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The representation of the environment assumes the encoding of four basic dimensions

in the brain, that is the 3D space and time. The vital role of time for cognition is

a topic that recently attracted increasing research interest. Surprisingly, the scientific

community investigating mind-time interactions has mainly focused on interval timing,

paying less attention on the encoding and processing of distant moments. The present

work highlights two basic capacities that are necessary for developing temporal cognition

in artificial systems. In particular, the seamless integration of agents in the environment

assumes they are able to consider when events have occurred and how-long they have

lasted. This information, although rather standard in humans, is largely missing from

artificial cognitive systems. In this work we consider how a time perception model that

is based on neural networks and the Striatal Beat Frequency (SBF) theory is extended

in a way that besides the duration of events, facilitates the encoding of the time of

occurrence in memory. The extended model is capable to support skills assumed in

temporal cognition and answer time-related questions about the unfolded events.

Keywords: time perception and timing, temporal distance, past perception model, when, how long, computational

modeling, temporal cognition

INTRODUCTION

Our sense of time exhibits unique characteristics that distinguishes it from the typical group of
human senses (sight, hearing, touch, smell, and taste). A crucial difference is that the sense of time
is not associated with a specific sensory system in the brain. As it is noted in Bruss and Ruschendorf
(2010), the perception of time seems different in nature from what we usually understand as
perception. It seems to have its own ways and own laws. Since we cannot stop time, we cannot
experience a moment twice. In the contrary, we can hear a sound, view a light, taste a food as many
times as we want.

In an attempt to understand the unique characteristics of time perception, the recent
years, a significant amount of research studies have been devoted on understanding the brain
mechanisms that enable experiencing and processing time, with controversial theories attempting
to explain experimental observations. Broadly speaking, there are two main approaches to
describe how our brain represents duration (Ivry and Schlerf, 2008; Bueti, 2011). The first
is the dedicated approach (also known as extrinsic, or centralized) that assumes an explicit
metric of time. This is the oldest and most influential explanation on interval timing. The
models included in this category employ mechanisms that are designed specifically to represent
duration. Traditionally such models follow an information processing perspective in which pulses
that are emitted regularly by a pacemaker are temporally stored in an accumulator, similar to
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a clock (Gibbon et al., 1984; Droit-Volet et al., 2007). This
has inspired the subsequent pacemaker approach that uses
oscillations to represent clock ticks (Miall, 1989; Large, 2008).
Following a broader consideration, the Striatal Beat Frequency
(SBF) model assumes timing to be the results of the coincidental
activation of basal ganglia neurons by cortical neural oscillators
(Matell and Meck, 2004; Meck et al., 2008). Other dedicated
models assume monotonous increasing or decreasing processes
to encode elapsed time (Staddon and Higa, 1999; Simen et al.,
2011). The second approach includes intrinsic explanations (also
known as distributed) that describe time as a general and inherent
property of neural dynamics (Dragoi et al., 2003; Karmarkar
and Buonomano, 2007). According to this approach, time is
intrinsically encoded in the activity of general purpose networks
of neurons. Thus, rather than using a time-dedicated neural
circuit, time coexists with the representation and processing of
other external stimuli. Recent models combine intrinsic and
dedicated representations into active oscillations that do not only
produce “ticks” but additionally adjust their characteristics to
perceive, measure, and process time in order to facilitate the
accomplishment of a variety of temporal tasks (Maniadakis and
Trahanias, 2015). Similarly, models assuming oscillations with
adaptive pulse rates extent the classic pacemaker-accumulator
model to accomplish timescale invariance in interval timing
(Simen et al., 2013).

The aforementioned models focus on estimating the duration
of events (i.e., how-long), without typically paying much
attention on the time of occurrence of events (i.e., when), as an
important temporal information. The combined consideration
of these two temporal aspects is vital for understanding the
evolved phenomena in the environment in a rich and meaningful
way. While interval timing is typically related to short-term
time perception, considering when events have occurred is
mostly related to the perception of mid and distant past. It
is now believed in the timing community that the short-term
duration perception mechanisms in the brain are different than
those involved in the long-term, past perception (Aschoff, 1985;
Rammsayer, 1999; Lewis and Miall, 2003).

However, given that the present is included in the entire
timeline linking the past and the future, it is reasonable to
assume a connection between the short- and long-term time
perception. Along this line, the present work investigates the
possibility that a universal time source may support both
aspects of time perception. This is the focus of the present
study which explores possible means for combining when and
how-long in a single cognitive system. This does not aim
to argue that the two mechanisms coincide or overlap. The
subsystems of short- and long-term time perception are kept
separate but it is possible that they share common timing
inputs and in that sense we are interested to explore their
possible bridging. It is noted that in order to explore the long-
and short-term aspects of time perception, the implemented
models must consider both the moments experienced during the
occurrence of events and the moments passing without being
associated to the given event. These two time periods exhibit
very different characteristics as we will discuss in the following
sections.

