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The present study reveals the importance of alternative oxidase (AOX) pathway
in optimizing photosynthesis under osmotic and temperature stress conditions in
the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and
respiration were monitored at saturating light intensity of 1000 moles m−2 s−1µ at
25◦C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-
osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation
chamber from 25 to 10◦C to impose sub-optimal temperature stress. Compared to
controls (0.4 M sorbitol and 25◦C), the mesophyll protoplasts showed remarkable
decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon
assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature
stress conditions (10◦C), while the decrease in rates of respiratory O2 uptake were
marginal. The capacity of AOX pathway increased significantly in parallel to increase
in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-
osmotic stress and sub-optimal temperature stress under the background of saturating
light. The ratio of redox couple (Malate/OAA) related to malate valve increased in
contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during
hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-
optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also,
the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD)
and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon
restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed
changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA,
NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with
concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the
results indicated the importance of AOX pathway in optimizing photosynthesis under
both hyper-osmotic stress and sub-optimal temperatures. Regulation of ROS through
redox couples related to malate valve and antioxidant system by AOX pathway to
optimize photosynthesis under these stresses are discussed.
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INTRODUCTION

The mitochondrial oxidative electron transport chain in higher
plants is branched at ubiquinone, leading to cyanide sensitive
cytochrome oxidase (COX) and cyanide resistant alternative
oxidase (AOX) pathways (Millar et al., 2011). The COX pathway
transfers electrons from ubiquinone to molecular O2 through
complex III and complex IV and generates a proton gradient
which is coupled to ATP synthesis. The electron transport
through AOX pathway is mediated by a quinol oxidase and
uncoupled from ATP synthesis. However, energy is liberated as
heat when the AOX pathway is operative (Day and Wiskich,
1995; Siedow and Umbach, 2000; Schertl and Braun, 2014;
Pu et al., 2015). Although, AOX catalyzes the energy-wasteful
respiration, its (up) regulation in terms of activity, engagement
and expression during development and biotic/abiotic stresses
indicates its physiological importance other than thermogenesis
(Fung et al., 2006; Matos et al., 2007; Giraud et al., 2008;
Arnholdt-Schmitt, 2009; Vanlerberghe et al., 2009; Fu et al.,
2010; Florez-Sarasa et al., 2011; Cvetkovska and Vanlerberghe,
2013; Vishwakarma et al., 2014; Garmash et al., 2015; Rogov and
Zvyagilskaya, 2015).

Mitochondrial functions contribute to the metabolic
flexibility that is essential for plant cells to adjust to highly
variable environment (Vanlerberghe, 2013). The functioning of
AOX pathway through hand-in-hand cooperation with COX
pathway to optimize photosynthetic metabolism (Padmasree
and Raghavendra, 1999a,b,c, 2001a,b; Yoshida et al., 2006; Feng
et al., 2007; Strodtkötter et al., 2009; Dinakar et al., 2010a,b;
Florez-Sarasa et al., 2011; Bailleul et al., 2015; Vishwakarma et al.,
2015) and its active participation in balancing carbon/nitrogen
availability with sink capacity or antioxidant defense system has
added new dimensions to its existence in leaf cells (Parsons et al.,
1999; Vanlerberghe et al., 2002; Sieger et al., 2005; Umbach et al.,
2005; Yoshida et al., 2007; Gandin et al., 2009, 2014; Dahal et al.,
2014). Thus the relative contribution of COX and AOX pathways
to total respiration is known to be flexible and dependant on
environmental conditions (Gonzalez-Meler et al., 1999; Searle
et al., 2011; Liu et al., 2015).

Water stress affects various parameters including stomatal
conductance, root growth, leaf number, total leaf area,
photosynthetic quantum yield, ATP, NADPH synthesis and
the utilization of assimilates (Vandoorne et al., 2012; Cano et al.,
2014; Esmaeilpour et al., 2015) along with the partitioning of
electrons between the COX and AOX pathways (Ribas-Carbo
et al., 2005). There is a considerable ambiguity in the partitioning
of electrons between these pathways. In soyabean and wheat,
water stress caused a significant shift of electrons from the COX
to the AOX pathway while in leaves of bean and pepper water
stress decreased SHAM-resistant respiration, with no effect on
cyanide-resistant respiration (Gonzalez-Meler et al., 1997; Ribas-
Carbo et al., 2005; Vassileva et al., 2009). Several other studies
suggested that changes in electron partitioning between the two
respiratory pathways under a given stress were mostly due to
the decrease in the activity of the COX pathway rather than an
increase in the activity of the AOX pathway (Peñeulas et al.,
1996; Lambers et al., 2005; Galle et al., 2010). An increase in the

expression of AOX genes and its activity in photosynthetic tissues
has been reported in plants subjected to low/high temperatures
(Vanlerberghe and McIntosh, 1992a,b; Fiorani et al., 2005; Wang
et al., 2011) or water stress (Bartoli et al., 2005; Ribas-Carbo et al.,
2005). Several reports proposed that the AOX pathway maintains
electron flow during cold conditions to alleviate the cellular
reactive oxygen species (ROS; Purvis et al., 1995; Armstrong
et al., 2008; Grabelnych et al., 2014). The ability of AOX pathway
to maintain flux in the cold was suggested to be due to (i) its
reduced sensitivity to temperature as compared to COX pathway
(Kiener and Bramlage, 1981; McNulty and Cummins, 1987;
Stewart et al., 1990b) and (ii) an increase in the de novo synthesis
of AOX protein (Stewart et al., 1990a,b; Vanlerberghe and
McIntosh, 1992a; Gonzalez-Meler et al., 1999; Ribas-Carbo et al.,
2000). However, the studies of Kühn et al. (2015) suggested that
any decrease in electron flux through the COX or AOX pathways
trigger common as well as distinct cellular responses which are
in-turn dependent on the growth conditions.

Osmotic and temperature stresses are common abiotic stresses
to which plants are frequently exposed under conditions
of drought and flooding/frost in natural environment. Long
term exposure to any biotic or abiotic stress conditions may
cause cellular damage and cell death in susceptible plants.
However, during short term exposure, the plants adapt or
acclimatize to these stress conditions by various mechanisms.
Intracellular adjustments like alteration in redox status, ROS
and antioxidant levels, particularly mediated by mitochondria
are essential for plant cells to acclimatize with changing
environmental conditions to maintain redox homeostasis (Foyer
and Noctor, 2003, 2005; Baier and Dietz, 2005; Gechev et al.,
2006; Noctor, 2006; Navrot et al., 2007; Noctor et al., 2007;
Dinakar et al., 2010a; Scheibe and Dietz, 2012; Tripathy and
Oelmüller, 2012; Vishwakarma et al., 2014, 2015; Considine
et al., 2015; Deng et al., 2015; Sevilla et al., 2015; Zhao
et al., 2015). Also, it is intriguing to know that the same
parameters were found to be crucial in mediating the beneficial
interactions between chloroplasts and mitochondria to optimize
photosynthetic carbon assimilation under optimal light and CO2
(Padmasree and Raghavendra, 1999c; Dinakar et al., 2010a;
Yoshida et al., 2011). However, it is not clear which pathway
(COX or AOX) of mitochondrial electron transport would
play a crucial role in optimizing photosynthesis under hyper-
osmotic stress or sub-optimal temperature stress. Therefore, the
present study was performed using mesophyll protoplasts of
pea as the model system to examine the importance of AOX
pathway over COX pathway and its coordination with malate
valve and glutathione redox system in regulating cellular ROS to
optimize photosynthesis under hyper-osmotic and sub-optimal
temperature stresses.

