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Tissue injury involves coordinated systemic responses including inflammatory response,
targeted cell migration, cell-cell communication, stem cell activation and proliferation,
and tissue inflammation and regeneration. The inflammatory response is an important
prerequisite for regeneration. Multiple studies suggest that extensive cell-cell
communication during tissue regeneration is coordinated by purinergic signaling via
extracellular adenosine triphosphate (ATP). Most recent data indicates that ATP release for
such communication is mediated by hemichannels formed by connexins and pannexins.
The Pannexin family consists of three vertebrate proteins (Panx 1, 2, and 3) that
have low sequence homology with other gap junction proteins and were shown to
form predominantly non-junctional plasma membrane hemichannels. Pannexin-1 (Panx1)
channels function as an integral component of the P2X/P2Y purinergic signaling pathway
and is arguably the major contributor to pathophysiological ATP release. Panx1 is
expressed in many tissues, with highest levels detected in developing brain, retina
and skeletal muscles. Panx1 channel expression and activity is reported to increase
significantly following injury/inflammation and during regeneration and differentiation.
Recent studies also report that pharmacological blockade of the Panx1 channel or
genetic ablation of the Panx1 gene cause significant disruption of progenitor cell
migration, proliferation, and tissue regeneration. These findings suggest that pannexins
play important roles in activation of both post-injury inflammatory response and the
subsequent process of tissue regeneration. Due to wide expression in multiple tissues
and involvement in diverse signaling pathways, pannexins and connexins are currently
being considered as therapeutic targets for traumatic brain or spinal cord injuries, ischemic
stroke and cancer. The precise role of pannexins and connexins in the balance between
tissue inflammation and regeneration needs to be further understood.
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The vertebrate pannexin family consists of three proteins (pan-
nexin 1, 2, and 3) that have moderate sequence homology with
invertebrate innexins and a very low homology with true gap
junction proteins, connexins (Panchin et al., 2000; Baranova et al.,
2004; Panchin, 2005; D’Hondt et al., 2010). Pannexins and con-
nexins share similar protein structure with four transmembrane
domains, two extracellular loops and cytoplasmic tail (Panchin
et al., 2000; Baranova et al., 2004; Barbe et al., 2006). In most tis-
sues and cell types, pannexins were shown to form predominantly
hemichannels that mediate regulated exchange of second messen-
ger molecules, such as adenosine triphosphate (ATP), between
cytoplasm and the extracellular space. Some connexin hemichan-
nels, particularly those formed by connexin isoforms 26, 32, 37,
and 43 were also shown to pass ATP molecules in response to
phosphorylation, intracellular and extracellular calcium change
and other stimuli (Zhao et al., 2005; De Vuyst et al., 2006; Scemes
et al., 2007; Shestopalov and Panchin, 2008; Silverman et al., 2008;
Sonntag et al., 2009; Bao et al., 2012). However, the two families
of channel proteins have quite distinct physiological properties,

particularly the ability to form full vs. partial channels in vivo
and in the spectrum of binding partners (Scemes et al., 2007;
Shestopalov and Panchin, 2008; Silverman et al., 2008; Bao et al.,
2012). In contrast to connexins, pannexins are insensitive to phys-
iological levels of extracellular calcium, possess faster kinetics of
pore opening, larger unitary conductance and very weak voltage
gating (Bruzzone et al., 2003; Bao et al., 2004). Pannexin chan-
nels actively interact and are regulated/ modulated by P2Y/P2X
purinergic, A1/A2 adrenegric, TRPV, and NMDA receptors and
are, thus, implicated in cell signaling cascades downstream of
these surface receptors. In addition, Panx1 was shown to be sensi-
tive to mechanical stimuli and modulated by the Kvβ3 potassium
channels (Bunse et al., 2009), the feature that makes them respon-
sive to mechanical impacts and high extracellular K+ observed
in many CNS injuries. Sensitivity of pannexins to mechanical
stimuli and wide spectrum of interaction with surface molecules
allows the cell to employ pannexin channels as the major con-
duit for ATP release in response to a variety of physiological
and pathological stimuli. Although the function of pannexins as
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the ATP release channels for purinergic/adenosine signaling and
propagation of long-distance intercellular Ca2+ waves in astrocyte
networks is well understood (Bao et al., 2004; Locovei et al., 2006;
Suadicani et al., 2012), their role in the processes of inflamma-
tion and regeneration has just started to be evaluated. Pannexins,
particularly Panx 1 and Panx2, are highly expressed in developing
brain, retina, skeletal and cardiac muscles, and glandular tissues
(Vogt et al., 2005; Li et al., 2011b; Cea et al., 2012; Kar et al., 2012;
Giaume et al., 2013). In this review, we focus on a role pannexins
play in inflammation induced regeneration in various tissues.