The present work adopts a memory encoding perspective
to explore the possible mechanisms supporting how-long and
when temporal cognition. Interestingly, besides providing an
explanation on how the two times related cognitive capacities
may be linked, the present work accomplishes a crucial milestone
for introducing time perception in artificial systems enabling the
later to consider the inherent temporal dimension of human-
machine symbiotic interaction.

The composite model is developed following an incremental
procedure. We start by implementing a neural network model
that is capable to estimate and memorize the duration of
simple tone-events. The model is implemented using a “black
box” artificial coevolutionary procedure that tunes system
components and enforces their cooperation. Subsequently, we
consider the possibility of extending the model with the ability
of keeping track the time of occurrence of the underlying events.
We explore whether the previously implemented mechanism
of time flow perception that is used for interval timing can
be also employed for encoding when events have occurred.
Moreover, we explore the option that past perception may
use temporal distance measures as indicators of past times.
Our experiments show that a single time source can facilitate
encoding of both the duration and the time of occurrence
of events.

ARTIFICIAL EVOLUTION OF INTERVAL
TIMING MODEL

To develop a brain inspired duration perception system, we
borrow ideas from the Striatal Beat Frequency (SBF) model
(Matell and Meck, 2004; Meck et al., 2008) that is one of the
most widely referenced paradigm explaining interval timing
in the brain. The model assumes that durations are coded
by the coincidental activation of a large number of cortical
neurons projecting onto spiny neurons in the striatum that
respond to timing patterns. The present work explores a
very simple version of the SBF model using only a small
number of input oscillatory signals. The goal of this simplified
model is not to compete against the original SBF model, but
rather to suggest a new direction for using interval timing
models.

Modeling
We employ the coevolutionary neural network framework that
has been described in detail in (Maniadakis and Trahanias, 2008,
2009) to develop a modular neural network system for interval
timing. In the past, we have used the same technology to develop
cognitive models for artificial agents, which have been capable of
time-informed behavior switching (Maniadakis et al., 2009) and
multi-context duration processing (Maniadakis and Trahanias,
2015).

The structure of the neural network model is shown
in Figure 1. In short Continuous Time Recurrent Neural
Networks (CTRNNs) are used as modules to develop a
composite cognitive system. CTRNNs represent knowledge in
terms of internal neurodynamic attractors and it is therefore
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particularly appropriate for implementing cognitive capacity
that is inherently continuous, similar to time perception. The
neurons implementing CTRNN components are governed by the
standard leaky integrator equation:

dγ i

dt
=

1

τ

(

−γ i +

R
∑

k= 1

ws
ikIk +

N
∑

m= 1

w
p
imAm

)

(1)

where γi is the state (cell potential) of the i-th neuron. All neurons
in a network share the same time constant τ = 0.25 in order
to avoid explicit differentiation in the functionality of CTRNN
parts. The state of each neuron is updated according to external
sensory input I weighted by ws, and the activity of presynaptic
neurons A weighted by wp. After estimating the state of neurons
based on the above equation, the activation of the i-th neuron is
calculated by the non-linear sigmoid function according to:

Ai =
1

1+ e−(γ i−θi)
(2)

where θi is the activation bias applied on the i-th neuron. The
model considered in the present study assumes 16 neurons
for the building blocks tSen1, tSen2, and 2 neurons for the
blocks implementing t-Duration1, ..., t-Duration6. A hierarchical
coevolutionary procedure is used as a mechanism for tuning
CTRNNmodules, specifying synaptic weights and activation bias
of neurons.

Following the assumption of fusing cortical neural oscillators
for implementing sense of time, we use four oscillatory signals
at different frequencies as inputs to the model. The use of
such a small number of oscillatory inputs keeps manageable
the complexity of the model providing at the same time the
opportunity to obtain insight in the dynamics self-organized
internally in the CTRNN. The oscillatory signals used in the
current study are as follows:

Inp1 = sin(4t+ k1)+ u(−0.05, 0.05)

Inp2 = sin(t+ k2)+ u(−0.05, 0.05)

Inp3 = sin(0.25t+ k3)+ u(−0.05, 0.05)

Inp4 = sin(0.1t+ k4)+ u(−0.05, 0.05) (3)

Parameters k1, k2, k3, k4 ǫ [0,π], implement random time shifts
initialized at the beginning of every experimental session (i.e.,
different values are assumed for each evolutionary run, see
below). Additive noise implemented as a uniform distribution
in the range [–0.05, 0.05] aims to improve generalization of
the internal representation of time and thus enable robust and
accurate duration estimation.