MATERIALS AND METHODS

Plant Material and Isolation of Mesophyll
Protoplasts
Pea plants (Pisum sativum L. cv. Arkel; seeds obtained
from Pocha seeds, Pune, India) were grown outdoors under
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natural photoperiod of approximately 12 h and average daily
temperatures of 30◦C day/20◦C night. The second pair of fully
expanded leaves were picked from 8 to 10 days old plants and
were used for isolating mesophyll protoplasts. About 10 pairs of
leaves were excised from the plants and mesophyll protoplasts
were isolated from leaf strips devoid of lower epidermis by
enzymatic digestion with 2% (w/v) Cellulase Onozuka R-10
and 0.2% (w/v) Macerozyme R-10 (Yakult Honsha Co. Ltd,
Nishinomiya, Japan), under low light intensities of 50–100 µmol
m−2 s−1. The protoplasts were collected by filtration through
60 µm nylon filter and purified by centrifugation at 100 g for
5 min, thrice at 4◦C. The protoplasts were finally stored on ice
in a suspension medium containing 10 mMHepes-KOH, pH 7.0,
0.4 M sorbitol, 1.0 mM CaCl2, and 0.5 mM MgCl2 until further
use and chlorophyll was estimated (Padmasree and Raghavendra,
1999a). The purity of protoplast preparation normally ranged
from 90 to 97%.

Stress Treatments
Mesophyll protoplasts equivalent to 12 µg Chl were subjected
to hyper-osmotic stress or sub-optimal temperature stress under
a saturating light intensity (1000 µmol m−2 s−1) in the pre-
incubation chamber by increasing (step wise) the concentration
of sorbitol in the pre-incubation medium from 0.4 M (isotonic)
to 1.0 M (hypertonic) or by decreasing the temperature in pre-
incubation chamber from 25◦C to 10◦C using a refrigerated
circulatory water bath (Julabo F10) for 10 min, respectively
(Dinakar et al., 2010b). Protoplast samples pre-incubated at
1000 µmol m−2 s−1, 25◦C temperature and 0.4 M sorbitol
were treated as controls (Saradadevi and Raghavendra, 1994).
NaHCO3 (1.0 mM) is added to the pre-incubation media so as to
avoid photorespiration and associated O2 burst. The composition
of the pre-incubation medium used were same as that of reaction
medium (other than sorbitol) described in Dinakar et al. (2010b).

Monitoring Total Respiration and
Photosynthesis
After hyper-osmotic and temperature stress treatments in the
presence or absence of SHAM, mesophyll protoplasts equivalent
to 10 µg Chl were transferred from pre-incubation chamber
to Clark-type oxygen electrode cuvette and the total rates
of respiration and photosynthesis (carbon assimilation/PS II
activity) were measured polarographically in a reaction medium
as described in Dinakar et al. (2010a). In controls, as the
rates of respiratory O2 uptake and photosynthetic O2 evolution
attained steady state after 3 min in dark and 4 min after
switching on light, respectively, we restricted to monitor
respiration and photosynthesis during steady state for 5 and
10 min, in the dark and light, respectively, using a Clark type
oxygen electrode system, controlled by Hansa-Tech software
at 25◦C. Saturating light (1000 µmol m−2 s−1) was provided
by a 35 mm slide projector (with xenophot [halogen] lamp,
24 V/150 W). The photosynthetic carbon assimilation rates were
measured as NaHCO3 (1.0 mM) dependent O2 evolution and
PS II activity was measured as p-BQ-dependent (1.0 mM) O2
evolution in the presence of an uncoupler (5 mM NH4Cl).

Oxygen content (253 µM) in the electrode chamber was pre-
calibrated at 25◦C with air saturated water using sodium
dithionate.

Capacity of COX and AOX Pathway
The capacity of AOX pathway was determined as the O2 uptake
sensitive to 10 mM SHAM in the presence of 1 mM KCN
(Vanlerberghe et al., 2002), while the capacity of COX pathway
was determined as the O2 uptake sensitive to 1 mM KCN in
the presence of both 10 mM SHAM and 1 µM carbonyl cyanide
m-chlorophenylhydrazone (CCCP, an uncoupler) as adenylates
determine the flux of electrons through COX pathway (Dinakar
et al., 2010a,b).

Protein Extraction and Immunodetection
After stress treatments, mesophyll protoplasts equivalent to 10µg
Chl were withdrawn and centrifuged at 100 g for 1 min. The
pelleted protoplasts were snap frozen in liquid nitrogen and
homogenized in 125 mM Tris–HCl (pH 6.8) containing 5%
(w/v) SDS and 1 mM PMSF. The homogenate was centrifuged
at 10,000 g for 10 min. Protein estimation was done according
to the method of Lowry et al. (1951). SDS-PAGE of mesophyll
protoplast proteins was performed according to Laemmli (1970).
The proteins separated on 12.5% SDS-PAGE were transferred
electrophoretically from the gel onto polyvinylidene difluoride
(PVDF) membranes (Towbin et al., 1979). The blots were
probed with 1:100 dilution of D1 antibodies (Agrisera, Vännäs,
Sweden) followed by 1:5000 dilution of goat antirabbit IgG
alkaline phosphatase conjugate and developed using nitro-blue-
tetrazolium chloride and 5-bromo-4-chloro-3-indolyl phosphate
as substrates.

Detection of Reactive Oxygen Species
(ROS)
Intracellular production of ROS was measured by using a
non polar fluorescent dye 2, 7, -dichlorofluorescein diacetate
(H2DCF-DA), which is converted to membrane – impermeable
polar derivative H2DCF by cellular esterases and rapidly oxidized
to highly fluorescent DCF by intracellular H2O2 and other
peroxides. Mesophyll protoplasts loaded with 5 µM H2DCF-
DA (Dinakar et al., 2010a) were subjected to hyper-osmotic
and sub-optimal temperature stress for 10 min at saturating
light intensities (1000 µmol m−2 s−1). Immediately, after
stress treatments, DCF fluorescence of mesophyll protoplasts
was measured by using a Hitachi F- 4010 fluorescence
spectrophotometer with excitation and emission wavelengths
set at 488 and 525 nm, respectively. DCF fluorescence of
protoplasts pre-incubated under a saturating light intensity
(1000 µmol m−2 s−1) at 25◦C and 0.4 M sorbitol were treated
as controls.