ROLE OF PANNEXINS IN INFLAMMATION AND CELL DEATH
In vertebrates, inflammation often accompanies injury and dis-
ease. The immune response to injury is described as an accumu-
lation of both resident (macrophages) and circulating immune
cells in the injured tissue. In this process, ATP externalization
is the first step in the cascade of events leading to maturation
and secretion of inflammatory molecules: interleukin-1α (IL-1α),
interleukin-1β (IL-1β), and interleukin-18 (IL-18). In healthy tis-
sues, the amount of ATP released from cells is tightly regulated
and its concentration is kept low by extracellular ATP/ADPases
(Riteau et al., 2010). In damaged tissues, ATP is released from
injured and necrotic cells and from infiltrating monocytes and
macrophages through pannexin hemichannels, specifically Panx1
(Figures 1A,B, black arrows). ATP further activates monocytes,
macrophages and mast cells (also known as effector cells in aller-
gic and inflammatory diseases) that migrate to the site of injury
(Kurashima et al., 2012). Macrophages are very plastic cells that
function as control switches of the immune system, providing
a balance between pro- and anti-inflammatory responses. In
the M1 form, macrophages inhibit cell proliferation and induce
inflammation mainly by expressing IL-1 (α and β) and IL-18
(Figure 1B, red arrows) and releasing ATP. M2 macrophages pro-
duce anti-inflammatory cytokines and are typically involved in
tissue repair (Mills, 2013) (also see below).

Involvement of purinergic receptors in the processes of inflam-
mation and cell death has been well documented (Lister et al.,
2007; Burnstock, 2008; Iglesias et al., 2009; Hill et al., 2010;
McGilligan et al., 2013). Purinergic receptors function as a ligand-
gated ion channels and are responsible for ATP-dependent sig-
naling. The ATP-gated P2X7 purinergic receptors (P2X7Rs) are
associated with injury-induced activation of the inflammasome
within macrophages (Figure 1B). The inflammasome is a multi-
protein complex consisting of caspase-1 and other enzymes that
promote the maturation of inflammatory cytokines, such as IL-
1β, and IL-18. Initially binding of ATP to P27XR causes opening
of a non-selective cation channel; subsequently, with prolonged
ATP exposure, a stable non-junctional hemichannel (pore) is
formed. Given that a substantial body of evidence demonstrates
that Panx1 mediates ATP release in response to stimulation of
purinergic receptors in many tissues, including brain and mus-
cles (Brennan et al., 1990; Bruzzone et al., 2003; Baranova et al.,
2004; Locovei et al., 2007; Iglesias et al., 2009), Panx1 is believed to
form the pore in response to activation of P2X1, P2X4 and P2X7
(Burnstock, 2008; Shestopalov and Panchin, 2008; Feranchak
et al., 2010; Woehrle et al., 2010; Lohman et al., 2012; Romanov
et al., 2012; Hung et al., 2013). Thus Panx1 mediated ATP release

leads to autocrine/paracrine stimulation of P2X7Rs and promotes
proinflammatory cytokine processing (Dubyak, 2002; Feranchak
et al., 2010; Lohman et al., 2012; Romanov et al., 2012). Using
P2X7R(−/−) mice, Pelegrin and coauthors (Pelegrin et al., 2008)
provided evidence that activation of P2X7R by ATP in peritoneal
macrophages induces inflammasome activation and facilitates the
release of IL-1α, IL-18, as well as IL-1β.

