with networks where all excitatory neu-
rons are RS, whereas inhibitory neurons are either LTS or FS (see
rows in Table 1 corresponding to RS neurons). In this range of
synaptic strengths and for hierarchical level H = 0 the combi-
nation RS-FS could hardly lead to SSA: the activity was seldom
longer than 100 ms, and was followed by direct decay to the sta-
ble state. In contrast, the RS-LTS combination delivered cases of
SSA. Albeit relatively rare (recall the exponential distribution in
Figure 6), for the RS-LTS network some SSA states could display
lifetimes longer than 1000 ms. Changing the number of modules
had little effect on SSA duration for RS-FS networks due to low
probability of finding SSA in this case (see above). Nevertheless,
in the network with four modules (H = 2) we observed many
cases of SSA with lifetimes longer than 500 ms, while none was
observed for a random network with H = 0. For RS-LTS net-
works the effect of increase in the number of modules was more
articulate: The longest lifetimes of the SSA grew from a few hun-
dred ms for random networks (H = 0) to a few thousand ms for
modular networks (H = 1, 2).

Introduction of CH neurons as a second type of excitatory
neurons led to a noticeable increase in the lifetime expectancy
of SSA for the H = 0 case, both for LTS and FS inhibitory neu-
rons. In the former case, the increase was more pronounced. For
the case of LTS inhibitory neurons, the presence of just 20% of
CH neurons in the excitatory population slightly expanded the
SSA domain of synaptic conductances toward lower values of
the (gex, gin) diagram (not shown). Besides this, in the upper

right part of the diagram (see rows in Table 1 corresponding
to LTS cases with H = 0 and 20% or 40%CH) the probability
to get a durable (over 1000 ms) SSA became higher. Increase of
the percentage of CH neurons to 40% confirmed the tendency
of growing SSA lifetime expectancy in the middle part of the
(gex, gin) diagram (not shown). Remarkably, in the upper right
region of the diagram the distribution was no longer exponential,
at least not in the examined range of lifetimes. The median of the
lifetime distribution became significantly higher (above 2000 ms
at gex = 0.15), and at high modularity it became more proba-
ble to get SSA with duration up to 104 ms (which means over
100 subsequent epochs of collective activity) than not to observe
SSA at all. In the case of networks with FS inhibitory neurons,
the presence of CH neurons as the second type of excitatory neu-
ron had a similar effect of increasing the SSA lifetime expectancy,
but by far not so strong. In fact, for the middle part of the dia-
gram the effect was barely noticeable, even when the proportion
of CH neurons was 40% (not shown), and it hardly makes sense to
speak of SSA in this case. In the upper right corner of the diagram
(see rows in Table 1 corresponding to FS cases with H = 0 and
20%CH or 40%CH), cases of SSA were detected but the respective
lifetime medians indicate that lifetimes longer than a few 100 ms
are seldom. At higher modularity levels the effect of CH neurons
as a second type of excitatory neurons became more visible. In
the configuration with RS and CH excitatory neurons and LTS
inhibitory neurons, hierarchical levels H = 1, 2 allowed the SSA
lifetime to reach values ∼104 ms in the upper right corner of the
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diagram (see rows in Table 1 corresponding to LTS cases with
H = 1, 2 and 20% or 40%CH) and a few thousand ms in the
middle part of the diagram (not shown). The same tendency, but
with a weaker effect, was observed when the inhibitory neurons
belonged to the FS class (see Table 1 rows corresponding to FS
cases with H = 1, 2 and 20% or 40%CH): here at H = 2 and
with 40% of CH neurons the distributions of activity lifetimes
had medians that exceeded 1000 ms and some initial conditions
resulted in SSA states with lifetimes ∼104 ms.