Each temporal moment processed by the model is associated
to one simulation step. Interestingly, assuming that one
simulation step corresponds to 5–10 ms, the input signals
described in Equation (3) can be associated to the known
frequencies of cortical neural oscillations, from the 1–4Hz of the
delta band, up to the 30–70Hz for the gamma band. It is noted
that, for years, it is has been hard to identify a single frequency
band dominating temporal processing, (Treisman, 1984; Wiener

and Kanai, 2016). However, modern approaches assume that the
combination of bands might be the key for explaining sense of
time (for a discussion, see Kononowicz and van Wassenhove,
2016 in the present Research Topic). Such an assumption
provides added value to our model, which combines oscillations
at very different frequencies to develop sense of time. However,
the input signals considered in the present study were not
originally designed with cortical oscillation bands in mind, and
thus we would like to avoid building further on this assumption.
Besides targeting interval timing in the range of a few seconds,
the model does not assume an explicit correspondence between
simulation steps and the known metrics of physical time (e.g.,
ms, or sec). The main goal of the present work has been the
development of a brain-inspired time perception system for
robotic agents engaged in long-term symbiotic interaction with
humans.

Turning back to Figure 1, oscillatory inputs project into
a composite TimeSense module consisting of two recurrently
connected sub-modules. The TimeSense module aims at
gradually transforming oscillatory inputs to a composite time
flow representation that is adequate for interval timing. To
facilitate the applicability of the model in robotic applications,
we use working memory to store the temporal properties of
a small number of recently experienced events. In the current
implementation we explore scenarios assuming the random
occurrence of six events (the capacity of working memory) in a
session of 1000 simulation steps. We employ 6 different duration
estimation modules each one devoted to the perception of one
tone-event. The duration estimation modules receive a binary
tone input that represents the occurrence of events. Tones have
randomly specified lengths that represent the duration of events.
A binary signal representing the unique ID of the event enables
differentiating the measured interval lengths. The actual duration
of events is randomly specified every time a NN model is loaded
and tested. We enforce a minimum distance of 100 moments
between consecutive events.

Parametric Tuning
The training of the model is achieved using Hierarchical
Cooperative CoEvolution as described in (Maniadakis and
Trahanias, 2008, 2009). By using this “black box” coevolutionary
scheme we are able to consider the specialized characteristics
of each component in the model and additionally enforce
their synergetic functionality to accomplish the desired overall
performance for the composite system.

We assume a brain-like encoding of interval timing. More
specifically, a ramp-like encoding of time has been identified in
the brain of monkeys (Leon and Shadlen, 2003; Maimon and
Assad, 2006; Mita et al., 2009) for durations up to a few hundreds
of milliseconds. The proposed model abstracts these findings
by implementing a similar ramping mechanism for short-term
interval timing, aiming mainly to support robotic applications.

Error-based functions are used to evaluate the performance
of each event-specific module tDur1,..., tDur6. In particular, the
desired output of the module associated to the i-th event starting
at time sti and finishing at time ei, having a maximum duration
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FIGURE 1 | The structure of the first model of interval timing. A recurrent TimeSense module blends oscillatory signals to develop the filling of flowing time,

properly formulated to enable interval timing in the modules t-Duration1 ... t-Duration6 that are also fed by the external tone signal and the id of the perceived event.

M (i.e., ei − sti < M ) equals to:

Di (t) =







0, t < sti
(t − sti) /M, sti ≤ t < ei
(ei − sti) /M, ei ≤ t

(4)

In the current study we investigate events with maximum
duration M = 50 moments. The function that measures the
success of the i-th temporal duration module is:

EDuri =
∑

t

(

outi(t)− Di(t)
)2

(5)

This is the key component of the fitness function f fi that
drives the evolution of the corresponding module accomplishing
parameter tuning:

f fi =
1000

EDuri
(6)

Higher values of f fi indicate better performance of the i-th
duration module.

To accomplish parametric tuning for the neural network
modules representing the components t-Sen1 and t-Sen2, which
have a supportive role for all duration estimation modules, we
employ a mixture of the afore mentioned fitness functions,
described by:

ff =

∏

i

f fi (7)

The hierarchical cooperative coevolutionary procedure
(Maniadakis and Trahanias, 2008, 2009) accomplishes
parametric tuning and optimization of component modules,
enforcing their collaborative performance toward a successful
composite model. We use one population of 1000 artificial
chromosomes for each CTRNN module considered in the
model. Each chromosome, encodes a different configuration

of the module. We combine candidate module configurations
to develop full configurations of the complete system, which
are tested on the duration estimation task described above. The
20% of the best performing chromosomes in each population
are selected for reproduction following single point crossover.
Mutation is applied on new chromosomes with a probability
2% for each encoded parameter. Mutation is implemented as
additive noise in the range [–10%, 10%] relative to the previous
value of the parameter.