Other studies showing roles for both P2X7R and Panx-1 in
the control of activation and release of mature IL-1α, IL-1β and
IL-18, support the idea that the P2X7Rs/Panx1 signaling com-
plex is a key regulator of inflammatory response (Pelegrin, 2008;
Pelegrin et al., 2008; Brough et al., 2009). Intriguingly how-
ever, in bone marrow-derived Panx1−/− macrophages IL-1beta
and IL-18 were still normally secreted after stimulation with
ATP (Qu et al., 2011), suggesting redundancy in the pathway
for interleukin activation. At the same time, Panx1−/− thymo-
cytes failed to recruit wild-type peritoneal macrophages, which
is consistent with a novel and non-redundant role for Panx1 in
releasing nucleotide/find-me signal from apoptotic cells to recruit
macrophages (Chekeni et al., 2010). Panx1 also contributes sig-
nificantly to plasma membrane permeability during apoptosis,
which is relevant for “selective” dye uptake by early apoptotic
cells (Zhang et al., 2008; Chekeni et al., 2010). Recently, using
experimental colitis model, Gulbransen et al. (2012) reported that
inflammation causes enteric neuron death by activating a neu-
ronal signaling complex composed of P2X7Rs, Panx1 channels,
the ASC adaptor protein and caspases 1 or 11. In this model, as
well as in the model of traumatic brain injury (Adamczak et al.,
2012), inhibition of either P2X7R, Panx1, ASC or caspase activity
prevented inflammation-induced neuron cell death, further sup-
porting an idea that Panx1 mediated signaling pathway is a crucial
regulator of cell death (de Rivero Vaccari et al., 2009; Gulbransen
et al., 2012).

Panx1 has been also implicated in pathophysiology of many
diseases such as Crohn’s disease, AIDS, melanoma, epilepsy,
chronic intestinal inflammation, spinal cord injury, and stroke
(Garre et al., 2010; Kim and Kang, 2011; Santiago et al., 2011;
Cowan et al., 2012; Penuela et al., 2012b; Diezmos et al., 2013;
Orellana et al., 2013; Oviedo-Orta et al., 2013; Wang et al., 2013).
The diversity of the cell states in this diseases suggests that Panx1
function in cellular processes leading to chronic inflammation,
cell death, and disease that remain to be fully defined. Moreover,
Panx1 signaling most likely provides a positive feedback loop for
inflammatory responses involved in acute and chronic inflamma-
tion and inflammation related diseases. Manipulation of Panx1
signaling and/or ATP release could be beneficial in treating neu-
trophil- or T cell-mediated inflammatory diseases.

ROLE OF PANNEXINS IN CELL DIFFERENTIATION AND
TISSUE REGENERATION
Several publications suggest that inflammation and regeneration
processes are connected and that inflammation is an important
prerequisite for regeneration (Filbin, 2006; Godwin et al., 2013;
Leibinger et al., 2013; Panayidou and Apidianakis, 2013). The
inflammation that accompanies injury and disease can lead to
further damage but can also support tissue repair (Wyss-Coray
and Mucke, 2002). Tissue regeneration requires the activity of
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FIGURE 1 | Scheme of inflammation and wound healing in epithelial

tissue. (A) The glandular epithelial cells form a selective permeability barrier
separating luminal content from underlying tissues. (A) In the epithelial
tissue cell damage induces ATP externalization from injured and necrotic
cells and later from infiltrating neutrophils, monocytes (macrophages
precursors), and macrophages. ATP is released through pannexin
hemichannels, specifically through Panx1. ATP activates monocytes,
macrophages, and mast cells (also known as effector cells in allergic and
inflammatory diseases) that migrate to the site of injury. (B) In addition
during an inflammatory response, eosinophils and neutrophils migrate from
the bloodstream into tissues. They contribute to the recruitment of
monocytes and macrophages. Macrophages and mast cells express P2X7
receptors (P2X7Rs), members of the family of ionotropic ATP-gated
receptors. ATP activated P2X7Rs are associated with injury activation of the
inflammasome within macrophages and transformation of macrophages into
pro-inflammatory M1 type of macrophages. M1 macrophages inhibit cell
proliferation and induce inflammation by releasing IL-1 and IL-18 and ATP.