Quantification of Pyruvate and
Adenylates
After stress treatments at saturating light, the metabolic reactions
of mesophyll protoplasts were quenched with HClO4 as
described in Padmasree and Raghavendra (1999a). The samples
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neutralized with KOH were centrifuged at 7000 g and the
cleared supernatant was used for estimation of pyruvate, ATP
and ADP. The intracellular levels of pyruvate were measured
spectrophotometrically using enzymatic assay coupled to NADH
oxidation as described in Dinakar et al. (2010b). Similarly, the
ATP levels were measured using enzymatic assay coupled to
NADPH formation while the ADP levels were measured by
coupling to NADH utilization (Padmasree and Raghavendra,
1999a).

Quantification of Malate and OAA
After exposure to stress treatments in the presence and
absence of SHAM, at saturating light, aliquots of mesophyll
protoplasts equivalent to 100 µg Chl ml−1 were quenched with
HClO4 and snap frozen in liquid nitrogen. After neutralization,
the samples were centrifuged at 100 g and the supernatant
was used for the estimation of intracellular levels of malate
and OAA spectrophotometically. The malate was estimated
by incubating the supernatant for 10 min at 25◦C in the
reaction medium containing 100 mM Tris-HCl, 630 mM
hydrazine sulfate, 1.0 mM EDTA pH 9.0, 1.5 mM NAD.
The reaction is initiated by the addition of 30U MDH as
the concentration of malate is proportional to the amount of
NAD reduced at 340 nm (Heineke et al., 1991). Further, the
cellular levels of oxaloacetate was calculated from the equation
of [(oxoglutarate) × (aspartate)]/[(glutamate) × (6.61)], as
suggested by Heineke et al. (1991) based on the equilibrium of
glutamate oxaloacetate transaminase (GOT; K = 6.61, Veech
et al., 1969). The levels of oxoglutarate, aspartate and glutamate
were determined as described in Bergmeyer (1983) by enzymatic
assays coupled to NAD(H) oxidation or reduction.

Quantification of GSH and GSSG
After stress treatments in the presence and absence of SHAM,
protoplast samples equivalent to 100µg Chl were withdrawn and
mixed immediately with 7% sulfosalicylic acid and snap frozen
in liquid nitrogen. The samples were thawed and centrifuged
for 10 min. 20 µl of 7.5 M triethanolamine was added to the
supernatant to neutralize the samples. Total, oxidized, reduced
glutathione was determined spectrophotometrically at 412 nm by
the cycling method described by Griffith (1980).

Quantification of NAD(P) and NAD(P)H
Mesophyll protoplasts equivalent to 25 µg Chl were withdrawn
from the pre-incubation chamber with and without SHAM after
the stress treatments. The samples were centrifuged at 3000 g
for 2 min and the pelleted protoplasts were homogenized either
in 0.2 N HCl or in 0.2 M NaOH for NAD(P)+ and NAD(P)H
extraction, respectively. The homogenate was centrifuged at
10,000 g for 10 min at 4◦C. The supernatant was boiled for
1 min and rapidly cooled on ice. For NAD(P)+ measurement
the final pH of supernatant was brought between 5.0 and 6.0,
while for NAD(P)H measurement the final pH was adjusted
between 7.0 and 8.0. Pyridine nucleotides were quantified
by monitoring phenazine methosulfate-catalyzed reduction of
dichlorophenolindophenol (Queval and Noctor, 2007). For
NAD+ and NADH assay, the reaction was started by the addition

of ethanol in presence of alcohol dehydrogenase. On the other
hand, for NADP+ and NADPH assay, the reaction was started by
addition of Gluocose-6-phosphate dehydrogenase in the presence
of Glucose-6-phosphate. The decrease in A600 was monitored for
3 min and concentrations of corresponding pyridine nucleotides
were calculated using relevant standards (Vishwakarma et al.,
2015).

Assay of NADP-MDH
Mesophyll protoplasts equivalent to 40 µg Chl were withdrawn
from the pre-incubation chamber with and without SHAM after
the stress treatments. NADP-dependent MDH was extracted
and assayed according to Dutilleul et al. (2003). The NADP-
MDH was extracted in buffer containing 25 mM Hepes-
KOH (pH 7.5), 10 mM MgSO4, 1 mM Na2EDTA, 5 mM
DTT, 1 mM phenylmethylsulfonyl fluoride, 5% (w/v) insoluble
polyvinylpyrrolidone, and 0.05% (v/v) Triton X-100. The
homogenate was centrifuged for 5 min at 10,000 g (4◦C).
The actual NADP-MDH activity was measured directly from
supernatant (2.5 µg chl) in assay buffer. Assay buffer was
comprised of 25 mM Tricine-KOH (pH 8.3), 150 mMKCl, 1 mM
EDTA, 5 mM DTT, 0.2 mM NADPH, and 2 mM oxaloacetate,
plus sample. To fully activate the enzyme, supernatant (2.5µl chl)
was pre-incubated for 30 min at 25◦C in 40 mM Tricine-KOH
(pH 9.0), 0.4 mM Na2EDTA, 120 mM KCl, 100 mM DTT, and
0.0025% (v/v) Triton X-100. After incubation, 2 mM oxaloacetate
and 0.2 mM NADPH were added into total reaction volume and
activity was measured at 340 nm.

Assay of Superoxide Dismutase (SOD;
E.C. 1.15.1.1), Catalase (CAT; E.C.
1.11.1.6), and Glutathione Reductase
(GR; E.C. 1.6.4.2)
Mesophyll protoplasts equivalent to 100 µg Chl in 600 µl were
withdrawn from the pre-incubation chamber with and without
SHAM after the stress treatments. The samples were centrifuged
at 100 g for 1 min and the pelleted protoplasts were snap
frozen in liquid nitrogen. The samples were homogenized in
50 mM phosphate buffer pH 7.0 containing 1 mM PMSF and
centrifuged at 10,000 g for 10 min. The supernatant was used for
enzymatic assays of superoxide dismutase (SOD), catalase (CAT),
and glutathione reductase (GR). The protein concentration in
the enzyme extracts were determined by Lowry et al. (1951)
using defatted BSA as standard. The SOD activity was determined
following the method of Beauchamp and Fridovich (1971).
CAT activity was measured spectrophotometrically by following
the oxidation of H2O2 at 240 nm according to the method
of Patterson et al. (1984) and GR activity was determined by
modifying the method of Jiang and Zhang (2001). Others details
were followed as described in Dinakar et al. (2010a).

Replications
The data presented are the average values of results (+SE)
from atleast four repetitions conducted on different days.
The differences between treatments were analyzed by one-
way ANOVA, Student–Newman–Keuls method of multiple
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comparison analysis using SigmaStat 3.1 software (San Jose, CA,
USA).