Results
We have evolved the above described coevolutionary scheme
for 500 generations, producing a successfully tuned CTRNN
model for interval timing. An indicative set of results for six
randomly specified tone events is shown in Figure 2. The fact
that numerous event durations can be simultaneously preserved
in the system is a valuable addition to interval timing models
that enables further processing of the memorized durations.
In particular, it has been straight forward to use a Multi-layer
Perceptrons (MLPs) to develop decision making systems capable
of comparing any two of the memorized durations to accomplish
duration comparison tasks similar to those studied in (Droit-
Volet et al., 2010).

Besides extensively testing the model with randomly specified
interval times up to M simulation steps, we explore whether the
output of the model exhibits the scalar characteristics that are
typical observed in biological timing mechanisms (Lejeune and
Wearden, 2006). Scalar timing implies that (i) measurements
should vary linearly and near-accurately as time increases and (ii)
the variance of perceptual mechanism increases as the duration of
time also increases. To get an estimate of the scalar characteristics
of the model, we have studied its ability to correctly estimate
durations of 20, 25, 30, 35, 40, and 45 moments (without
this limiting the model to perform successfully for in-between
durations). For each one of the six durations considered here, we
perform 50 statistically independent runs, feeding themodel with
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FIGURE 2 | The outputs of the six t-Duration modules which are

responsible for measuring duration of six different tone events with

randomly specified durations. Blue lines represent desired outputs, while

red lines show actual system output.

randomly initialized oscillatory inputs. The mean and standard
deviation for each one of the durations considered are shown in
Table 1. Clearly, the average of the estimated intervals remains
close to the true time in all cases, satisfying mean accuracy.
The variance increases as the model experiences longer intervals,
however, in a rate that is slower to the increase of the mean.
The scalar property assumes a constant coefficient of variation
(the ratio of the standard deviation to the mean), which is not
true for our model. This is depicted more clearly in Figure 3,
where relevant output distributions are scaled by the expected
duration value. Even if the model is not fully compatible with
the scalar property, Table 1 shows that the output of the model
is sufficiently accurate for making the model usable in robotic
systems. Nevertheless, it is worth emphasizing that, currently,
the two main characteristics of the scalar property have been
self-organized without any explicit instructions by the modeler.
Therefore, it seems valid to assume that our model can be easily
rendered fully compatible to the scalar property, by introducing
a constraint for a constant coefficient of variation in the fitness
function of the evolutionary design procedure.

The notably small variations in time estimations shown in
Table 1 (we remind it summarizes the results of 50 randomly
initialized runs of the model) indicate that the implemented
model is particularly tolerant to the noise added in the oscillatory
input. To further assess model robustness, we have explored the
performance of the model against different levels of input noise.
Results are summarized in Table 2. The model shows to perform
satisfactorily for input noise up to the range [–0.07, 0.07]. More
noise than that significantly affects the estimation of durations
for specific events. In particular, noise in the range [–0.09, 0.09]
often results into a single mismeasured event, noise in the range
[–0.11, 0.11] results into more than two mismeasured events (on
average 2.3), and noise in the range [–0.13, 0.13] results, into
nearly random duration measurements. Practically, the increase
of noise affects the performance of the TimeSense modules which

FIGURE 3 | A graphical illustration of the time estimation distributions

shown in Table 1, scaled by the expected duration means. The more the

distributions are identical the more the model is compatible with the scalar

property. For our model, estimated means are slightly shifted against the

expected values, and standard deviation increases slower than expected by

the Weber law.

in turn introduces disturbances (i.e., occasional picks) in the
corresponding ramping activities therefore destroying accurate
interval timing.

Interestingly, in the case that the noise is added to the input
signal for a relative short time (e.g., <10 simulation steps) the
performance of the model remains largely unaffected, even for
noise in the range [–0.13, 0.13]. This is explained by the use
of leaky integrator neurons which smooth out the strong but
temporally-short noise, enabling the model to quickly recover
into the normal mode of operation.

While previous SBF models have been particularly sensitive
to sensory noise (Matell and Meck, 2004; Gu et al., 2015),
the model implemented in the current work exhibits more
robust performance, therefore enabling interval timing in noisy
environments. This is a particularly desirable feature that is
developed for free in the model due to the noise included in
the oscillatory sensory inputs and the randomness introduced
in the experimental setup. This is mainly because we do not
artificially describe coincidental activation of oscillatory inputs,
but we let the neural network self-organize the fusion of inputs.
Fitness assignment favors themore robust neural networks which
filter out noise and estimate durations that are closer to the
target. Therefore, the evolutionary procedure produces solutions
that are gradually more tolerant to noise. However, it is worth
emphasizing that sensory noise has been shown to facilitate time
scale invariance in the case of a large number of input neural
oscillators (Oprisan and Buhusi, 2014).

EXTEND THE MODEL TO ADDRESS
“WHEN”

The model described above has been able to accomplish accurate
interval timing in a series of randomly initialized binary events.
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TABLE 1 | Studying the scalar properties of the model.