They also secrete degradative enzymes, such as matrix metalloproteinases
(MMPs), collagenase, and elastase, and are crucial in induction of
extracellular matrix (ECM) remodeling and tissue reorganization, allowing
them and other cells (including epithelial and epithelial stem/progenitor cells)
to migrate through tissues. High concentration of ATP can also act as a
Panx1 channel inhibitor and thus Panx1 acts as a regulator of its own
function (black looped arrow) (C) Macrophages are very plastic cells that
function as control switches of the immune system, providing a balance
between pro- and anti-inflammatory responses. Macrophages could be
transformed into pro-healing M2 macrophages by signals released from
fibroblasts or by other external signals. M2 macrophages express IL-10,
growth factors, and tissue inhibitor of metalloproteinases (TIMPs) suppress
immune and inflammatory responses and promote cell proliferation and
tissue repair, and angiogenesis. Migrating fibroblasts secrete FGFs and
other growth factors that support tissue morphogenesis. Stem and
progenitor cells also express pannexin hemichannels, which are involved in
regulation of progenitor cell migration and differentiation.

multiple signaling pathways, leading to a blockade of apoptosis,
cell proliferation and differentiation and extracellular matrix
(ECM) remodeling. Recent reports suggest that inflammation
may influence the initiation and completion of wound healing
and regeneration (Fahmy and Sicard, 2002; Godwin and Brockes,
2006; Godwin et al., 2013) by modulating and growth factor
cytokine microenvironment.

Pannexin mediated ATP release initiates multiple signal-
ing cascades leading initially to recruitment of macrophages,

proinflammatory cytokine release and ECM remodeling, and
later to growth factor secretion followed by cell migration, pro-
liferation, and differentiation. Especially important is recruit-
ment of macrophages to regenerating tissue (Kharraz et al.,
2013; Kim et al., 2013). Recently, immunological signaling was
shown to be necessary for limb regeneration in salamanders.
Systemic macrophage depletion during salamander limb regen-
eration resulted in wound closure accompanied by extensive
fibrosis, deregulation of ECM components, and complete failure
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of epimorphic limb regeneration (Godwin et al., 2013). This find-
ing suggests that macrophages produce key regulatory molecules
important for regeneration of damaged body parts.

As mentioned above, macrophages can express two major
phenotypes depending on the external signals they receive
(Mokarram et al., 2012; Mills, 2013). During wound heal-
ing, pro-inflammatory M1 macrophages (see above, Figure 1B)
are transformed into M2 macrophages that suppress immune
and inflammatory responses and promote cell proliferation,
tissue repair, and angiogenesis (Mills, 2013) (Figure 1C). M2
macrophages also express anti-inflammatory cytokines, such as
IL-10, growth factors, and tissue inhibitor of metalloproteinases
(TIMPs). Changes in microenvironmental signals could induce
the switch of phenotype from M1 to M2 and vice versa. For
example treatment of the regenerating peripheral nerves with
IL-4 induced conversion of pro-inflammatory M1 macrophages
toward pro-healing M2 macrophages (Mokarram et al., 2012).
It has been reported that local fibroblasts that secrete ECM
components and participate in ECM remodeling, can also drive
macrophages toward the M2-like phenotype (Figure 1C, green
arrow) (Comito et al., 2013). In addition M2 macrophages release
fibroblast growth factors (FGFs, Figure 1C, blue arrow), that pro-
mote epithelial morphogenesis (Figure 1C) (Franzen et al., 1998;
Chernykh et al., 2010).

The emerging model is that during the normal process of
regeneration, inflammation precedes regeneration, and enhances
tissue repair through multiple processes that include cytokines
and growth factors release and induction of stem cells prolifer-
ation (Martin and Feng, 2009; Kyritsis et al., 2012). For example,
release of pro-inflammatory IL-1 causes dose-related secretion of
growth factors and pro-healing cytokines that initiate regenera-
tion process (Guenard et al., 1991; Miyauchi et al., 1997). More
recent study shows that inflammation is required and sufficient to
enhance the proliferation of neural progenitors and neurogenesis
in Zebrafish brain (Kyritsis et al., 2012). However, uncontrolled
release of IL-1 and other proinflammatory molecules may lead
to chronic inflammatory diseases, thus tight temporal and spatial
control of these factors must be maintained.