At H = 0, the effect of IB neurons as a second type of exci-
tatory neuron, compared to purely RS excitatory neurons, was
relatively weak, especially when the inhibitory neurons were of
the FS class since in that case SSA was almost absent (see Table 1
rows corresponding to FS cases with H = 0 and 20% or 40%IB).
This is not surprising, since the difference between RS and IB
neurons is not so strong as the difference between RS and CH
neurons, especially in presence of irregularity of synaptic currents
in the network. The effect was modest for LTS inhibitory neu-
rons as well. However, noticeably and, somewhat surprisingly,
this case displayed a clear negative tendency on the SSA lifetime
(see Table 1 rows corresponding to LTS cases with H = 0 and
20% or 40%IB). In all configurations with IB neurons, growth of
the number of modules resulted in the increase of the SSA life-
time (see rows in Table 1 corresponding to H = 1, 2 and 20% or
40%IB).

Our calculations unambiguously confirmed that modularity of
the network favored SSA and extended its average lifetime (com-
pare in Table 1 rows for H = 0 with rows for H = 1, 2). This
effect is well seen e.g., at gex = 0.12, gin = 0.7 in an exemplary
network of 1024 neurons in which the inhibitory neurons are
of the LTS type, and the CH neurons make 20% of the excita-
tory ones. At these parameter values (cf. the bottom panel of
Figure 6) the probability to find an SSA with duration τ decays
as exp (−ατ ). For H = 0, 1, 2 the fitted values of α were,
respectively, 7.47 × 10−3, 3.74 × 10−3, and 1.74 × 10−3 ms−1:
each modularity level approximately doubles the expectancy of
SSA duration.

3.4. QUANTITATIVE CHARACTERISTICS
Below we present characteristics of spiking dynamics in the stud-
ied networks: activities, frequency spectra, firing rates, interspike
intervals and coefficients of variation (see Section 2.3), both
globally and for different subpopulations of neurons.

We start with computation of these measures for several ini-
tial conditions in a network with fixed architecture and values of
(gex, gin) which ensure sufficiently long SSA.

Figure 7 presents characteristics for an example network of
four modules (H = 2), with RS excitatory neurons and LTS
inhibitory neurons at gex = 0.15, gin = 0.7, computed between
the end of the external input and the last network spike. For all
runs the duration of SSA exceeded 500 ms. Each column of the
figure stands for a different set of initial conditions, whose SSA
lifetime is shown in the activity plots on the first row. In all cases
the type of activity pattern is oscillatory SSA (the only observed
SSA type at low synaptic strengths). Further rows in the figure
show the global frequency distribution of the network activity cal-
culated via the Fourier transform, distributions of the neuronal

firing rates fi, of the interspike intervals (ISI) with their coeffi-
cients of variation (CV) and, in the last row, of the CVs for the
ISIs of individual neurons.

The measures presented in Figure 7 disclose little reaction to
variation of initial conditions; in general, this observation holds
for networks with other kinds of architecture as well. In sev-
eral examples, especially for higher hierarchical levels, variability
was more pronounced; this referred to amplitudes of the leading
frequencies in the spectra (whereby the frequencies themselves
stayed nearly constant), and can be attributed to non-coincidence
of durations of oscillatory epochs in different modules. Notably,
in all studied network architectures at all combinations of synap-
tic strengths we found no indicator that would signalize the
approaching abrupt cessation of the SSA: from the point of view
of average characteristics of activity, there is no visible difference
between the short and the durable SSA.

Weak sensitivity of the SSA characteristics with respect to ini-
tial conditions supports our assumption that the state of SSA
corresponds to wandering of all trajectories in the phase space
over the same chaotic set which possesses well defined statisti-
cal characteristics but is (at least, in the domain of weak synaptic
strengths) not an ultimate attractor of the system. Within the
high-dimensional phase space of the network, this set appears to
lie in a kind of relatively low-dimensional “channel”; nearby tra-
jectories are quickly attracted by this channel, move along it for a
certain time, and finally escape to the equilibrium.

Regarding the type of spiking behavior, the measures shown in
Figure 7 reveal an irregular network activity. The distribution of
the neuronal firing rates, clearly non-Gaussian, is asymmetric and
long-tailed. The ISI distribution, non-Gaussian as well, is close to
exponential, as can be expected for nearly Poissonian behavior.
The distribution of the CVs of the ISIs is broad and asymmet-
ric with average value � 1. We recovered these features in all
encountered SSA states in the region of low synaptic strengths.