Actual time 20 25 30 35 40 45

Estimated time—Mean 19.66 24.81 30.23 35.39 40.81 46.19

Estimated time—STD 0.87 0.93 1.04 1.09 1.17 1.21

The model does not assume a direct relationship between simulation time and physical time. The number of simulation steps is used as indicator of the elapsed time.

TABLE 2 | Model performance against different levels of input noise.

Noise range [−0.03, 0.03] [−0.05,0.05] [−0.07,0.07] [−0.09,0.09] [−0.11,0.11] [−0.13,0.13]

Estimated time average error 0.47 0.53 0.72 6.38 10.13 18.67

With this timing mechanism at hand it is particularly interesting
to explore, whether we can achieve other temporal cognition
skills beyond interval timing. In the current study we explore if it
is possible to use the previously developed timing mechanism as
a base for encoding information related to the time of occurrence
of events, that is to represent time moments in the distant past.
While estimating the duration of an event requires the active
percepton of the external stimulus, keeping track of when that
event occurred assumes perceiving time that is not anymore
related to the underlying event, filtering also out any other
external input that may appear in the meanwhile. This is an
important qualitative difference that distinguishes when and
how-long perception.

There are two alternative options for encoding when an
event has occurred in the past. The first assumes a coordinate
system centered on “now,” e.g., “John was here one hour ago.”
Following this approach the center of the coordinate system is
non-static but it is moved together with the flow of time, causing
a continuous increase in the time elapsed from the occurrence
of the event until now (i.e., in a while, the above statement will
change to “John was here two hours ago” and so on). The other
alternative assumes a timeline centered on a predefined moment
that is assumed to represent the zero-point and all time moments
are perceived relative to that particular zero-point. For example,
most western cultures assume as zero-point the birth of Jesus
Christ and thus dates are typically measured as distances from
this point, e.g., “I met John on February 10, 2015”.

Human adults can equally perceive both alternative options.
However, it seems more likely that the development of the past
perception for young children starts centered on “now”. This is
because even if infants are capable to perceive time very early
in their life (Droit-Volet, 2011), the conceptual development of
an objective zero point develops not earlier than the middle
childhood (Friedman, 2005). The now-centered perception of
time is further supported by developmental studies showing a
decline in the accuracy of children responses with increasing
distances to the past (Friedman, 1998) and the fact that children
have autobiographical memories before they learn how to use
clocks and calendars (Campbell, 1997). Finally, from a numerical
point of view, young children seem to slowly develop the concept
of ordinal relationship between small values which gradually
develops to the understanding of the broader number line

(Gallistel and Gelman, 1992; Rouder and Geary, 2014). The above
suggest that a first, basic approach for representing when events
have occurred should be implemented relative to “now” rather
than relative to a fixed point in time. The latter option may be
developed at a following stage as a higher level capacity that
processes encoded events.

Interestingly, the now-centered representation of the timeline
suggests that the duration perceptionmechanismsmay have a key
role in the representation of past times. To elaborate further on
this assumption, we borrow from the past perception literature
(Arzy et al., 2009; Wyer et al., 2010) the term “temporal distance,”
which describes the temporal properties of past events in relation
to the present. We implement the computational analogous of
temporal distance in our model, and we investigate the possibility
of using this measure as a representation of when events have
occurred in the past.

In particular, we extend the model discussed in Section
Artificial Evolution of Interval Timing Model to additionally
incorporate the capacity of memorizing the times of events’
occurrence based on the assumption of encoding temporal
distances to the present. In that sense, the composite model will
work in two different time scales (i) up to 50 simulation steps for
the how-long mode and (ii) up to 1000 simulation steps for the
when mode. The revised model will be capable of using a single
sense of time to derive both the duration of events and their time
of occurrence.

Interestingly the coevolutionary framework used in the
current work is particularly appropriate for the incremental
modification and enhancement of modular neural network
models (Maniadakis and Trahanias, 2009). To incorporate
distant time perception, a set of neural network components is
integrated into the model as shown in Figure 4. Two central
components aim to transform general purpose sense of time to
a form that is appropriate for measuring duration (t-Duration
module) and temporal distance (t-Distance module). Similar to
the earlier version, we use dedicated modules t-Duration1, t-
Duration2 ... t-Duration6 to memorize durations and modules
t-Distance1, t-Distance2 ... t-Distance6 to memorize temporal
distances for the six tone-events considered in the current
experimental setup. The CTRNN-based implementation of the
modules assumes 16 neurons for the building blocks tSen1,
tSen2, t-Duration, t-Distance, and 2 neurons for the blocks
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FIGURE 4 | The structure of the enhanced model that aims to address both interval timing and past time perception.

implementing t-Duration1, ..., t-Duration6, and t-Distance1, ...,
t-Distance6.