RESULTS

Photosynthetic Carbon Assimilation and
Respiration in Mesophyll Protoplasts
Pre-incubated Under Hyper-Osmoticum
and Sub-Optimal Temperatures at
Saturating Light
In the study, the effect of hyper-osmotic stress and sub-optimal
temperature stress on photosynthetic carbon assimilation
(NaHCO3-dependent O2 evolution) and respiration (O2 uptake)
was monitored in mesophyll protoplasts under light. The O2
evolution rates (182.5 ± 3 µmol mg−1 Chl h−1) observed at
0.4 M sorbitol (isotonic) at 25◦C in light (control) declined
remarkably upto ≤42% as the concentration of sorbitol was
increased to 1.0 M (Figure 1A). In contrast, the rates of O2
uptake (12.12 + 1.3 µmol mg−1 Chl h−1) observed at 0.4 M
sorbitol at 25◦C temperature (control) decreased marginally
by 7% of control with increase in sorbitol concentration to
1.0 M (Figure 1B). Similarly, any decrease in temperature of
pre-illumination chamber at 0.4 M sorbitol in light also showed a
profound effect on rates of O2 evolution as compared to rates of
O2 uptake. Mesophyll protoplasts pre-incubated at 10◦C showed

a remarkable decrease in O2 evolution rates (≤49%) while the
decrease in O2 uptake rates (≤13%) were marginal as compared
to control (Figures 1C,D).

Effects of Hyper-Osmotic Stress and
Sub-Optimal Temperature Stress on the
Capacity of COX and AOX Pathways
Although the effects of hyper-osmotic stress and sub-optimal
temperature stress on total respiratory O2 uptake of mesophyll
protoplasts were marginal, the in vivo rates of COX (COX
capacity) and AOX (AOX capacity) pathways were modulated
significantly. In mesophyll protoplasts which were exposed to
increasing sorbitol concentration at 25◦C in saturating light,
the capacity of COX pathway was decreased drastically by
77%, while the capacity of AOX pathway was stimulated by
70% at 1.0 M sorbitol as compared to protoplasts in 0.4 M
sorbitol at 25◦C under saturating light (Figure 2A). A similar
trend was observed in response to sub-optimal temperature
stress. With decreasing temperature under 0.4 M sorbitol at
saturating light, the capacity of COX pathway of mesophyll
protoplasts decreased remarkably by ≤76% and the AOX
pathway increased significantly by≤1.2 fold at 10◦C as compared
to protoplasts pre-incubated at 25◦C under saturating light
(Figure 2B). Since the decrease in COX capacity and the
increase in AOX capacity were maximum at 1.0 M sorbitol
and 10◦C temperature, in all further experiments, the stress

FIGURE 1 | The rates of photosynthetic O2 evolution (A,C) and total respiration (B,D) in mesophyll protoplasts of pea pre-incubated for 10 min at a
saturating light intensity of 1000 µmol m−2 s−1 under different concentrations of sorbitol (0.4 to 1.0 M) in the reaction media at 25◦C and at different
temperatures (25 –10◦C) at 0.4 M sorbitol in the reaction media. After exposing the mesophyll protoplasts to different osmotic and temperature treatments in
light, the respiratory rates were measured for 5 min in darkness. The photosynthesis rates were measured as NaHCO3-dependent (1.0 mM) O2 evolution for 10 min
in light (1000 µmol m−2 s−1) using Clark-type oxygen electrode.
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FIGURE 2 | The capacity of COX and AOX pathways of mitochondrial electron transport chain in mesophyll protoplasts of pea pre-incubated for
10 min at a saturating light intensity of 1000 µmol m−2 s−1 under different concentrations of sorbitol (0.4 to 1.0 M) in the reaction media at 25◦C (A)
and at different temperatures (25 to 10◦C) under 0.4 M sorbitol (B). The open circles indicate the AOX pathway capacity while the closed circles indicate the
COX pathway capacity. The changes in intracellular ATP/ADP (C) and pyruvate levels (D) in mesophyll protoplasts pre-incubated under 0.4 M (control), 1.0 M
sorbitol (osmotic stress) at 25◦C and 0.4 M sorbitol at 10◦C (temperature stress) respectively, at a saturating light intensity of 1000 µmol m−2 s−1 for 10 min. Values
represent the mean (±SE) of four experiments and different letters represent values that are statistically different (ANOVA test, p ≤ 0.05).

treatments were restricted to 1.0 M sorbitol at 25◦C to impose
hyper-osmotic stress and at 10◦C under 0.4 M sorbitol to
impose sub-optimal temperature stress under the background of
light.

In light, as most of the cellular demands for ATP are met
by COX pathway activity, the changes in adenylates (ATP,
ADP, and ATP/ADP) which act as a proof of changes in COX
pathway capacity were analyzed (Supplementary Figure S1 and
Figure 2C). A decrease in ATP/ADP levels at both hyper-
osmotic stress (51%) and sub-optimal temperature stress (31%)
positively correlated with the decrease in COX pathway capacity
(Figure 2C). Similarly, the intracellular concentration of pyruvate
which is one among the important factors known to stimulate
the activity of AOX are increased significantly by 2.22-fold and
56% at hyper-osmotic stress and sub-optimal temperature stress,
respectively (Figure 2D).

Effect of Restriction of AOX Pathway on
Total Respiration, Photosynthetic Carbon
Assimilation and PSII Activities Under
Osmotic and Temperature Stress in Light
The respiratory O2 uptake rates of mesophyll protoplasts
decreased marginally (≤13%) after pre-incubation under hyper-
osmotic stress or sub-optimal temperature stress at saturating
light as compared to the rates under 0.4M sorbitol at 25◦C in light
(control). Pre-incubation of samples in the presence of SHAM
further decreased the rates of respiratory O2 uptake up to 14%,
both under hyper-osmotic stress and sub-optimal temperature
stress, respectively (Figure 3A). In contrast to respiration, the
NaHCO3-dependent photosynthetic O2 evolution rates were
decreased remarkably by 42% and 49%, respectively, under
hyper-osmotic stress and sub-optimal temperature stress when
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FIGURE 3 | Effect of 0.5 mM SHAM on respiration (A), photosynthesis (B) and PS II activity (C) measured in mesophyll protoplasts pre-incubated
under control, osmotic and temperature stress conditions with or without 0.5 mM SHAM. Different letters represent values that are statistically different
(ANOVA test, P ≤ 0.05). (D) Western blot analysis of D1 protein (32 kDa) from mesophyll protoplasts pre-incubated at a saturating light intensity of 1000 µmol m−2

s−1 under 0.4 M sorbitol (control, C) 1.0 M sorbitol (osmotic stress; Osm) and 0.4 M sorbitol at 10◦C (temperature stress; Temp) for 10 min in the presence and
absence of 0.5 mM SHAM. After the treatments mesophyll protoplasts were homogenized in the extraction buffer and the proteins (8 µg) were separated on
SDS-PAGE. Proteins were transferred to PVDF membranes and were probed with the antibodies raised against D1. Equal loading of protein was confirmed by silver
staining of a duplicate gel.

compared with control and the decrease was significantly
aggravated to 67% upon addition of SHAM under both osmotic
or temperature stress conditions (Figure 3B).