Among the proteins regulating IL-1 processing and release,
P2X7R and Panx1 play the role (Qu et al., 2007; Cesaro et al.,
2010). Macrophages and other immune cells express both pan-
nexins and the P2X7Rs, in particular, PANX1 is highly expressed
in human and mouse macrophages and has been shown to
co-immunoprecipitate with the P2X7R protein (Pelegrin and
Surprenant, 2006; Silverman et al., 2009). Thus in the context of
inflammation signaling, Panx1 is a key part of a multi-protein sig-
naling cascade that links the P2X7 receptor to the components of
the inflammasome resulting in the eventual release of cytokines
and cell death (Silverman et al., 2009). At the same time, high
concentrations of ATP in the extracellular space may inhibit the
Panx1 channel and thus Panx1 acts as a regulator of its own
function through negative feedback inhibition (Figure 1B, black
looped arrow) (Dubyak, 2009; Qiu and Dahl, 2009). It is pos-
sible that inhibition Panx1 function contributes to macrophage
death or to conversion of pro-inflammatory M1 macrophages to
pro-healing M2 cells that show a higher level of ATP and AMP
hydrolysis (Zanin et al., 2012).

Perturbation studies strongly support the notion that Panx1
is important component of healing process and functions down-
stream of P2X7R (Wang et al., 2013). In particular, genetic abla-
tion of P2X7R often results in decreased expression of Panx1 in
correlation with delay in wound healing. For example, in P2X7-
null corneas, Panx1 was absent from the wound edge and this was
associated with delayed corneal re-epithelialization (Mayo et al.,
2008). This suggests that P2X7R recruits Panx1 to mediate key
inflammatory and regeneration processes.

Panx1 may also function through communicating with the
cytoskeleton. Recent work demonstrated an interaction between
Panx1 and both actin and actin-related protein 3 (ARP3), an actin
cytoskeleton modulating protein (Bhalla-Gehi et al., 2010; Wicki-
Stordeur et al., 2012). Moreover, Bao and co-authors suggest
that ATP release by Panx1 channels initiates a signaling cascade
that regulates actomyosin mediated cellular mechanics during cell
migration (Bao et al., 2004, 2012). Thus, through modulating
the cytoskeleton, Panx1 may control cell migration and/or cell
process extension suggesting during wound healing.

An exciting emerging area is the role of pannexins in regula-
tion of stem cell differentiation. Several new publications indicate
that pannexins are expressed in various types of stem and progen-
itor cells and may be involved in regulation of their differentiation
(Turmel et al., 2011; Cea et al., 2012; Wicki-Stordeur and Swayne,
2013). For example, extracellular ATP signaling influences myo-
genesis and regeneration of skeletal muscle (Martinello et al.,
2011), and it is reported that ATP signaling during myoblast dif-
ferentiation is mediated through Panx1 hemichannels (Cea et al.,
2012).

Panx 1 is also found in multiple glandular tissues includ-
ing sebaceous, pituitary, mammary, harderian, and lacrimal
glands (neXtProt (human proteins) database, http://www.
nextprot.org/db/entry/NX_Q96RD7/expression) (Li et al., 2011a;
Cowan et al., 2012), however the role of Panx1 in these tissues is
not well defined.

Panx2 and 3 were also proposed as regulators of cells dif-
ferentiation/regeneration. In particular, Panx2 was implicated in
regulation of neuronal cell differentiation. It has been shown
that Panx2 protein is differentially expressed by multipotential
neuronal progenitor cells and mature neurons. Stem-like neural
progenitor cells express an S-palmitoylated intercellular localized
Panx2 that prevents their differentiation, while committed dif-
ferentiating neurons express mature (non-palmitoylated) Panx2
localizing at the plasma membrane. Moreover, knockdown of
palmitoylated Panx2 significantly accelerated the rate of neu-
ronal differentiation (Swayne et al., 2010). In the mammalian
epidermis, Panx1 is co-expressed with Panx3, which plays a key
role in keratinocyte differentiation (Celetti et al., 2010). Panx3,
which is expressed in cartilage, has been reported to regulate
chondrocyte proliferation and differentiation (Iwamoto et al.,
2010). Panx3 also promotes differentiation of osteoblasts and ex
vivo growth of metatarsals (Ishikawa et al., 2011). These stud-
ies suggest that Panx3 functions to switch the chondrocyte and
osteoblasts cell fate from proliferation to differentiation, possibly
through regulation of intracellular ATP/cAMP levels (Iwamoto
et al., 2010; Penuela et al., 2012a), and may serve an impor-
tant role in cartilage and bone development (Iwamoto et al., 2010;
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Bond et al., 2011). Thus these studies point to key roles for pan-
nexins in cell differentiation.