Given this point, we proceed to the description of how differ-
ent network compositions affect the activity characteristics. The
general results on the effect of network architecture are summa-
rized in Table 2 for excitatory neurons and Table 3 for inhibitory
neurons. In these tables, each of the activity characteristics is
calculated from the average over 10 different initial conditions
resulting in SSA with lifetimes above 700 ms.

For networks with excitatory neurons of RS type only, com-
parisons between the cases with LTS and FS inhibitory neurons
for fixed synaptic strengths and various initial conditions showed
no significant difference in the mean firing rates of the excita-
tory neurons (see in Table 2 rows for RS cases). Introduction
of CH neurons as the second type of excitatory neuron led to
a significant increase in the firing rate of excitatory RS neurons
(see Table 2 rows for 20% or 40%CH). In networks with LTS
inhibitory neurons, when the CH neurons comprised 20% of all
excitatory neurons the median firing rate of RS neurons doubled
and when the proportion of CH reached 40% the median fir-
ing rate of RS neurons tripled. In networks with FS inhibitory
neurons these increments in RS neurons firing rate were less pro-
nounced, the growth factors being approximately 1.7 (20%CH)
and 2.3 (40%CH). On the other hand, the effect of IB neurons
was much weaker and (based on the few relevant data for FS
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FIGURE 7 | Example of dependence of the spiking properties on the

initial conditions. The figure shows the network measures for a fixed
network architecture: H = 2, RS excitatory neurons, LTS inhibitory neurons,
gex = 0.15, gin = 0.7, and five different initial conditions, one for each
column. The first row: network activity A(t) over the active period, from the
end of the external stimulation (time 0 in the horizontal axis) until last spike of
a network (indicated by the number under the right end of the time axis, in
ms). The second row: global frequency spectrum of the activity (horizontal

axis: frequency in Hz, vertical axis: amplitude). The third row: distribution of
the firing rates over the ensemble of neurons in the active period (the mean
of each distribution is shown inside the corresponding plot and the maximal
rate is shown at the extreme right of the horizontal axis). The fourth row:
distribution of the ISIs (in ms) over the ensemble of neurons for the active
period (with CV and the peak value of the distribution indicated inside each
plot). The fifth row: distribution of the CVs of the ISIs of the network neurons;
the peak of each distribution is shown inside the plot.

inhibitory neurons) independent of the type of inhibitory neuron
(see Table 2 rows corresponding to 20% or 40%IB). Remarkably,
the effect of modularity on the firing rate of excitatory neurons
was not very pronounced (see Table 2), and median firing rates
for H > 0 levels remained in the same range as in the case of a
random network topology (H = 0).

In the preceding subsection we noted that presence or absence
of particular types of neurons strongly influences the probability
of SSA. Intuitively, this could be expected, due to the different

amounts of excitation and inhibition they provide to the network,
an effect also known for leaky integrate-and-fire neurons (Brunel,
2000; Kumar et al., 2008). However, if this were the only reason,
the lifetime distributions for networks with LTS inhibitory neu-
rons should be similar to those for FS neurons at lower inhibitory
synaptic strength, which was not confirmed by numerics (see
Table 1).

Effect of the type of inhibitory neuron on the amounts of
excitation and inhibition produced by the network is shown in
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Table 2 | Effect of the network architecture on characteristic measures

of the excitatory neurons at synaptic strengths gex = 0.15, gin = 1.