Similar to photosynthetic carbon assimilation, PSII activity
of mesophyll protoplasts decreased by <21% of control upon
exposure to hyper-osmotic stress or sub-optimal temperature
stress and the decrease was aggravated up to <28% with
addition of SHAM under both osmotic and temperature stress
(Figure 3C). D1 protein, an important component of PS II
showed marginal changes under sub-optimal temperature stress
as compared to control, while the changes under 1.0 M sorbitol
over-lapping with SHAMwere negligible (Figure 3D).

Effect of Restriction of AOX Pathway on
Total Cellular ROS Levels and Redox
Ratios Under Hyper-Osmotic Stress and
Sub-Optimal Temperature Stress in Light
The intracellular ROS levels of mesophyll protoplasts are
increased marginally as compared to control when preincubated
under hyper-osmotic stress or sub-optimal temperature stress
(Figure 4). Parallel to the effect on photosynthesis, the increase in
ROS levels were aggravated significantly on super-imposition of
SHAMwith hyper-osmotic and sub-optimal temperature stresses
(Figure 4).

Any intracellular increase in malate/OAA ratio suggests
an imbalance of malate valve, operated to export the
photochemically generated reducing equivalents that are in
excess of the Calvin cycle requirement (Heineke et al., 1991;
Atkin et al., 2000; Scheibe et al., 2005). The malate/OAA ratios
of mesophyll protoplasts increased by 79% and 4%, respectively,
as compared to control under hyper-osmotic stress or sub-
optimal temperature stress and the increase was aggravated
significantly upon superimposition with SHAM, under both
hyper-osmotic (2.5-fold) and sub-optimal temperature (27%)
stresses (Supplementary Figure S2 and Figure 5A).

The changes in the redox state of glutathione (an important
component of Ascorbate-glutathione cycle) as indicated by
the GSH/GSSG levels were decreased by 47% and 30%,
respectively, upon treatment with hyper-osmotic stress or
sub-optimal temperature stress (Supplementary Figure S3;
Figure 5B). However, the decrease was more pronounced
upon superimposition with SHAM in presence of sub-optimal
temperature stress when compared with hyper-osmotic stress
(Figure 5B). Increase in GSSG levels during stress conditions
indicates the oxidation of GSH (Supplementary Figure S3).

The role of AOX pathway in regulating cellular redox
homeostasis during hyper-osmotic and sub-optimal temperature
stress conditions was also determined by monitoring the
changes in the redox couples related to pyridine nucleotides:
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FIGURE 4 | Effect of 0.5 mM SHAM on intracellular levels of ROS, in
mesophyll protoplasts pre-incubated under 0.4 M (control), 1.0 M
sorbitol (osmotic stress) at 25◦C and 0.4 M sorbitol at 10◦C
(temperature stress), respectively, at a saturating light intensity of
1000 µmol m−2 s−1 for 10 min. ROS levels were measured using
ROS-sensitive probe H2DCF-DA. DCF fluorescence of the mesophyll
protoplasts after incubation for 10 min in stress conditions (1,000 µmol m−2

s−1) in the absence and presence of SHAM was measured using Hitachi
F-4010 fluorescence spectrophotometer with excitation and emission
wavelengths set at 488 and 525 nm, respectively. Different letters represent
values that are statistically different (ANOVA test, P ≤ 0.05).

NADH/NAD+ and NADPH/NADP+ in the absence and
presence of SHAM (Supplementary Figures S4 and S5;
Figures 6A,B). Inspite of the significant increase in NADH
and NAD+, the increase in NADH/NAD+ were marginal even
after treatment with SHAM under both hyper-osmotic stress or
sub-optimal temperature stress (Supplementary Figure S4 and
Figure 6A). A similar trend in increase of NADPH and NADP+
was observed with and without SHAM under hyper-osmotic
or sub-optimal temperature stress (Supplementary Figure S5).
But, in contrast to redox ratio of NADH/NAD+, the redox ratio
of NADPH/NADP+ increased significantly under sub-optimal
temperature stress and was further aggravated upon treatment
with SHAM (Figure 6B).

Effect of SHAM on the Activities of
NADP-MDH and Antioxidant Enzymes
During Hyper-Osmotic Stress and
Sub-Optimal Temperature Stress in Light
The changes in the actual activity of NADP dependent MDH,
associated with malate valve was marginal upon treatment of
mesophyll protoplasts with hyper-osmotic stress or sub-optimal
temperature stress in the absence and presence of SHAM. But,
themaximal activity of NADP-MDHwasmore pronounced upon
treatment with SHAMwhen compared to samples in the absence
of SHAM at both hyper-osmotic and sub-optimal temperature
stress (Figures 7A,B).

The effect of hyper-osmotic and sub-optimal temperature
stresses on the activities of antioxidative system, particularly

FIGURE 5 | Effect of 0.5 mM SHAM on malate/OAA (A) and GSH/GSSG
(B) ratio in mesophyll protoplasts pre-incubated under 0.4 M (control),
1.0 M sorbitol (osmotic stress) at 25◦C and 0.4 M sorbitol at 10◦C
(temperature stress), respectively, at a saturating light intensity of
1000 µmol m−2 s−1 for 10 min. At the end of the stress treatment, HClO4

was added to the reaction medium and the samples were frozen dry in liquid
nitrogen for analysis of malate, oxaloacetate as described in section “Materials
and methods.” Different letters represent values that are statistically different
(ANOVA test, P ≤ 0.05).

those of ROS generating SOD and ROS scavenging CAT as well
as GR, which is involved in ROS scavenging by utilizing redox
equivalents were analyzed in the presence and absence of SHAM.
The changes in SOD activities were marginal in presence of
both stresses examined. However, upon superimposition with
SHAM, there was a pronounced increase in the activity of SOD
in presence of sub-optimal temperature stress but not under
hyper-osmotic stress (Figure 8A). Contrary to SOD activity,
the activity of CAT increased significantly by 60% as compared
to control under hyper-osmotic stress, while the changes were
negligible under 10◦C temperature. Also, the superimposition of
SHAM increased the activity of catalase furthermore under both
stresses (Figure 8B). The activity of GR decreased under 1.0 M
sorbitol, while changes were negligible under 10◦C temperature.
Nevertheless, the changesweremarginal on superimposition with
SHAM under both the given stresses (Figure 8C).

Taken together, the results from the present study demonstrate
that the AOX pathway play a significant role in optimizing
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FIGURE 6 | Effect of SHAM on (A) NADH/NAD+ and (B) NADPH/NADP+
ratios in mesophyll protoplasts pre-incubated under 0.4 M (control),
1.0 M sorbitol (osmotic stress) at 25◦C and 0.4 M sorbitol at 10◦C
(temperature stress), respectively, at a saturating light intensity of
1000 µmol m−2 s−1 for 10 min. Other details were mentioned in section
“Materials and methods.” Different lowercase letters represent values that are
statistically different (ANOVA test, P ≤ 0.05).

photosynthesis by regulating cellular ROS through redox couples
related to malate valve, antioxidative system and pyridine
nucleotides.