The overarching paradigm prompted by the numerous studies
of pannexin function in cell culture, animal models, and clinically,
is that Panx genes have a dual role in inflammation and tissue
regeneration (Mohammad and Habib, 2014). Thus extracellular
ATP signaling via purinergic receptors leading to formation of
pannexin hemichannels, is a common pathway for inflammasome
activation (Burnstock, 2006; Seminario-Vidal et al., 2009; Riteau
et al., 2010, 2012; Hung et al., 2013; Lutz et al., 2013; Wang et al.,
2013; Martins et al., 2014) and later for progenitor cell migration,
proliferation, and differentiation during wound healing and tis-
sue regeneration (Filbin, 2006; Mayo et al., 2008; Cea et al., 2012;
Wicki-Stordeur and Swayne, 2013).

ROLE OF CONNEXIN HEMICHANNELS IN INFLAMMATION
AND REGENERATION
Massive ATP release by macrophages and, as described more
recently, by other cells (epithelial, endothelial, glial, neuronal),
that activates the purinergic signaling cascade has been long
implicated in inflammatory responses (Schenk et al., 2008;
Silverman et al., 2009; Riteau et al., 2010; Gulbransen et al.,
2012). Are the connexin hemichannels involved in this process?
Connexins and pannexins present similar membrane topology,
however, there is only 16% overall identity when their full-
length amino acid sequences are compared (Orellana et al.,
2012). Many cells/tissues express both pannexins and connex-
ins. In addition to forming gap junction, connexins are also able
to form active hemichannels in non-junctional membrane, that
can release Ca+ and ATP (Bennett et al., 2003; Contreras et al.,
2003). Similar to pannexins, opening of connexin hemichannels
appears to be involved in many physiological and pathologi-
cal cellular responses, including cell proliferation, inflammation,
and cell death (Decrock et al., 2009; Garre et al., 2010). It has
been reported that proinflammatory molecules may enhance ATP
release via connexin hemichannels in Cx43-expressing cells (De
Vuyst et al., 2007).

In cortical and spinal astrocytes, the activity of Cx43
hemichannels is strongly enhanced by application of proinflam-
matory molecules, such as tumor necrosis factor alpha (TNF-α),
IL-1β, or fibroblast growth factor 1 (FGF-1) (Retamal et al., 2007;
Garre et al., 2010). In spinal astrocytes, both pannexin (Panx1)
and connexin (Cx43) hemichannels respond to FGF1 treatment
by ATP secretion and by increased permeabilization to relatively
large fluorescent tracers (ethidium and lucifer yellow) (Garre
et al., 2010). However Panx1 hemichannels respond faster and
have a leading role in ATP secretion and dye uptake (Garre et al.,
2010). It has been proposed that FGF1/ATP-mediated activation
of P2X7Rs, could lead to opening of Panx1 hemichannels and fur-
ther release of ATP, and later significant accumulation of ATP,
induces opening of Cx43 hemichannels, which also release ATP.
Thus in both spinal and cortical astrocytes, cytokines also reduce
dye coupling and the number of Cx43 gap junctions (Retamal
et al., 2007; Garre et al., 2010). The mechanism of delayed open-
ing of connexin hemichannels is not yet clear. It is possible that, in
contrast to pannexins, opening of connexin hemichannels is regu-
lated by a different, more complex or “slower” signaling pathway,

or that connexin hemichannels need to be newly assembled in
response to increasing concentration of ATP or pro-inflammatory
signals.

CONCLUSIONS
Pannexin hemichannels might serve as primary sensors of cell
micro-environmental changes that allow cells within a tissue to
respond proactively to environmental stresses, such as mechanical
damage, microbial invasion, or metabolic stress, while connexin
hemichannels may be critical to maintain this stress response.
Due to wide expression in multiple tissues and involvement in
numerous cellular functions, pannexins should be considered
as potential therapeutic targets for diseases and conditions such
as immune disorders, cancer, and acute inflammation, or for
enhancement of progenitor cell proliferation, migration, and dif-
ferentiation during wound healing and regeneration. However
the precise role of pannexins in the delicate balance between
release of pro-inflammatory molecules leading to cell death, and
tissue regeneration needs to be further understood.

Defining the distinct roles of pannexin hemichannels in differ-
ent physiological processes or at different stages of the physiologi-
cal process such as cell/tissue regeneration provides the possibility
for these channels and ATP release to be ultimately targeted in a
context-dependent manner.
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