Characteristic measures for excitatory neurons

Excitatory H LTS inhibitory neurons FS inhibitory neurons

neurons
Firing rate ISI Firing rate ISI

median CV median CV

RS CH/IB RS CH/IB RS CH/IB RS CH/IB

RS 0 15 – 1.2 – xxx – xxx –

1 14 – 1.2 – 15 – 1.2 –

2 13 – 1.4 – 13 – 1.5 –

20%CH 0 31 79 1.9 3.2 29 63 2.0 3.2

1 30 79 1.8 3.0 26 64 2.0 3.1

2 26 69 1.9 3.0 22 56 2.0 3.2

40%CH 0 48 124 2.2 3.3 40 94 2.5 4.0

1 46 122 2.2 3.3 34 82 2.4 3.7

2 43 114 2.1 3.3 31 84 2.6 4.1

20%IB 0 22 35 1.7 2.3 xxx xxx xxx xxx

1 19 28 1.5 2.0 xxx xxx xxx xxx

2 16 28 1.7 2.2 16 27 1.7 2.2

40%IB 0 26 41 2.1 2.7 xxx xxx xxx xxx

1 24 38 1.9 2.5 xxx xxx xxx xxx

2 21 36 2.0 2.5 19 33 2.0 2.5

Measures are computed from average over 10 different trials with lifetimes of

the SSA over 700 ms. “xxx” denotes networks in which such lifetimes were

observed in less than 10 trials.

Table 3. The first two columns of Table 3 (for LTS and FS neurons
respectively) represent the total excitation and the total inhibi-
tion produced by the network, measured respectively as the total
number of spikes produced by excitatory and inhibitory neurons
normalized over the activity period. The other columns repre-
sent the activity measures for networks with LTS or FS neurons
as introduced above. Remarkably, the exchange of LTS and FS
neurons at fixed modularity level and percentage of the second
type of excitatory neurons did not have a significant effect on
the total excitation produced by the network. This can be seen
in a comparison of the first column in Table 3 for LTS or FS neu-
rons respectively. However, the maximal firing rates (and hence,
quite often, the corresponding mean values) of the FS neurons
were consistently higher than for the LTS neurons (see columns
for maximum and mean firing rates in Table 3). At the same time
many FS neurons displayed very low firing rates, which resulted
in lower medians of the distributions for FS neurons than for LTS
neurons (see columns for median firing rates in Table 3). This
tendency was preserved not only when all excitatory neurons were
RS but also in the cases with a second type of excitatory neurons
and also for different modularity levels (see Table 3).

These characteristics suggest that the firing rate distribution
of LTS neurons is more uniform, both in space and time, than
the firing rate distribution of FS neurons. This is not indeed sur-
prising: As the name suggests, a LTS neuron needs less excitatory

input in order to reach a spiking threshold (∼2.8 mV) in com-
parison to a FS neuron (∼3.4 mV). On the other hand, once the
threshold is reached, a FS neuron spikes much more often (at a
frequency ∼140 Hz for an input of I = 10) compared to the LTS
neuron (∼80 Hz for the same input). Therefore, when embedded
in a network, the LTS neurons require less correlated excitatory
input in order to spike, which makes them more sensitive. The
FS neurons, in contrast, respond only to relatively high corre-
lated excitation, hence their population includes many non-active
neurons along with few ones with very high spiking rates. As a
consequence, while the total inhibition produced by the network
is comparable for both types of inhibitory neurons (see the sec-
ond column in Table 3 for LTS or FS neurons respectively), the
inhibitory spreading in the case of networks with FS neurons is
less efficient than in networks with LTS neurons, being concen-
trated on the few relevant postsynaptic neurons. The end result is
that networks built of LTS cells possess more inhibitory neurons
with moderate spiking frequencies than networks built of FS cells.

Presence (both of 20% or 40%) of CH neurons in the network
did not affect the tendency described above in different behav-
ior of the two types of inhibitory neurons: the mean firing rate
and the corresponding maximal firing rate of the FS neurons was
higher than for the LTS neurons; however, the median of the firing
rate distribution was still lower for FS neurons than for LTS neu-
rons (see Table 3). This again meant presence of a few very active
FS inhibitory neurons on one side of the distribution and of many
weakly active FS neurons on its other side. In comparison, most
of the LTS neurons were active with moderate firing rates.