A key issue for implementing temporal distances regards
the representation of time in the long-term. There is classical
debate on psychophysics asking whether the humans perceive
the time-line in a linear or a logarithmic basis. Without any
restriction1 the present work adopts the assumption of a
logarithmic representation of distant time which is supported
by recent experimental data (Arzy et al., 2009; Glicksohn and
Leshem, 2011) and is in line with modern numerical cognition
theories (Nieder and Miller, 2003). Cognitive models assuming
logarithmic and other non-linear forms of time perception have
also appeared in the literature (Staddon and Higa, 1999; van Rijn
et al., 2014).

Following the logarithmic representation, the temporal-
distance TD between current time t and the time sti that the i-th
event started, is encoded as:

TDi (t) =

{

0, t ≤ sti
log( t

sti
), sti < t

(8)

We use TDi (t) as the target of the i-th t-Distance module.
Therefore, to evaluate the performance of the module encoding
temporal distance of the i-th event we use an error-basedmeasure
that is:

EDisti =
∑

t

(

outi(t)− TDi(t)
)2

(9)

1We have followed both modeling assumptions in our work and we have

successfully implemented distant time models assuming either a linear or a

logarithmic representation of time. The current paper demonstrates only the

logarithmic approach but it is straightforward to adapt the evolutionary procedure

with the assumption of a linear time.

This is used to define the fitness function that drives the evolution
of the corresponding i-th t-Distance module. In particular, the
modules t-Distance1, t-Distance2, ... t-Distance6 and all relevant
incoming links are evolved according to the fitness function:

ffdist,i = (1000/EDisti) (10)

Similar to the early setup of the coevolutionary procedure
the modules t-Duration1, t-Duration2 ... t-Duration6, and all
incoming links are evolved according to the fitness function:

ffdur,i = (1000/EDuri) (11)

The module specific fitness functions are properly mixed to
develop composite fitness functions that drive the evolution of
the supportive modules. More specifically, the fitness function
of the module t-Distance considers the performance of all six
t-Distanceimodules:

ffdist =
∏

i
ffdist,i (12)

Similarly, the fitness function of the t-Durationmodule considers
the performance of all six t-Durationimodules:

ffdur =
∏

i
ffdur,i (13)

Finally the root components of the system t-Sen1 and t-Sen2 that
implement time sense are evolved according to both the temporal
distance and the temporal duration criteria, resulting into the
fitness function:

ffglobal = ffdur ∗ ffdist (14)

The hierarchical coevolutionary procedure accomplishes
parametrical tuning of all system components taking into
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FIGURE 5 | System outputs after the perception of six random tone events. Panel (A) shows the estimated duration of events. Panel (B) shows perceived

temporal distance to the present as a means of representing when events have occurred.

account their special features as well as the successful
functionality of the composite time processing system. The
hierarchical and synthetic structure of the fitness functions
enforces the coevolutionary scheme to improve collaboration
between the component neural networks. As a result, the
coevolutionary procedure can successfully converge to partial
solutions that synthesize a composite system capable of
memorizing the duration and the time of occurrence of events.

Results
Following the coevolutionary procedure described above, the
cognitive system described in Section Artificial Evolution of
Interval Timing Model is advanced to address both the when and
the how-long aspects of events. The configurations of previously
existing CTRNN modules have been reloaded and evolved
further, together with the configurations of the newly introduced
components. The extended cognitive system has been evolved
for 300 epochs producing a composite cognitive system that
can successfully process temporal information. Sample results of
the system outputs when memorizing 6 randomly initiated tone
events are shown in Figures 5A,B. The plots show in blue the
desired output and in red the actual output of the system. For
example the two plots shown in the first column, second line
of Figures 5A,B encode the fact that a tone event of duration
42 (note: 42/50 = 0.84) has occurred at a past time that is 557
moments back from the present (note: log(1000/443)=0.353).

The development of temporal processing internally in the
model is shown in Figures 6A–D. The four plots show neural
activity in the t-Sen1, t-Sen2, t-Duration, and T-Distance
modules for the whole period of perceiving the 6 events. In
the first stage of processing (Figure 6A), neural activity is
mainly directed by the input oscillatory signals. Subsequently
(Figure 6B) oscillations are mixed to produce a complex
temporally structured neural activity. The first event occurs
approximately at the moment 150. It seems that this event
triggers a more structured oscillation fusion in t-Sen2 resulting in
neural activity that looks like oscillation multiplexing. While the
present model was not implemented on the basis of integrating
oscillations that correspond to the known brain rhythms (delta

band to gamma band), our results show that the combination of
input signals at different frequencies may significantly contribute
in the sense of time as suggested also in (Kononowicz and van
Wassenhove, 2016).