DISCUSSION

Chloroplasts and mitochondria are the key organelles that are
involved in meeting the energy demands and maintaining the
redox homeostasis (Griffin and Turnbull, 2012). Therefore, the
metabolic interactions between these organelles through cytosol
and/or peroxisomes are mutually beneficial to each other and
though reported earlier are still being actively investigated under
different biotic and environmental cues (Raghavendra et al.,
1994; Krömer, 1995; Padmasree et al., 2002; Raghavendra and
Padmasree, 2003; Fernie et al., 2004; Noguchi and Yoshida,
2008; Huang et al., 2013; Sunil et al., 2013; Vanlerberghe, 2013;
Shaw and Kundu, 2015). Several of these studies indicated

FIGURE 7 | NADP- MDH actual (A) and maximal (B) activity in
mesophyll protoplasts preincubated under osmotic and temperature
stress conditions in the presence and absence of SHAM. Actual activity
was measured directly from supernatant while maximal activity as measured
after preincubation for 30 min. Other details were mentioned in section
“Materials and methods.” Different lowercase letters represent values that are
statistically different (ANOVA test, P ≤ 0.05).

that a marginal interference in electron transport through
COX or AOX pathways of mitochondrial electron transport
chain using metabolic inhibitors and transgenic mutants/reverse
genetic approaches caused a significant drop in photosynthetic
carbon assimilation at optimal/limiting CO2, saturating/sub-
saturating/highlight and optimal/sub-optimal growth conditions,
thereby signifying the importance of mitochondrial electron
transport for optimizing photosynthesis (Krömer et al., 1993;
Padmasree and Raghavendra, 1999a; Dutilleul et al., 2003;
Yoshida et al., 2006; Dinakar et al., 2010a,b; Araújo et al., 2014).
The most recent study on diatoms using metabolic inhibitors
AA and SHAM as well as knockouts of AOX also demonstrated
that the export of reducing power generated in the plastid to
mitochondria and the import of mitochondrial ATP into plastid
is mandatory for optimized carbon fixation and their growth
(Bailleul et al., 2015).

Mesophyll protoplasts can be used as an excellent model
system over whole plants, leaves or leaf discs to study beneficial
interactions between chloroplasts and mitochondria for the
following reasons: (i) allow free diffusion of O2 and CO2 which
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FIGURE 8 | Effect of SHAM on SOD (A), CAT (B), and GR (C) activities in
mesophyll protoplasts pre-incubated under osmotic and temperature
stress conditions. Cellular activities of SOD, CAT, and GR were determined
by spectrophotometric method in mesophyll protoplasts pre-incubated under
0.4 M (control), 1.0 M sorbitol (osmotic stress) at 25◦C and 0.4 M sorbitol at
10◦C (temperature stress), respectively, at a saturating light intensity of
1000 µmol m−2 s−1 for 10 min with and without 0.5 mM SHAM. Different
letters represent values that are statistically different (ANOVA test, P ≤ 0.05).

minimizes the artifacts associated with stomatal patchiness, (ii)
devoid of intercellular spaces and cell walls, major hurdles for
the passage of metabolic inhibitors/activators and (iii) allow
usage of metabolic inhibitors at low concentrations and (iv)
allow monitoring of metabolic processes quickly (Padmasree and
Raghavendra, 1999a,b,c; Strodtkötter et al., 2009; Dinakar et al.,
2010a,b). Under the chosen conditions of isolation, the mesophyll

protoplasts did not show any damage or loss in integrity of
plasma membrane when stored on ice for several hours. The
oxygen evolution rates were steady up to 30 min at 25◦C and
0.4 M sorbitol, under light intensity of 1000 µmoles m−2 s−1

(data not shown; Saradadevi and Raghavendra, 1994). However,
they tend to lose their stability upon prolonged incubation at
room temperature. Further, the light intensity applied to attain
maximal rates of photosynthesis is known to vary in mesophyll
protoplasts isolated from different leaves (Riazunnisa et al., 2007;
Dinakar et al., 2010a,b). Considering these factors, we restricted
the study to a total time period of <30 min which include:
hyper-osmoticum (or) sub-optimal temperature stress treatment
in light for ‘10 min’; followed by a ‘5 min’ respiratory O2
uptake in darkness and subsequently ‘10 min’ photosynthetic O2
evolution in light, to monitor the effect of stress on respiration
and photosynthesis (Figures 1A–D). Inspite of the known non-
specific effects of SHAM, it is frequently used to assess the role
of AOX. It is easily permeable through the plasma membrane
and at the concentration (0.5 mM) used in the present study, it
neither affected photosynthesis nor ROS in isolated chloroplasts
(Padmasree et al., 2002; Dinakar et al., 2010a; Bailleul et al.,
2015). While our previous studies emphasized on the importance
of COX and AOX pathways in optimizing photosynthesis
(Padmasree and Raghavendra, 1999a,b,c, 2001a,b; Strodtkötter
et al., 2009; Dinakar et al., 2010a; Vishwakarma et al., 2015)
and protecting photosynthesis from photoinhibition under high
light (Saradadevi and Raghavendra, 1992; Dinakar et al., 2010b;
Vishwakarma et al., 2014), the present study demonstrates the
importance of AOX pathway in optimizing photosynthesis under
hyper-osmotic and sub-optimal temperature stresses.

Hyper-Osmoticum and Sub-Optimal
Temperature Treatment Caused Marked
Reduction in Photosynthetic Carbon
Assimilation but not in Total Respiration
The responses of photosynthesis and respiration in mesophyll
protoplasts varied when pre-incubated under hyper-osmoticum
or sub-optimal temperature stresses. The results indicated that
the optimal conditions to achieve maximum photosynthetic
performance (carbon assimilation) and respiratory rates in
mesophyll protoplasts as indicated by rates of NaHCO3-
dependent O2 evolution and O2 uptake, respectively, were found
to be at an osmoticum of 0.4 M sorbitol and a temperature of
25◦C under a light background of 1000 µmoles m−2 s−1 (data
not shown).

Any deviation from the optimized conditions, i.e., increasing
the sorbitol concentration from 0.4 to 1.0 M (or) decreasing the
temperature from 25 to 10◦C, lead to a significant reduction
in photosynthetic carbon assimilation while the changes in
dark respiration are minimal (Figures 1A–D). Since the plasma
membrane of protoplasts was found to be intact after the
short-term hyper-osmotic stress and sub-optimal temperature
stress treatments (data not shown), the significant decrease
in photosynthetic O2 evolution is considered as a direct
effect of stress on photosynthetic performance. Berkowitz and
Gibbs (1983) using the system of isolated chloroplasts showed
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that hyper-osmotic stress caused inactivation of light activated
chloroplastic enzymes like RuBisco and fructose-1,6-bisphatase
due to acidification of stroma induced by low osmotic potential.
Therefore, the decrease in light activation of the enzymes might
be responsible for the decreased photosynthetic O2 evolution
rates observed in the present study under stress conditions.