Further, we considered the firing rates of the different pop-
ulations of neurons, measured not only over the duration of
SSA as a whole but also over each of the active epochs of the
oscillatory activity. This allowed us to extract the global silent
epochs from the statistics, making the comparison between dif-
ferent cases more accurate. In fact, measurements of individual
frequencies of the neurons confirmed that the active individual
neurons shared the leading frequency with the whole module they
belonged to, and only the weakly active neurons (with a firing rate
of a few Hz) fired independently (not shown).

Similarly to the firing rate of excitatory RS neurons, when 20%
of all excitatory neurons were of the CH type the firing rate of
the inhibitory neurons (both of the LTS or FS types) doubled,
and when the proportion of CH neurons reached 40% the firing
rate of these inhibitory neurons tripled. This can be seen directly
from the columns in Table 3 representing the corresponding fir-
ing rates. The presence (both of 20% or 40%) of CH neurons in
the network did not alter the tendency described above of greater
uniformity in the distribution of firing rates of the two types of
inhibitory neurons: the mean firing rate and the corresponding
maximal firing rate of the FS neurons was higher than for the LTS
neurons; however, the median of the firing rate distribution was
still lower for FS neurons than for LTS neurons (see Table 3). This
again meant presence of a few very active FS inhibitory neurons
on one side of the distribution and of many weakly active FS neu-
rons on its other side. In comparison, most of the LTS neurons
were active with moderate firing rates.

The effect of introducing excitatory neurons of the IB type in
the network was not as notable on the firing rates of inhibitory
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Table 3 | Effect of the network architecture on characteristic measures of the inhibitory neurons at synaptic strengths gex = 0.15, gin = 1.

Characteristic measures for inhibitory neurons

Excitatory H Inhibitory neurons: LTS

neurons
Total Firing rate ISI CV

peak
Excitation Inhibition Mean Median Max Peak CV

RS 0 0.015 0.037 38 32 121 1.7 1.7 1.2

1 0.015 0.039 39 32 129 1.9 1.6 1.2

2 0.016 0.040 40 33 119 1.7 1.7 1.1

20%CH 0 0.046 0.076 76 59 268 1.2 2.4 1.5

1 0.044 0.077 77 61 264 1.2 2.4 1.6

2 0.044 0.077 77 66 246 1.3 2.3 1.7

40%CH 0 0.093 0.123 123 98 367 1.2 2.7 1.8

1 0.087 0.123 123 104 384 1.2 2.7 2.0

2 0.085 0.118 118 99 346 1.2 2.7 2.0

20%IB 0 0.025 0.050 50 37 179 1.1 2.2 1.3

1 0.023 0.049 49 38 170 1.2 2.1 1.3

2 0.025 0.051 51 40 171 1.2 2.1 1.1

40%IB 0 0.036 0.061 61 43 208 1.0 2.6 1.7

1 0.033 0.060 60 44 216 1.0 2.5 1.6

2 0.035 0.064 64 50 212 1.1 2.3 1.5

Excitatory H Inhibitory neurons: FS

neurons
Total Firing rate ISI CV

peak
Excitation Inhibition Mean Median Max Peak CV

RS 0 xxx xxx xxx xxx xxx xxx xxx xxx

1 0.017 0.043 43 30 181 1.4 1.9 1.4

2 0.018 0.042 42 30 150 1.2 2.2 1.0

20%CH 0 0.047 0.085 85 51 368 1.1 2.9 2.2

1 0.043 0.083 83 49 350 1.1 2.9 1.7

2 0.041 0.080 80 53 315 1.0 3.1 1.5

40%CH 0 0.079 0.127 127 79 491 0.9 3.9 1.8

1 0.074 0.128 128 66 493 1.0 3.8 2.2

2 0.072 0.125 125 75 471 0.8 4.4 1.9

20%IB 0 xxx xxx xxx xxx xxx xxx xxx xxx

1 xxx xxx xxx xxx xxx xxx xxx xxx

2 0.026 0.054 54 35 227 1.0 2.6 1.2

40%IB 0 xxx xxx xxx xxx xxx xxx xxx xxx

1 xxx xxx xxx xxx xxx xxx xxx xxx

2 0.035 0.068 68 43 279 0.9 2.9 1.3

Measures are computed from average over 10 different trials with lifetimes of the SSA over 700 ms. “xxx” denotes networks in which such lifetimes were observed

in less than 10 trials.