At the third stage, processing separates to interval timing
and temporal distance to the past. Neural activation in the t-
Duration module is presented in Figure 6C. As it is shown in
the plot, the length of the events appearing (approximately) at
times 340, 440, 510, 650, and 860 is correlated to the width of
the peak disturbances (marked with arrows), as shown in the
respective plot. The final stage of processing is the one shown in
Figure 5A, demonstrating the correct estimate of interval timing.
Interestingly, longer durations correspond to flat peaks that take
longer to smooth out, while shorter durations have no time to
develop flat activities

Neural activation in the t-Distance module is shown in
Figure 6D. The plot shows a gradual increase in the amplitude of
activation disturbances as more andmore events gradually occur.
The dotted lines drawn on top of the neural activities shown
in yellow and cyan reveal two non-linear measures to be kept
internally in the model. The mixture of these two self-organized
measures is adequate for measuring temporal distances to the
present as it appears by the relevant outputs of the model in
Figure 5B.

DISCUSSION

We have presented a neural network model that is capable of
measuring short time intervals assuming linear ramp activity and
keep track of past times based on the logarithmic representation
of temporal distances. The model is implemented following a
semi-automated procedure that assumes parameterized CTRNN
modules attuned with the help of coevolutionary optimization.
The tuning of model parameters is accomplished in an
offline mode, similar to the supervised learning approach
followed in other timing neural network models (Laje and
Buonomano, 2013). Interestingly, evolutionary methods can be
nicely combined with on-line adaptation procedures to facilitate
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FIGURE 6 | A summary of the internal dynamics (neural activations)

developed in the model over time. Panel (A) shows neural activation in

tSen1, the first receiving component of the recurrent TimeSense module.

Panel (B) shows neural activation in tSen2, the second output component of

the TimeSense module. Panel (C) shows neural activation in the t-Duration

module which supports interval timing. Arrows indicate the times of event

experiencing. The width of peaks is analogous to the duration of events,

therefore enabling accurate duration estimation as shown in Figure 5A. Panel

(D) shows neural activation in the t-Distance module which supports past

perception. Neural activities shown in yellow and cyan implement internal time

keeping of the elapsed time as illustrated by the log-shaped dotted black lines

following their peaks.

life-long learning (Maniadakis and Trahanias, 2008) and thus
enable modifying the range of processed durations.

The neuro-evolutionary framework considered in the
present study provides increased flexibility in designing the
internal mechanisms of the model, accomplishing to easily
bridge oscillatory input and ramping activity in a single
model. While the two mechanisms have been frequently

considered contradictory in the literature, the use of oscillations
with gradually adapted characteristics provides the basis for
implementing effective interval timing mechanisms (Simen et al.,
2013) and has been used for accomplishing multiple interval
timing tasks (Maniadakis and Trahanias, 2015).

In contrast to previous works proposing timing models that
have been rather minimally integrated with other cognitive
functions (Gibbon et al., 1984; Staddon and Higa, 1999; Dragoi
et al., 2003; Droit-Volet et al., 2007), the incremental NN
modeling approach greatly facilitates the implementation of
complex time-aware cognitive systems that will enable robotic
systems to further exploit temporal cognition. The present work
considers the strong coupling of time perception and short-
term memory as suggested in (Gu et al., 2015). Other relevant
works have considered spatiotemporal patterns related to motor
behaviors (Laje and Buonomano, 2013). The use of spiking
recurrent neural networks for timing has been shown to be
particularly sensitive to noise (Banerjee et al., 2008). Relevant
computational models shown that, especially for SBF, different
types of noise may differentially affect the encoding and recall of
timing intervals (Oprisan and Buhusi, 2014). Despite enforcing
noise tolerance through learning (Laje and Buonomano, 2013),
our study shows that the use of rate coding neurons may
significantly facilitate model robustness.

The main contribution of the present study in comparison to
the state of the art regards the use of past distance measures as a
means of encoding the time of occurrence of experienced events.
Our results show that a single timing source can be used as a basis
for implementing cognitive systems capable of encoding when
events occurred and how-long they have lasted. The proposed
model suggests it is possible to bridge both short- and long-
time keeping mechanisms that in the literature have been so
far considered largely independent (Aschoff, 1985; Rammsayer,
1999; Lewis and Miall, 2003).

We note that the SBF-like characteristics assumed in the
current implementation are not restrictive for bridging when
and how long. Apart from the specific timing mechanism
assumed by SBF, the proposedmodeling approach could be nicely
combined with other representations of time, such as (Miall,
1989; Staddon and Higa, 1999; Karmarkar and Buonomano,
2007; Large, 2008; Simen et al., 2011). However, even if nearly
all timing models could equally support interval timing and
past-distance measuring, using a single timing mechanism for
both when and how-long can hardly comply with the brain
studies explicitly distinguishing the two systems. Along this line,
the current model assumes separate subsystems dedicated to
the estimation of short-term durations and long-term temporal
distances, providing the means to sufficiently address qualitative
differences between them. This is accomplished by assuming
different forms of temporal information to be readout by
TimeSense neurons, which are subsequently processed assuming
different mechanisms and processes.