In cold sensitive hibiscus plants, cold stress treatment (10◦C)
caused reduction in the light dependent electron transport
reactions thereby causing decreased photosynthesis suggesting
the sensitivity of the photosynthetic system to cold temperatures
(Parades and Quiles, 2015). In another study Krause et al. (1988)
showed the impairment of thylakoid membranes along with the
inhibition of PS I and PS II in frost damaged leaves thereby
affecting photosynthesis. In mesophyll protoplasts isolated from
the non-hardened and cold acclimated plants, differential
responses were seen. While photosynthetic CO2 assimilation,
chlorophyll fluorescence emission and activities of thylakoids
were affected in protoplasts isolated from non-hardened plants,
in cold acclimated plants the responses were normal. Inhibition
of the light activation of light regulated enzymes fructose-1,6-
bisphosphatase, sedoheptulose-1,7-bisphosphatase and ribulose-
1,5-bisphosphate carboxylase is also one of the reason for
decreased photosynthesis during cold stress (Krause et al.,
1988). While the effects of hyper-osmoticum and sub-optimal
temperatures on photosynthesis are significant, the effects on
total respiration are negligible (Figure 1)

Flexibility of Mitochondrial Electron
Transport During Osmotic and
Temperature Stress Conditions
The flexibility of the mitochondrial electron transport chain to
divert electrons from phosphorylating to non-phosphorylating
pathways decrease the over reduction of the electron transport
chain components and ROS generation. This flexibility in
mitochondrial electron transport chain is also observed in the
present study during hyper-osmotic stress and sub-optimal
temperature stress as evident by a significant increase in the
capacity of AOX pathway with a concomitant decrease in
the capacity of COX pathway (Figures 2A,B). These results
corroborated well with the reports of Ribas-Carbo et al. (2005)
in soyabean and Dwivedi et al. (2003) in pea, who showed an
increase in AOX pathway activity and decrease in COX pathway
activity under water and hyper-osmotic stress, respectively. Their
results suggested that the increase in AOX pathway activity was
due to direct inhibition of the COX pathway activity. Contrary to
these results, the COXpathway activity was shown to be increased
during water stress in wheat plants, while the leaf discs of
Saxifraga cernua showed differential responses in COX and AOX
pathway activities on exposure to a range of osmotic potentials
from 0.0 to 4.0 MPa using sorbitol (Collier and Cummins, 1993;
Zagdanska, 1995). The observed variations in the COX and AOX
pathway capacity/activities in different studies might be possibly
due to variations in the experimental conditions/techniques used
to assess them.

Further, the observed decrease in the total cellular ATP/ADP
ratios under different stress treatments as compared to controls

(Figure 2C) corroborated well with the studies of Flexas
et al. (2004) and Ribas-Carbo et al. (2005). The studies of
Tezara et al. (1999) suggested that the decline in leaf ATP
concentration during water stress is an indicator of impaired
photophosporylation, which is one of the main factors limiting
photosynthesis under water stress. Pyruvate, being a preferential
substrate for mitochondrial oxidation is also known to play
a significant role in communicating between chloroplasts and
mitochondria to activate AOX protein/AOX pathway. The
significant increase in the intracellular pyruvate levels under the
hyper-osmotic and sub-optimal temperature stresses emphasizes
its importance in stimulating the AOX pathway capacity
(Figures 2A,B,D). In 10◦C grown chick pea plants, application
of pyruvate on leaves effectively reduced the oxidative stress
by activating the AOX pathway (Erdal et al., 2015). Further,
any decrease in the COX pathway activity might generate
ROS due to over-reduction of the electron transport chain and
AOX pathway is very well known to prevent ROS generation
(Wagner and Moore, 1997). Thus, the increased ROS during
stress conditions might represent the balance of the COX and
AOX pathway capacities in light (Figure 3). The up regulation
of AOX pathway capacity during osmotic and temperature stress
conditions signifies the importance of AOX pathway during
stress conditions and also highlights its role in decreasing the
deleterious effects on not only mitochondrial respiration but also
on carbon metabolism (Figures 1B,D and 2A,B). Mitochondria
also possess several dissipative systems: rotenone (in)sensitive
external and internal NAD(P)H dehydrogenases and complex
I, COX pathway, uncoupling proteins (UCP) and potassium
channel which may cooperate with AOX to prevent oxidative
stress and thereby optimize photosynthetic carbon assimilation.
Perhaps, these dissipative systems cannot be ignored in light
of the heterogeneity of AOX effects on different components
examined in the present study, which were found to be essential
for efficient functioning of chloroplastic photosynthesis (Krömer
et al., 1988; Igamberdiev et al., 1998; Møller, 2001; Dutilleul
et al., 2003; Sweetlove et al., 2006; Yoshida et al., 2006, 2007;
Noguchi and Yoshida, 2008). The studies of Trono et al.
(2013) demonstrated that the hyperosmotic stress activate a
mitochondrial PLA2 which in turn activate UCP and potassium
channel to control ROS generation (Laus et al., 2011).

AOX Pathway Plays an Important Role in
Optimizing Photosynthesis Under
Hyper-Osmotic and Sub-Optimal
Temperature Stress in Light
Studies using metabolic inhibitors or transgenic/reverse genetic
approaches indicated that any interference in mitochondrial
oxidative electron transport components and TCA cycle causes a
significant drop in photosynthetic carbon assimilation along with
reduction in the rate of transpiration, stomatal and mesophyll
conductance to CO2 (Krömer et al., 1993; Padmasree and
Raghavendra, 1999a; Dutilleul et al., 2003; Priault et al., 2006;
Yoshida et al., 2006, 2011; Dinakar et al., 2010a; Nunes-Nesi et al.,
2010; Florez-Sarasa et al., 2011). The low concentration of SHAM
(0.5 mM) used in the present study, neither directly affected the
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reduction in bicarbonate dependent oxygen evolution rates in
chloroplasts (Padmasree and Raghavendra, 1999a; Dinakar et al.,
2010a) nor affected the photochemical activities of mesophyll
protoplasts (Padmasree and Raghavendra, 2001a). SHAM also
inhibits all the isoforms of AOX as evident from studies with
knockouts of AOX1a Arabidopsis plants (Strodtkötter et al.,
2009). The results from present study demonstrated that while
the effect of 0.5 mM SHAM on respiratory rates and PS
II activities were marginal, the decrease in photosynthetic
carbon assimilation was significant (Figure 3). Since the D1
protein levels were also unchanged in the presence of SHAM
under stress conditions, it can be concluded that the marginal
interference in AOX pathway under hyper-osmotic stress and
sub-optimal temperature stress caused a remarkable decrease
in photosynthetic carbon assimilation with marginal effect on
photochemical activities, as evident by changes in D1 protein
levels (Figures 3B–D). Similar observations were also reported
by Saradadevi and Raghavendra (1994), where the photosynthetic
rates of mesophyll protoplasts decreased to a significant extent on
exposure to solutions of increasing osmolarity. The production
of ROS by mitochondria was suggested as the critical factor for
the induction of AOX (Clifton et al., 2006; Rhoads et al., 2006)
and the respiratory capacities of COX and AOX pathways are
known to play a significant role in maintenance of cellular ROS
at optimal levels to sustain high photosynthetic rates (Dinakar
et al., 2010a). In our studies, although we observed a significant
increase in ROS, we did not observe the decrease in D1 protein
levels under osmotic as well as temperature stress conditions
or even in the presence of SHAM (Figures 3D and 4). These
results suggest that the changes observed in ROS during hyper-
osmotic stress and sub-optimal temperature stress might be
involved in signaling function to activate the cellular defense
mechanism, perhaps AOX and ROS scavenging antioxidant
system (Figures 2A,B, 4, 5B and 8).