neurons (both of LTS or FS types) as the effect of CH exci-
tatory neurons but nevertheless networks with IB excitatory
neurons displayed small increments in the firing rates of their
inhibitory neurons, which were stronger for 40% than for 20%
of IB neurons. The same ocurred with the total excitation

and inhibition produced by the network, as can be seen from
Table 3.

Finally, and also akin to the firing rate of RS excitatory neu-
rons, the effect of modularity on the activity measures shown in
Table 3 was not so strong. For non-zero hierarchical levels, the
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total inhibition and excitation produced by a network and the
firing rate of its inhibitory neurons with otherwise fixed neuron
types remained in the same range as for a network with H = 0.
The same was accordingly true for the distributions of the firing
rates of the different types of inhibitory neurons (not shown).
Difference in total excitation and inhibition was also not strongly
influenced by merely exchanging the type of inhibitory neurons
and keeping all other network parameters fixed (see Table 3).

4. DISCUSSION
We have constructed a spiking network model that captures ele-
ments of the architectonic organization of the cortex and of its
composition in terms of cells of different electrophysiological
classes. The architecture of the network is hierarchical and mod-
ular, which arguably (Wang et al., 2011; Samu et al., 2014) rep-
resents the generic topological organization of the cortex across
many spatial scales, and the excitatory and inhibitory cells of our
model belong to five distinct electrophysiological classes that can
coexist in the same network (Nowak et al., 2003; Contreras, 2004).
Our goal was to study the combined effect of these architectonic
and physiological elements on the SSA of the network. To do so
we performed an extensive computational study of our model
by considering network architectures characterized by different
combinations of hierarchical and modularity levels, mixture of
excitatory-inhibitory neurons, strength of excitatory-inhibitory
synapses and network size submitted to distinct initial conditions.

Our main finding is that the neuronal composition of the net-
work, i.e., the types and combinations of excitatory and inhibitory
cells that comprise the network, has an effect on the properties of
SSA in the network, which acts in conjunction with the effect of
network topology. Previous theoretical studies have emphasized
the role of the structural organization (topology) of the corti-
cal network on its sustained activity (Kaiser and Hilgetag, 2010;
Wang et al., 2011; Garcia et al., 2012; Litwin-Kumar and Doiron,
2012; Potjans and Diesmann, 2014). Here we have shown that the
electrophysiological classes of the cortical neurons and the per-
centages of these neurons in the network composition also affect
the dynamics of the sustained network activity. Specifically, we
found that networks comprising excitatory neurons of the RS
and CH types have higher probability of supporting long-lived
SSA than networks with excitatory neurons only of the RS type.
In addition, the type of the inhibitory neurons in the network
also has a significant effect. In particular, LTS inhibitory neurons
stronger favor long-lived SSA states than FS inhibitory neurons.

A possible mechanism that would render networks made of RS
and CH excitatory cells more prone to long-lived SSA is due to the
pattern of spikes exhibited by the CH cells, which consists of spike
bursts followed by strong afterhyperpolarizations. The presence
of CH neurons in the network would then enhance and coor-
dinate the postsynaptic responses of other network cells, which
would contribute to prolongation of network actredivity. As a
consequence, the global network activity would become more
oscillatory and better synchronized with corresponding increases
in the global network frequency and the mean firing frequency of
the individual neurons, effects reported in Section3. This mecha-
nism is more effective in networks with inhibitory neurons of the
LTS class rather than of the FS class because of the higher temporal

and spatial uniformity of the inhibition provided by LTS neurons,
as discussed in Section 3.4.