The encoding of estimated times in memory highlights two
very interesting problems that a time-aware cognitive system
must concern in order to be functional in naturalistic conditions.
The first problem regards how how-long and when should be
represented in memory. In the former case the duration is
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necessary to gradually increase as long as the event is experienced
by the agent and stop at a specific value that will be encoded in
memory, representing the static (never changing again) duration
of the event. The latter case assumes a counting mechanism
that increases together with the evolution of the event but
continues increasing after the end of the event, resulting into
a dynamic (non-static) representation of past times relative to
the present. The distinction between static and dynamic time
representations gets even more complicated by considering the
second problem, which regards how a cognitive system links
specific events with specific temporal characteristics successfully
keeping track of their values while other events may also occur.
In our implementation, the use of a dedicated Event-id module
(see Figure 4) enables the correct association between events and
times, filtering out irrelevant external stimuli.

Overall, the following points summarize the differences
between the how-long andwhenmodes of operation in themodel:

• How-long and when assume respectively a linear and a
logarithmic representation of time, therefore accomplishing to
measure durations of different scales (up to 50 simulation steps
for how-long vs. up to 1000 simulation steps for when).

• The how-long mechanism aims at counting the time filled with
the occurrence of an event, while the whenmechanism counts
time that is not any more in direct link to the given event.

• How-long results into the final encoding of a static duration
value in memory, while when assumes an ever-changing,
dynamic representation of past times relative to the moving
present.

Currently, the model exhibits two limitations which, at the same
time, offer two important strands for future work. The first
regards the representation of far distant times which ordinary
models address by assuming processes that can increase without
limit (Miall, 1989; Matell and Meck, 2004; Large, 2008; Simen
et al., 2011). Despite the fact that such unbounded processes
can hardly provide a realistic explanation of time perception
(Staddon and Higa, 1999), they do not address multiscale time
perception that is innate for humans. Interestingly, the newly
introduced DDM (Simen et al., 2013) model which uses adapting
pulse rates to measure time intervals could provide a means
for implementing multi-scale time perception, assuming the
future implementation of a time abstraction mechanism (i.e.,
I am only aware that I moved to a new city 6 months ago,
but I do not know how many seconds or minutes have passed
since then). In the present work, the use of sigmoid activation
functions in the output neurons of the model does not fully
comply with the representation of far distant times. Sigmoid
functions produce outputs in the range [0, 1], therefore they
are not appropriate for approximating logarithmic times greater
than one. To compensate this limitation we plan to implement
multi-scale time perception in the cognitive system, similar to
(Staddon and Higa, 1999). Each time scale will be implemented
as a logarithmic function with a basis of a second, a minute, an
hour and so on (i.e., logsec, logmin, loghour, etc.). An event that
approximates the maximum sigmoid value of one in a given scale
will “jump” to the next scale, starting from a relatively low value

which will gradually increase to one being ready for a new “jump”
and so on.

The second direction for advancing the model regards
the perception of not only past, but also future times. This
important addition will pave the way for investigating long-
term planning, self-projection to the future, imagination and
other high level cognitive skills which are currently unattainable
in artificial systems. Similar to past perception, we plan to
implement future time perception following the assumption
of logarithmic multi-scale times. Future perception will look
like past perception, horizontally flipped with respect to zero-
time that represents “now”. The composite model will be
able to perceive future (expected) events approaching the
present, be part of reality (occur) and then moved to the past
(memorized).

The embodiment of the model into a robotic system and its
practical application in real life has revealed some particularly
challenging issues for artificial temporal cognition. So far we
assume that experienced events are assigned ids in a periodic
manner, i.e., in the form 1,2,3,4,5,6,1,2,3,4... and so on, and
thus their temporal characteristics are circularly encoded in the
relevant output modules in short term memory. As new events
are experienced by the agent, previous events should be either
deleted or transferred to long-term memory. The details of this
mechanism remains an open research issue, however by mixing
elapsed time and the attention devoted to the event we have
been able to implement rough criteria that facilitate decision
making with respect to the handling of past events. Currently
we use a simple Data Base system to encode past events in
LTM, but we are also investigating neural representations that
will enable abstracting and encoding events in the form of
episodes.

CONCLUSIONS

Our perception and consideration of time, is key in determining
how we behave and in the decisions we make. Besides the
increasing research interest that is recently devoted on temporal
cognition there not much studies linking the how-long and when
aspects of perceived events. Both of these aspects are fundamental
for the rich and meaningful perception of the environment. The
present work considers a memory representation perspective
to link short- and long-term time perception, accomplished by
using a single timing source to perceive both event-specific and
event-irrelevant times.

The broader vision of our research aims at time-aware
artificial autonomous systems. The particularly promising results
of the current work suggest that the proposed timing model can
be the basis for implementing artificial systems that successfully
interact with humans for the collaborative accomplishment of
short- and mid-term goals.
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