Role of Malate Valve and ROS
Scavenging Antioxidant System in
Stimulating the In Vivo Activity of AOX
Pathway to Optimize Photosynthesis
Under Osmotic and Temperature Stress
in Light
Decrease in photosynthesis is a primary effect that is observed
during stress conditions. Under these conditions chloroplastic
electron transport components accumulate reducing equivalents
thereby preventing electron transport. Chloroplasts generated
reducing equivalents may be transferred to mitochondria
through several metabolite shuttles that operate between the two
compartments. Malate and OAA are the two most important
metabolites that are involved in redox shuttling between the
chloroplasts, mitochondria, and cytosol. Malate/OAA shuttle
is believed to be mediated by malate dehydrogenase and
in equilibrium with the cellular NADH/NAD+ ratio. The
assessment of the total cellular NADH and NAD+ levels also
depends on the other metabolite shuttles and the activity
of the mitochondrial oxidative electron transport. Therefore
the possibility of change in intracellular malate/OAA ratio

without dramatic changes in NADH/NAD+ can occur in a
cell. The major change in malate/OAA ratio is expected in
chloroplasts, while NADH/NAD+ ratio is mostly in cytosol.
This may be partly due to the consumption of reduced
equivalents from malate by other metabolic components
such as GSH and/or ascorbate. The pronounced increase in
malate levels under hyper-osmotic stress conditions in the
presence of SHAM indicates the biochemical role of malate
in chloroplast-mitochondrial interactions (Supplementary Figure
S3; Figure 5A). Biochemically the malate is oxidized to
pyruvate via malic enzyme. In isolated mitochondria, malic
enzyme activity is correlated with intramitochondrial pyruvate
generation and consequent AOX activation (Day et al., 1995).
In another study Yoshida et al. (2007) observed an active
malic enzyme in AOX1a knockout plants. The COX and AOX
pathways were known to play a significant role in oxidizing
the malate and regenerating OAA to keep up the chloroplastic
electron transport carriers in the oxidized state, which in
turn helps to keep the Calvin cycle active for maintaining
optimal photosynthesis (Padmasree and Raghavendra, 1999c;
Raghavendra and Padmasree, 2003). The pronounced increase
in malate/OAA ratio suggests the importance of ‘malate
valve’ in mediating the cross talk between chloroplasts and
mitochondria to activate AOX pathway under hyper-osmotic
stress (Figure 5A). Chloroplastic NADP-dependent malate
dehydrogenase (NADP-MDH) is the key enzyme controlling
the malate valve, which export reducing equivalents indirectly
from chloroplasts. The significant increase in maximal NADP-
MDH activity in presence of SHAM corroborate well with
the increased NADPH and malate levels, and redox ratios of
NADPH/NADP+ and malate/OAA, respectively, under both
hyper-osmotic and temperature stresses (Figures 5A, 6B,
and 7B; Supplementary Figure S2A). However, the marginal
increase in malate/OAA ratio in the presence of SHAM
during sub-optimal temperature stress denotes that a redox
modulating factor other than malate might play a role in
modulating the ROS to keep up the Calvin cycle activity in
chloroplasts.

While the amounts and activities of enzymes involved in
ROS scavenging are known to be altered by environmental
stresses such as chilling, drought and high salinity (Shao et al.,
2008), the reductive detoxification of ROS occurs through the
cellular ascorbate and glutathione pools (Smirnoff, 2000; Noctor,
2006). The decrease in photosynthetic carbon assimilation
and GSH/GSSG ratio, parallel to a rise in ROS in presence
of SHAM under osmotic and temperature stress suggests the
role of AOX in optimizing photosynthesis by regulating ROS
through glutathione redox couple (Figures 3–5). AOX pathway
is known to play a significant role in optimizing photosynthesis
by keeping up the light activation of chloroplastic enzymes
(Padmasree and Raghavendra, 2001b). As these enzymes
are regulated by thioredoxin-glutaredoxins, a remarkable
decrease in glutathione redox couple at 10◦C in presence
of SHAM and increase in AOX pathway capacity provide
evidence for the physiological role of AOX pathway in
keeping up the light activation of chloroplastic enzymes to
sustain photosynthesis under sub-optimal temperature stress
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(Figures 2B, 3B, and 5B). Further, the marginal changes in
NADH/NAD+ redox couples, in presence of SHAM when
superimposed with hyper-osmotic stress and sub-optimal
temperature further confirm the tight coupling of AOX pathway
with malate/OAA and GSH/GSSG redox couples in regulating
cellular ROS to protect photosynthesis from photoinhibiton and
sustain photosynthetic performance of mesophyll protoplasts
under these stresses (Figures 2A,B, 3B, 5 and 6). The increase
in the redox ratio of NADPH/NADP+ under sub-optimal
temperature stress conditions in the presence of SHAM signifies
the importance of AOX in oxidizing excess reducing equivalents
(Figure 6B). Furthermore, though the changes in SOD and
catalase activities were significant in the presence of SHAM
during sub-optimal temperature stress, they could not play
much role in protecting photosynthesis under hyper-osmotic
stress by preventing generation/accumulation of cellular ROS
(Figures 8A,B). On the other hand, the changes in GR
were small but not significant under all conditions examined
(Figure 8C). The significant increase in NADPH/NADP+ ratio
with concomitant rise in ROS and a decrease in GSH/GSSG
ratio while sustaining GR activity in presence of SHAM at
10◦C indicated that AOX pathway optimize photosynthesis
by regulating antioxidative system at sub-optimal temperature
(Figures 2B, 4, 5B, 6B and 8C). These results suggest that non-
enzymatic antioxidants play a significant role over enzymatic-
oxidants in regulating cellular ROS during optimization of
photosynthesis by AOX.

CONCLUSION

The present study demonstrates the importance of AOX
pathway in optimizing photosynthesis during hyper-osmotic
and temperature stress in light. The increased capacity of
AOX pathway during both hyper-osmotic and sub-optimal
temperature stress was evident by a parallel modulation in
various biochemical factors such as pyruvate, ROS and ATP/ADP
levels. Studies using mitochondrial AOX pathway inhibitor
SHAM demonstrated that under both osmotic and temperature
stress, the AOX pathway optimizes photosynthetic carbon

assimilation. The results highlight the flexibility of AOX pathway
in interacting with different redox couples related to malate
valve (malate/OAA) and antioxidative system (GSH/GSSG) to
regulate cellular ROS for optimal photosynthetic performance
under hyper-osmotic stress and sub-optimal temperature stress.
Since the AOX mutants of pea are not available, studies using
Arabidopsis are required to further understand the underlying
molecular mechanisms.
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