We are aware of just one theoretical study in the literature
which has addressed the impact of the specific neuronal compo-
sition of the network on its SSA regimes (Destexhe, 2009). There,
it was shown that a two-layered cortical network in which the lay-
ers were composed of excitatory RS and inhibitory FS cells with a
small proportion of excitatory LTS cells in the second layer, could
produce SSA. Here we have extended the analysis by including
neurons of five electrophysiological classes and, in particular, by
considering LTS cells that are exclusively inhibitory.

Our study also has shown that modularity favors SSA. In gen-
eral, independently of neuronal composition, the increase in the
hierarchical level of the network (and hence in the number of
modules) increases the lifetime expectancy of SSA in the network.
This effect can be understood if we imagine that distinct mod-
ules are activated intermittently and non-simultaneously. Each
module is a random network which, depending on its specific
neuronal composition, can generate SSA with a certain lifetime.
Because of the sparse coupling among modules, they activate each
other in an alternate way so that there is a probability of each one
of them activating a neighbor before decaying to rest. And the
larger the number of modules, the greater is this probability.

The region of the parameter space of excitatory and inhibitory
synaptic strengths for which the network SSA states display prop-
erties similar to physiological measurements (Softky and Koch,
1993; Hromádka et al., 2008; Maimon and Assad, 2009; Haider
et al., 2013) is the lower right corner of what we called the dia-
gram of low synaptic strengths. The spiking properties of the
SSA states in this region are remarkably independent of the net-
work architecture and initial conditions. These properties are
irregular neuronal firing and low frequency population oscilla-
tion with leading frequency often in the range of ∼5 to ∼8 Hz.
In this particular region of the (gex, gin) plane the ratio gex/gin

has a value between about 4 and 12. This is consistent with the
theoretical prediction that irregular activity in a spiking corti-
cal network can be sustained in a balanced excitation-inhibition
state whereby the strength of inhibitory synapses is higher than
the strength of excitatory synapses to compensate for the smaller
number of inhibitory neurons, and keep the average total synap-
tic input into a neuron near zero, so that the neuron spikes are
caused by the fluctuations around this average (van Vreeswijk and
Sompolinsky, 1996; Amit and Brunel, 1997; van Vreeswijk and
Sompolinsky, 1998; Brunel, 2000). These theoretical studies relied
on random networks of sparsely-connected leaky integrate-and-
fire neurons. Our study, although more focused on hierarchical
and modular networks, also has shown that irregular SSA can
occur in random networks (H = 0). Since our networks are
based on neuron models with richer properties than the leaky
integrate-and-fire model, our finding points to a complementary,
though secondary in comparison with the excitation-inhibition
balance, mechanism for irregular SSA in a random network of
spiking neurons, which depends on the mixture and proportions
of the different types of excitatory and inhibitory neurons in the
network.

Our results strongly suggest that the sustained and irregular
firing regimes in our simulations are chaotic. This is consistent
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with conjectures that the default state of the brain is chaotic
(Skarda and Freeman, 1987; van Vreeswijk and Sompolinsky,
1996, 1998; Banerjee et al., 2008; Izhikevich and Edelman, 2008;
London et al., 2010). It is important to note that in the bio-
logically relevant range of low synaptic strengths the SSA does
not last indefinitely: its lifetime remains finite and abruptly
ends with relaxation toward the state of rest. The probability
to observe a SSA of a given duration is an exponential func-
tion of duration. From this point of view, SSA is a transient
phenomenon. In a way, this was already expected because every
brain dynamical regime is transient (Rabinovich and Varona,
2012). Duration of the transient depends on the network architec-
ture (hierarchical level, mixture of excitatory-inhibitory neurons)
and the synaptic parameters. A direct possibility to prolong the
lifetime of the SSA without increasing the synaptic strengths
is to increase the number of neurons, since the escape time
of transient chaotic trajectories grows exponentially with the
dimension of the system (Crutchfield and Kaneko, 1988; Kumar
et al., 2008; El Boustani and Destexhe, 2009; Lai and Tél, 2011).
We observed this effect when proceeding from 29 to 210 neu-
rons; our preliminary results with larger networks confirm this
conjecture.
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